

1/8

A Conceptual Authorization Model for Web
Services1

Paul J. Leach, Chris Kaler, Blair Dillaway, Praerit Garg,
Brian LaMacchia, Butler Lampson, John Manferdelli, Rick Rashid,

John Shewchuk, Dan Simon, Richard Ward
Microsoft Corporation, Redmond, Washington, USA

This paper describes a conceptual authorization model for Web

Services. It is an adaptation of those of Taos [Lamp92] and SDSI
[Lamp96] with terms changed to correspond more closely to those
introduced with the WS-Security model [WS02]. In contrast to the
more formal and mathematical presentation used for Taos and
SDSI, this presentation is conceptual and informal, which hope-
fully may provide more intuition for some readers; it also might
provide an outline for the class hierarchy of an object-oriented im-
plementation.

In addition, this model abstracts away from issues of distribu-
tion and network security such as authentication [Need78] and en-
cryption (for example, by assuming that messages include the un-
forgeable identity of the sender and are private and tamperproof)
so as to focus on authorization, but it does deal with the extensibil-
ity and composability of security services, and partial trust. It also
abstracts away from issues of syntax and encoding (for example,
ASN.1, proprietary binary formats, and XML) and focuses on se-
mantics.

The following figure illustrates many of the elements of this
model that will be described in this paper:

1 This paper was written for a symposium in honor of Roger Needham, February
2003, and published in Computer Systems: Theory, Technology, and Applica-
tions, K. Sparck-Jones and A. Herbert (editors), Springer, 2004, pp 137-146.

2/8

Basic computational model
Computations are done by running programs in processes

which contain one or more parallel threads of execution. Processes
have separate address spaces and are isolated from unwanted inter-
actions with other processes. A program may use an inter-process
communication facility to send requests to other programs; or to
receive requests from other programs, process them, and return
results in a response. A program sending requests is called a client;
one receiving them is called a service; a program may be both a
client and a service.

There are many providers of services, not just the system. In
particular, many security services are provided by non-system enti-
ties, and they may not be fully trusted.

We use an object oriented model: clients use requests to ask
services to perform some operation on an object2 that the service
implements. Services in turn invoke other services to perform the

2 Another frequently used term for object is resource. In this context, they mean
the same thing. A service may implement only a single object, or it may imple-
ment many. If many, they may all be of the same kind, or they may be of differ-
ent kinds.

Figure 1.

3/8

requested operation. Ultimately, they invoke drivers to write pixels
to the screen, bits to the disks, packets to the network, etc.

Basic security model
Computations run on behalf of principals; principals may be

users or services (and other kinds, to be defined below, but these
are the basic ones). A system service exists that can start an initial
process and program on behalf of a user after verifying the user’s
identity and their permission to use the system.

Requests can be in many forms; typical examples are messages
sent over a network or inter-process communication mechanism, or
APIs that call into the operating system3.

Services are responsible for securing themselves; i.e., making
sure that only authorized principals will have their requests exe-
cuted. When a service receives a request, it forms the security con-
text for that request, uses its trust policy to validate all the informa-
tion in the security context, and then uses it to evaluate its authori-
zation policy4

to decide if the request should be honored. The next
few sections expand on this process.

Model components
A statement is a collection of data created by a principal;

statements can contain other statements. A claim is a statement
consisting of security relevant information about a principal; a se-
curity token is a statement containing one or more claims. An im-
portant type of claim is the attribute-value (AV) claim, stating that
a principal has certain attributes; such a claim might be that a user
has a certain identity, is a member of a specific group, or has a cer-
tain credit limit. A security token might be a list of group member-
ships for a user.

A signed statement is a statement for which an AV claim at-
testing to the identity of the principal making the statement can be
requested from the system; they are particularly interesting when
the statement is a security token. The system guarantees that

3 The request identifies the operation and the object on which it is to be per-
formed (if it’s not implicit) and contains any other data needed to perform the
operation.
4 The analogy is to the standard model of interpretation: the policy contains free
variables that a bound with reference to the context.

4/8

signed statements are tamperproof and the principal’s identity is
unforgeable5.

Requests and responses are statements, and they too may be
signed6. Whenever necessary, the system can guarantee that signed
requests and responses are private; i.e., the contents are not acces-
sible to any process except the intended recipient.

A security context is a collection of claims related to a particu-
lar request. It can be initialized with the AV claim identifying the
sender of a signed request, or by a security token. Security tokens
may be received in requests, or returned in responses to requests
made to other services; a service whose primary purpose is to do
the latter is called a security token service (STS). Multiple security
contexts may be merged to form a new security context just by tak-
ing the union of all their claims.

Trust model
The claims in the security context are validated against the ser-

vice’s trust policy. The trust policy for a service defines which of a
security token service’s claims will be used when evaluating its
authorization policy; the service will trust a claim if it deems the
service (often an STS) that made the claim authoritative for that
claim. Any given STS may (and usually will) be considered by any
given service to be authoritative for only a subset of all principals,
and, for any principal, only a subset of the possible kinds of AV
claims that can apply to that principal; we call this its authorization
scope with respect to that service. For example, the human re-
sources service for a division of a corporation may be authoritative
for AV claims about salaries of division employees, while the divi-
sion IT department’s group membership service is authoritative for
AV claims about their group memberships.

There is a kind of claim, which we call a trust claim, which de-
fines an authorization scope for a particular STS. The trust policy
for a service is a collection of such claims. In addition, authoriza-
tion scope claims can be in the security context and will be trusted
if they were made by an STS that is trusted (i.e., authoritative for

5 To simplify exposition, we have simply posited that the system can do this, but
it should be noted that in Taos both identity and authorization are verified in a
uniform way using (its analog to) claims and the trust validation we outline in
this paper. I.e., user identity is just an AV claim.
6 We allow unsigned requests for cases where anonymity is allowed or desired.

5/8

them). Note that trust claims are themselves a kind of AV claim:
they specify a set of claims for which a service is authoritative and
is therefore trusted to make.

Trust policy, in the form of a security token containing trust
claims, can be an argument to a request, and also are validated
against the service’s trust policy. Trust claims that pass validation
may be added to the service’s trust policy. Trust policies can be
combined to create a new trust policy just by taking the union of
all their claims.

More complex principals
Principals can be organized into groups: a group is a set of us-

ers or groups. A group is a kind of principal: a group member is
authorized to do anything that the group is authorized to do.

Principals can also be organized into roles. A role is a kind of
principal: a role member is authorized to anything the role is au-
thorized to do. A role differs from a group in that its membership is
tied to an object type and a scope – see the next section.

A principal may be formed from a set of other principals, mak-
ing an access token7: a token is authorized to do anything that any
principal in the token is authorized to do. Tokens can also be re-
stricted by specifying a second set of principals; a restricted token
is authorized to do anything that both sets of principals are allowed
to do. These constructs allow taking the “or” and “and” of princi-
pals (respectively).

Authorization policy
A service may associate with each operation of the service a

permission that authorizes the operation8; the operation is said to
require the permission.9 Associated with each object in a service is
its authorization policy.10

An authorization claim for an object
specifies a set of principals, and the permission(s) granted to that

7 Often referred to simply as a “token” when the context is clear.
8 More than one operation may be associated with a given permission.
9 It is possible, but not encouraged, for an operation to require more than one
permission.
10 More than one object may be associated with a given authorization policy.

6/8

set11. The set of principals can be specified by a Boolean expres-
sion which evaluates to true for all members of the set, where the
free variables in the expression are bound to the values of attrib-
utes in AV claims in the security context. The authorization policy
for an object is a set of such claims.

Objects in a service can be organized into scopes: all objects of
the same type

e12

 in the same scope have the same assignment of
principals to roles. Assigning scopes simplifies authorization man-
agement by removing the need to manage authorization policy for
each object individually.

One kind of authorization policy is role based: all objects in
the service of the same type have the same authorization policy,
and the only principals in the authorization policy are roles. With
role based authorization, the authorization policy is fixed by the
implementation of the service, which “hard codes” the assignment
of permissions to roles; authorization is managed by changing the
assignment of principals to roles and objects to scopes.

Authorization policy, in the form of a security token containing
authorization claims, can be an argument to a request, and also is
validated against the service’s trust policy. Authorization claims
that pass validation are added to the service’s authorization policy.

Authorization policies can be combined to create a new au-
thorization policy just by taking the union of all their claims.

Authorization verification
To secure itself, a service utilizes a reference monitor: for each

request, it asks the reference monitor to decide whether it should
grant the request. The reference monitor bases its decision on the
security context for the request, the operation requested, the ser-
vice’s trust policy, and the service’s authorization policy. (For ex-
ample, a basic kind of authorization policy could simply specify
which principals can perform what operations on its objects; one
way to express this is with access control lists on the objects.) Es-
sentially, the trust policy is used to create a trusted security context
that only has trusted claims, then the authorization policy is treated

11 Note that the set of principals with a given permission essentially defines a
group.
12 For purposes of this paper, it suffices to define that objects have the same type
when they implement the same operations.

7/8

like a program to be executed, with the free variables in it assigned
values from the trusted security context. If the reference monitor
OKs the request, then the service executes the operation, using its
own identity to make the requests on any other services or drivers
needed to do so.

The model above leads to the following flow for verifying that
the authorization policy is satisfied when a service processes a re-
quest:

Get the operation specified in the request
Combine all the security tokens to create the
security context

Create the trusted security context by using the
trust policy to remove untrusted claims

Get authorization policy:
If only one policy for the service, just return
it; else:
Determine the object being referenced by the
request

Determine the object’s scope
Determine the object’s type
Get authorization policy for that type in
that scope

Determine if the requesting principal is given the
required permissions by the authorization policy:

If the principal is an access token, take the
union of the permissions associated with each
principal in the access token

If the principal is a restricted token, take the
intersection of the permissions associated
with each principal in the restricted token

If the permissions do not include the one required
for the requested operation return an access
denied error, else return OK

Note that if a service does not have need for flexible configura-

tion of authorization policy and wants the ultimate in efficiency,
then it can associate a role with each operation, and have the im-
plementation of each operation simply check whether the request-
ing principal is that role (or an access token that contains that role).

Conclusions
We have briefly described a conceptual model for authorization

for web services. If one contrasts it with “more traditional” models,
the more interesting differences include:
• authorization based not just on user identity and group mem-

berships but on attributes of users

8/8

• support for partial trust on attributes as well as user identity
and group memberships

• trust and authorization policy can be arguments to requests
from untrusted clients, as long as they originate with parties
trusted to set such policy
Finally, this model isn’t really tied to web services – it could be

used in other distributed systems contexts where the features that
differentiate it from the more traditional model are needed, just as
web services need them.

Acknowledgements
We would like to acknowledge the support given to the work

that led to this paper by Dave Aucsmith, Doug Bayer, Peter Biddle,
Blair Dillaway, Mike Nash, David Treadwell, and Robert Wahbe.

References
[Lamp92]

LAMPSON, B., ABADI, M., BURROWS, M. AND WOBBER E., ‘Authentication
in distributed systems: Theory and practice,’ ACM Trans. Computer Systems
vol. 10, no. 4, Nov. 1992, pp. 265-310. A preliminary version is in the Proc.
13th ACM Symposium on Operating Systems Principles.

[LAMP74]
LAMPSON, B., ‘Protection,’ Proc. 5th Princeton Conf. on Information Sci-
ences and Systems, Princeton, 1971. Reprinted in ACM Operating Systems
Review, vol. 8, no. 1, Jan. 1974, pp. 18-24.

[NEED78]
NEEDHAM R.M. AND SCHROEDER, M.D., ‘Using encryption for authentica-
tion in large networks of computers,’ Comm. ACM, vol. 21, no. 12, Dec.
1978.

[SDSI]
LAMPSON, B. AND RIVEST, R., SDSI – A Simple Distributed Security Infra-
structure, http://theory.lcs.mit.edu/~cis/sdsi.html, 1996.

[WS02]
IBM, MICROSOFT. Security in a Web Services World: A Proposed Architec-
ture and Roadmap, 2002. http://msdn.microsoft.com/library/en-
us/dnwssecur/html/securitywhitepaper.asp

