Inter-Office Memorandum

To csL, SSL Date February 2, 1973
From Butler Lampson Location Palo Alto
Subject Design notes for Organization PARC

Alto Operating System

(EROX

This memo is a tentative specification of the operating system for
Alto which Gene McDaniels is writing. Comments and suggestions are
solicited.

_ We begin by considering what features we will need in six months, and
then try to find a subset with which to start. Stoy and Strachey's 0S6
system (Computer Journal, July and October 1972) is the source for a good
deal of the terminology and some of the ideas.,

1. Basic capabilities

disk files
names and directories; versions;
sequential and random access;
disk scavenging, syntax check and recovery procedures;
partitioning the disk to allocate separately either:

consecutive cylinders for swapping or overlay areas, or
the two disks, since one is removable.

input-output
streams which can mediate transfers between programs and disk
files, i=-o devices, or other programs, more or less as in Stoy

and Strar:_:hey;

drivers for keyboard, mouse and display;

driver for whatever communication facility we provide in the
hardware.

command language, i.e., a way to call in programs for execution

storage allocation and overlay facilities for core.

DESIGN NOTES FOR ALTO OPERATING SYSTEM
Butler Lampson

February 2, 1973

Page 2

2. Some numbers

Memory: A 'standard' machine is 48Kx16 bits. A ‘big' machine is
64K.

A full display buffer is 32K, but the amount of memory used
by the display is directly. proportional to the amount of
display surface covered, and this can be controlled quite
finely, in fact, in arbitrary rectangles which start at the
left edge of the screen.

Disk: 2 packs (] removable), each with 2 surfaces and 406

cylinders. Each track is 12 sectors of 256 data words, an
8-word label, and a 2-word header. 9744 sectors/pack.

Rotation time: 25 ms. Seek time: 8+3* sqrt (dt). Average

access time to one megabyte on consecutive cylinders is

about 30 ms.

A bit table for 1 pack is 2.4 pages (of 256 words).

Transfer rate is 133 ms/l6K or .5 sec/big memory.

Time to read every sector on one pack is 22 seconds.
Display: 820 x 620 raster. Using 5x7 characters with 2-bit

displacement for descenders we get v100 characters/line, 80

lines, In this font, 72 character lines take up 270 words
each. Obviously, prettier fonts take more space.

3. Locating files

Every file has a unique tag called its serial number. We assume 32
bits for this number; one of these bits distinguishes directories from
other files. Every file also has a file number, which is an index into a
master file table (MFT) which maps the file number 1nto the disk address of
the leader page for the file. :

A directory entry contains some naming 1nformatzon (discussed in more
detail in section 6) and a three-part address:

file number FN
serial number SN
leader page address LA (optional)

To get the leader page:

DESIGN NOTES FOR ALTO OPERATING SYSTEM
Butler Lampson

February 2, 1973

Page 3.

read the page at LA;

if its label (see below) says that it is the leader page for file SN,
(PN=g) we are done;

otherwise, read entry FN in MFT and read the page at that address.

if its 1label says "leader for SN" we are done (and can optionally
update LA in the directory).

otherwise the file no longer exists.

The motivation for MFT is to decouple the file system from the naming
system. It permits the entire file, including its leader page, to be moved

around freely without any reference to the directories.
4. File structure

A file consists of a leader and a body. The leader occupies one (or
more) pages of its own, disjoint from other leaders and from the body. It

contains: :

title, a string which is not used by the operating system but may help
to identify the file if all its directory entries get lost

access control information: (no access, read-only, read-write),
(scratch, normal, permanent)

history: date created, date written, date last read
serial number, version number

file number

locator, which tells how to get to the body

Two forms seem reasonable for the locator: sequential and random. A
sequential locator is just the disk address of the first page of the file.
Each page then points to the next and previous ones. A random locator is a
list of disk addresses for the pages of the file. Pros and cons of these
two schemes: '

Sequential pro: no need to write the header when closing the file

header always fits on one page

DESIGN NOTES FOR ALTO OPERATING SYSTEM
Butler Lampson

February 2, 1973

Page 4 '

Sequential con: random access is costly (but the incremental
scheme described in section 5 below mitigates the
severity of this problem).

Proposal: we should use a sequential file structure initially. I can't
see any reason why we can't add or switch to a random structure later.

Each page on the disk consists of three records:
a 2 word header:

partition (see section 7)
disk address

an 8 word label

P ptr (disk address) to next page of file
PP ptr to previous page
SN serial number of file (2 words)
VN version number : ' _
PN page number in file (starting with 1)
2 unused words '

a 256 word data record

A disk controller command specifies a disk address and an operation for
each of the three records of the addressed sector chosen from the list:
read, check, write. The only constraint is that writing, once started,
must continue for the whole sector. A check operation compares disk data
with core data and signals an error when it finds a disagreement, except
that if the core data word is =1 there is no érror and the disk data
replaces the -l1. This allows the check to be a simple kind of pattern
match, Each record has a checksum which is checked on a read or check
operation, generated on a write. Any error stops the controller
immediately. '

Controller commands can be chained together, and the controller can
transfer to or from consecutive sectors without restrictions. Again, one
error stops the controller, preventing it from proceeding down the chain.
Each command is marked when it is completed. Details of the controller
interface are documented in the Alto manual. '

The capabilities sketched above allow full speed transfers from
consecutive sectors of a sequentially structured file (by reading the label
into core so that its final word overwrites the last word of the next
command) . The pattern-match feature allows SN, VN.and PN to be checked
while NP is read, so that writes can be done into an already-allocated
sequential file without giving up any checking. ' -

DESIGN NOTES FOR ALTO OPERATING SYSTEM
Butler Lampson

February 2, 1973

Page 5

S. Operations on files

Either the file number or the leader address will do as identification
for a file, together with SN, VN. The operations we need are:

open (i.e. make stream; see section 8 below) for input by byte;
word or page

open for output by byte, word or page

open for random access (maximum file size). This returns a value
which can be used as a parameter to three other operations: ’

move core to file (core address, file address, count)

move file to core (same arguments)

close

intended implementation: construct a page number to disk

address map in core, and fill it in incrementally as pages
of the file are touched in performing move operations

delete body

delete file *
read heading

create file

set access controls.

6. Directories

A directory is a file which contains a list of entries. Each entry
contains: o

NAME a string

TYPE which may be file or link
a value which depends on the type

For a file, the value is a pair: <serial number, 1list of triples:
<version number, file number, leader address>>.

DESIGN NOTES FOR ALTO OPERATING SYSTEM
Butler Lampson

February 2, 1973

Page 6

For a link the value is another string which is taken as the full name
of the file being referenced. This form of indirect addressing may be
iterated to a reasonable depth.

The form of the file name in NAME is:
identifier [*.? identifier]

Here an identifier is a string of printing characters not including ()
[) ., ; or blanke The second identifier is intended to be thought of as
a type, and procedures which operate on directories wzll 1mplement the
usual * conventions for both parts of the name.

A full file name has the form:

['>'] [directory name § ('>' directory name)] file name
[';' version number]

Here "directory" is just a file name. Each name is looked up in the
current directory, which is set initially to a value specified as a
parameter to the lookup procedure and is changed whenever a directory name
is encountered in the full name, The initial > sets the current directory
to the system directory.

Operations on directories are:

enter (directory, name, deletes the entry if the type is
type, value) NIL
lookup (directory, name) which returns NIL or a three-part

address, following links and using
the latest version in case of

ambiguity

lookuponce (directory, name) which returns NIL or a type and
value

entries from (directory) which returns a stream which
delivers successive directory
entries

Initially we can do without versions, links and multiple directories.

7. Partitions, slices and allocation

A sector on the disk is specified by an address with four components:

cylinder: 0<c<c C=406

DESIGN NOTES FOR ALTO OPERATING SYSTEM

Butler Lampson
February 2, 1973
Page 7

surface: 0<s<s =2
pack: 0O<p<P P=2
record: 0<xr<R R=12

A track is a group of sectors with the same ¢, s and p. We will wuse
virtual addresses for disk sectors, computing the virtual address by:

v=((cP+p)S+s)R+r

so that increasing v scans first, all the records of a track, then all the
tracks on one pack in one cylinder, then all the packs, and finally the
cylinders. Hence abs(vl - v2) small implies short seek time between vl and
v2.

A slice is a set of sectors (¢, p, s, r) such that:
C min < ¢ < C max 1c = Cmax = C min + 1
P min < p < P max 1P etc.
S min < s < S max
R min < r < R max

It takes 8 numbers to specify a slice. We can get a reasonably efficient
function which delivers successive virtual disk addresses in a slice by
observing that any slice consists of kernels (each of which may be part of
a track, a track, a pack cylinder (all the tracks with fixed c and p), or a
cylinder) within which a consecutive range of virtual addresses is in the
slice. The kernels are characterized by an origin kf = (C min, P min, S
min, R min), a length 1 and the shortest interval i between the start of
kernels. If the interval between consecutive kernels is always i, the
slice is gimple. For a simple slice, v is in the slice if (v-
k@) mod i <1l. Most interesting slices are simple. :

- A partition is a triple <partition number N, slice 1, slice 2>, All
the sectors in the slices have the partition number written in the header.
The partition has a serial number <0,N> and a leader which is exactly like
a file leader except that the locator is two slices. There are two things
to do with a partition: allocate files in it, or use it as one big file.
Files are not allowed to have pages in more than one partition. '

Basic operations on partitions:

create partition (number) creates an empty partition

DESIGN NOTES FOR ALTO OPERATING SYSTEM
Butler Lampson

February 2, 1973

Page 8

transfer slice (slice, from partition, to partition). All the
pages must be free

delete partition (partition). The partition must be empty
Note the constraint that a partition can only consist of two slices
We need two operations to move pages relative to slices:

block transfer (from partition, to partition) copies all the
pages and frees the old copies

flush (slice, partition) copies all the pages out of the slice
into the partition. The slice may be contained in the partition

These operations have to update the locator information, and the MFT if
leaders are moved. They don't have to update directories.

We can do without all this initially.

8. Disk scavenger

The purpose of the disk scavenger is to check the correctness of all
the structured information used by the file and directory system, to

reconstruct secondary data kept for efficiency (such as the allocation bit
table) from primary data (headers and labels), to report discrepancies
(such as pages for which there is no leader) and to leave -the disk in a
consistent state. '

The following steps will suffice (hopefully).
a) Read every label and construct two tables:

1) file table FT, with one entry for each file, containing
its VN, SN, header address and newly assigned FN

2) disk table DT, with one entry for each disk page,
containing the file system address of the page:
(FN,PN) '

In the process check the validity of all the pointer chains using a
technique described below. Also check that each file has a header page
with sensible information on it,

b) Reconstruct the allocation bit table from DT

c) Reconstruct MFT from ET

DESIGN NOTES FOR ALTO OPERATING SYSTEM

Butler Lampson

February 2, 1973

Page 9

a)

e)

£)

Sort all unaccounted-for pages by file system address,
constructing leader pages and dummy data blocks and fixing
up pointer chains if necessary. Log all the problems found,
identifying the file by SN, VN, and title if it had a leader
page. DT can now be discarded

Read all the directories, log and delete entries for non-
existent files, update FN and LA for each entry. Keep a
reference count, for each file, of directory entries
referring to it

Log all files with no directory entries and either delete

them or optionally put them into a special directory (or the
main directory in the initial system) with a name derived

from the title

The main trick is to make FT and DT fit into core, which may be only

48K,

and to make only one pass over the disk. We index DT by virtual disk

address, adjusted if necessary so as to agree with the order in which pages
FT will be hashed on (SN, VN) into a 1linear hash table whose
size is determined by the available space. Position in this table will do
for FN until step (a) is complete; the table can then be compacted and DT
adjusted if desired.

are read.

A DT entry may have several forms:

address: FN, 12 bits at most, for a limit of 4,000 files

PN, 3 bits. Files with more than 8 pages have
dummy FN's assigned from a randomly chosen empty
FT entry for each additional 8 pages

chained: CP, 15 bits, Points to DT entry for previous page

of the file. Pages with PN=@ are never chained

special: chained, but toward the next page. Only for pages

not yet read, special entries are marked as
address, since pages not yet read can't be address

empty: y

free:

1

Address and chained entries are distinguished by the sign bit. Each DT
entry thus occupies exactly one word,

"All DT entries start out empty. When a label is read the following
processing has to be done.

DESIGN NOTES FOR ALTO OPERATING SYSTEM
Butler Lampson

February 2, 1973

Page 10

a) create a FT entry for the file if one doesn't already exist.
Compute the file system address A of the page

b) the DT entry for the page may be empty, chained or special.
If it is empty make it address. If it is chained, follow

the chain until an address A' is found and check that

A-A' = the number of links traversed (or whatever). If it
is special, do a similar check, make it address and make the

page it pointed to chained

¢) examine the DT entry for the pages pointed to by the two
pointers in the label. For each one, if it is address,
chained or special, check that it has the correct address,
using the method of (b) for a chained entry. idake a
following address or special page chained. If it is free
give an error., If it is empty, that page hasn't been read
yet. Make it chained or special '

When all is done, all the segments of files which are held together
with pointers in labels are held together in DT. It is easy to check for
incomplete pointer chains, and to read off all the pages of every file from
the CH words in FT. ' |

A real FT entry contains:
SN: 32 bits
VN: 15 bits

CH: address of last file page currently in. ST. This can be
updated as DT in constructed, or, if space is tight, it can
be derived later by a single pass through DT, room. being
made for it by moving VN into the end of the chain, which
normally contains a file address. This only works for a
well-formed chain, which has the PN of the end = @

REAL: 1 bit = 1, indicating that this is a real file
A dummy FT entry has REAL = § and contains a pointer to the

corresponding real entry plus the page number in the real file of page
in the dummy :

9. Streams

A stream is like a coroutine. It is implemented as a structure which
points to the functions which implement the various operations, and may

also contain variables which are local to the stream and represent its

DESIGN NOTES FOR ALTO OPERATING SYSTEM

Butler Lampson
February 2, 1973
Page 11

state (e.g. a pointer to a buffer block). Following Stoy and Strachey we
have the following operations on streams:

next (stream)

out (stream, data)

end of (stream)

reset (stream)

close (stream)

delivers the next item. If items are >1
word, it takes another argument which points

to a place to put the data

is true if the end of input has appeared. It
is strictly up to the stream to define this

rewinds a disk file or magtape and does other
appropriate things for other devices

gets rid of it

This summary leaves open sticky questions about special operations which
may be needed by streams like the keyboard, and the handling of control
functions in general. Further thought is required, but probably we can do
without these things initially. '

10. Disg;ax_ (to be written)

Keyboard and mouse (to be written)

Memory allocation and control of programs (to be written)

