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Abstract. We describe a slightly subexponential time algorithm for learning parity functions in the
presence of random classification noise, a problem closely related to several cryptographic and coding
problems. Our algorithm runs in polynomial time for the case of parity functions that depend on only
the firstO(logn log logn) bits of input, which provides the first known instance of an efficient noise-
tolerant algorithm for a concept class that is not learnable in the Statistical Query model of Kearns
[1998]. Thus, we demonstrate that the set of problems learnable in the statistical query model is a
strict subset of those problems learnable in the presence of noise in the PAC model.

In coding-theory terms, what we give is a poly(n)-time algorithm for decoding lineark× n codes
in the presence of random noise for the case ofk = c logn log logn for somec > 0. (The case of
k = O(logn) is trivial since one can just individually check each of the 2k possible messages and
choose the one that yields the closest codeword.)

A natural extension of the statistical query model is to allow queries about statistical properties that
involve t-tuples of examples, as opposed to just single examples. The second result of this article is to
show that any class of functions learnable (strongly or weakly) witht-wise queries fort = O(logn)
is also weakly learnable with standard unary queries. Hence, this natural extension to the statistical
query model does not increase the set of weakly learnable functions.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]:
General; G.3 [Probability and Statistics]; I.5.0 [Pattern Recognition]: General

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Computational learning theory, machine learning, statistical
queries

1. Introduction

An important question in the study of machine learning is: “What kinds of functions
can be learned efficiently from noisy, imperfect data?” The statistical query (SQ)
framework of Kearns [1998] was designed as a useful, elegant model for addressing
this issue. The SQ model provides a restricted interface between a learning algorithm
and its data, and has the property that any algorithm for learning in the SQ model can
automatically be converted to an algorithm for learning in the presence ofrandom
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classification noisein the standard PAC model. (This result has been extended to
more general forms of noise as well [Decatur 1993, 1996].) The importance of
the Statistical Query model is attested to by the fact that, before its introduction,
there were only a few provably noise-tolerant learning algorithms, whereas now it
is recognized that a large number of learning algorithms can be formulated as SQ
algorithms, and hence can automatically be made noise-tolerant.

The importance of the SQ model has led to the open question of whether there
are problems learnable with random classification noise in the PAC model but
not learnable by statistical queries. This is especially interesting because one can
characterize information theoretically (i.e., without complexity assumptions) what
kinds of problems can be learned in the SQ model [Blum et al. 1994]. For example,
the class of parity functions, whichcanbe learned efficiently fromnon-noisy data
in the PAC model, provably cannot be learned efficiently in the SQ model under
the uniform distribution. Unfortunately, no efficient non-SQ algorithm for learning
them in the presence of noise is known either (this is closely related to the problem
of decoding random linear codes [MacWilliams and Sloane 1977]).

In this article, we describe a polynomial-time algorithm for learning the class
of parity functions that depend on only the firstO(logn log logn) bits of input,
in the presence of random classification noise of a constant noise rate. This class
provably cannot be learned in the SQ model, and thus is the first known example of
a concept class learnable with noise but not via statistical queries. Our algorithm
has recently been shown to have applications to the problems of determining the
shortest lattice vector [Ajtai et al. 2001] and its length [Kumar and Sivakumar
2001], to cryptanalysis [Wagner 2002], and to various other analyses of statistical
queries [Jackson 2000].

An equivalent way of stating this result is that we are given a randomk×n {0, 1}
matrix A, as well as ann-bit vector ỹ produced by multiplying an unknownk-bit
messagex by A, and then corrupting each bit of the resulting codewordy = x Awith
probabilityη < 1/2. Our goal is to recovery in time poly(n). For this problem,
the case ofk = O(logn) is trivial because one could simply try each of the 2k

possible messages and output the nearest codeword found. Our algorithm works
for k = c logn log logn for somec > 0. The algorithm does not actually needA
to be random, so long as the noise is random and there is no other codeword within
distanceo(n) from the true codewordy.

Our algorithm can also be viewed as a slightly subexponential time algorithm for
learning arbitrary parity functions in the presence of noise. For this problem, the
brute-force algorithm would drawO(n) labeled examples, and then search through
all 2n parity functions to find the one of least empirical error. (A standard argument
can be used to say that with high probability, the correct function will have the lowest
empirical error [Angluin and Laird 1988].) In contrast, our algorithm runs in time
2O(n/ logn), though it also requires 2O(n/ logn) labeled examples. This improvement
is small but nonetheless sufficient to achieve the desired separation result.

Our algorithms, unfortunately, do not have polynomial dependence on 1/
(1/2 − η). An open problem left by our work is whether these results can be
extended to high noise rates such asη = 1/2− 1/n.

The second result of this article concerns ak-wise version of the Statistical Query
model. In the standard version, algorithms may only ask about statistical properties
of single examples (e.g., what is the probability that a random example is labeled
positive and has its first bit equal to 1?) In thek-wise version, algorithms may
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ask about properties ofk-tuples of examples (e.g., what is the probability that two
random examples have an even dot-product and have the same label?) Given the
first result of this article, it is natural to ask whether allowingk-wise queries, for
some small value ofk, might increase the set of SQ-learnable functions. What we
show is that fork = O(logn), any concept class learnable fromk-wise queries
is also (weakly) learnable from unary queries. Thus, the seeming generalization
of the SQ model to allow forO(logn)-wise queries does not close the gap we
have demonstrated between what is efficiently learnable in the SQ and noisy-PAC
models. Note that this result is the best possible with respect tok because the results
of Blum et al. [1994] imply that fork = ω(logn), there are concept classes learnable
fromk-wise queries but not unary queries. On the other hand,ω(logn)-wise queries
are in a sense less interesting because it is not clear whether they can in general be
simulated in the presence of noise.

1.1. MAIN IDEAS. The standard way to learn parity functions without noise is
based on the fact that if an example can be written as a sum (mod 2) of previously
seen examples, then its label must be the sum (mod 2) of those examples’ labels
[Helmbold et al. 1992]. So, once one has found a basis, one can use that to deduce
the label ofanynew example (or, equivalently, use Gaussian elimination to produce
the target function itself).

In the presence of noise, this method breaks down. If the original data had noise
rate 1/4, say, then the sum ofs labels has noise rate 1/2− (1/2)s+1. This means we
can add together onlyO(logn) examples if we want the resulting sum to be correct
with probability 1/2+ 1/poly(n). Thus, if we want to use this kind of approach,
we need some way to write a new test example as a sum of only asmall numberof
training examples.

Let us now consider the case of parity functions that depend on only the first
k = logn log logn bits of input. Equivalently, we can think of all examples as
having the remainingn− k bits equal to 0. Gaussian elimination will in this case
allow us to write our test example as a sum ofk training examples, which is too
many. Our algorithm will instead write it as a sum ofk/ logk = O(logn) examples,
which gives us the desired noticeable bias (that can then be amplified).

Notice that if we have seenpoly(n) training examples (and, say, each one was cho-
sen uniformly at random), we can argue existentially that fork = c logn log logn,
one should be able to write any new example as a sum of justO(log logn) training
examples, since there arenÄ(log logn) À 2k subsets of this size and these sub-
sets are pairwise independent. So, while our algorithm is finding a smaller subset
than Gaussian elimination, it is not doing best possible. If onecouldachieve, say,
a constant-factor approximation to the problem “given a set of vectors, find the
smallest subset that sums to a given target vector” then this would improve the
value ofk we can handle in polynomial time fromO(logn log logn) to O(log2 n).
Equivalently, this would allow one to learn parity functions overn bits in time
2O(
√

n), compared to the 2O(n/ logn) time of our algorithm.

2. Definitions and Preliminaries

A conceptis a boolean function on aninput space, which in this article will gen-
erally be{0, 1}n. We will be considering the problem of learning a target concept
in the presence ofrandom classification noise[Angluin and Laird 1988]. In this
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model, there is some fixed (known or unknown) noise rateη < 1/2, a fixed (known
or unknown) probability distributionD over {0, 1}n, and an unknown target con-
ceptc. The learning algorithm may repeatedly “press a button” to request a labeled
example. When it does so, it receives a pair (x, `), wherex is chosen from{0, 1}n
according toD and` is the valuec(x), but “flipped” with probabilityη. That is,
` = c(x) with probability 1− η, and` = 1− c(x) with probabilityη. The goal of
the learning algorithm is to find anε-approximationof c: a hypothesis functionh
such that Prx←D[h(x) = c(x)] ≥ 1− ε.

A concept classis a set of concepts. We say that a concept classC is efficiently
learnable in the presence of random classification noiseunder distributionD if
there exists an algorithmA such that for anyε > 0, δ > 0, η < 1/2, and any
target conceptc ∈ C, the algorithmA with probability at least 1− δ produces an
ε-approximation ofc when given access toD-random examples which have been
labeled byc and corrupted by noise of rateη. Furthermore,A must run in time
polynomial inn, 1/ε, and 1/δ.1

A parity function cis defined by a corresponding vectorc ∈ {0, 1}n; the parity
function is then given by the rulec(x) = x · c (mod 2). We say thatc depends
on only the first k bits of inputif all nonzero components ofc lie in its first k
bits. So, in particular, there are 2k distinct parity functions that depend on only the
first k bits of input. Parity functions are especially interesting to consider under the
uniform distributionD, because under that distribution parity functions are pairwise
uncorrelated.

2.1. THE STATISTICAL QUERY MODEL. The Statistical Query (SQ) model can
be viewed as providing a restricted interface between the learning algorithm and the
source of labeled examples. In this model, the learning algorithm may only receive
information about the target concept throughstatistical queries. A statistical query
is a query about some propertyQ of labeled examples (e.g., that the first two bits are
equal and the label is positive), along with a tolerance parameterτ ∈ [0, 1]. When
the algorithm asks a statistical query (Q, τ ), it is asking for the probability that
predicateQ holds true for a random correctly labeled example, and it receives an
approximation of this probability up to±τ . In other words, the algorithm receives a
responsêPQ ∈ [ PQ−τ, PQ+τ ], wherePQ = Prx←D[Q(x, c(x))]. We also require
each queryQ to be polynomially evaluable (i.e., given (x, `), we can compute
Q(x, `) in polynomial time).

Notice that a statistical query can be simulated by drawing a large sample of
noiseless data and computing an empirical average, where the size of the sample
would be roughlyO(1/τ 2) if we wanted to assure an accuracy ofτ with high
probability.

A concept classC is learnable from statistical querieswith respect to distribution
D if there is a learning algorithmA such that for anyc ∈ C and anyε > 0, A
produces anε-approximation ofc from statistical queries; furthermore, the running
time, the number of queries asked, and the inverse of the smallest tolerance used
must be polynomial inn and 1/ε.

1 Typically, one would also require polynomial dependence on 1/(1/2−η)—in part because typically
this is easy to achieve (e.g., it is achieved by any statistical query algorithm). Our algorithms run in
polynomial time for anyfixedη < 1/2, but have a super-polynomial dependence on 1/(1/2− η).
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We also want to talk aboutweak learning.An algorithmA weakly learns a
concept classC if for any c ∈ C and forsomeε < 1/2− 1/poly(n), A produces
anε-approximation ofc. That is, an algorithm weakly learns if it can do noticeably
better than guessing.

The statistical query model is defined with respect to nonnoisy data. However,
statistical queries can be simulated from data corrupted by random classification
noise [Kearns 1998]. Thus, any concept class learnable from statistical queries is
also PAC-learnable in the presence of random classification noise. There are several
variants to the formulation given above that improve the efficiency of the simulation
[Aslam and Decatur 1998a, 1998b], but they are all polynomially related.

One technical point: we have defined statistical query learnability in the “known
distribution” setting (algorithmA knows distributionD); in the “unknown dis-
tribution” setting,A is allowed to ask for random unlabeled examples from the
distributionD. This prevents certain trivial exclusions from what is learnable from
statistical queries.

2.2. AN INFORMATION-THEORETICCHARACTERIZATION. It is proven in [Blum
et al. 1994] that any concept class containing more than polynomially many pairwise
uncorrelated functions cannot be learned even weakly in the statistical query model.
Specifically,

Definition1 [Blum et al.1994, Def.2]. For concept classC and distribution
D, thestatistical query dimensionSQ-DIM(C,D) is the largest numberd such that
C containsd conceptsc1, . . . , cd that are nearly pairwise uncorrelated: specifically,
for all i 6= j , ∣∣ Pr

x←D
[ci (x) = cj (x)] − Pr

x←D
[ci (x) 6= cj (x)]

∣∣ ≤ 1

d3
.

THEOREM1 [BLUM ET AL . 1994, THM. 12]. In order to learn C to error less
than1/2− 1/d3 in the SQ model, where d= SQ-DIM(C,D), either the number of
queries or1/τ must be at least12d1/3.

Note that the class of parity functions over{0, 1}n that depend on only the first
O(logn log logn) bits of input containsnO(log logn) functions, all pairs of which
are uncorrelated with respect to the uniform distribution. Thus, this class cannot
be learned (even weakly) in the SQ model with polynomially many queries of
1/poly(n) tolerance. But we now show that there nevertheless exists a polynomial-
time PAC-algorithm for learning this class in the presence of random classification
noise.

3. Learning Parity with Noise

3.1. LEARNING OVER THE UNIFORM DISTRIBUTION. For ease of notation, we
use the “length-k parity problem” to denote the problem of learning a parity function
over{0, 1}k, under the uniform distribution, in the presence of random classification
noise of rateη.

THEOREM 2. Let a and b be positive integers such that ab≥ k. Then the
length-k parity problem can be solved with sample-size and total computation time
poly(( 1

1−2η )2a
, 2b).
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COROLLARY 3. The length-k parity problem, for noise rateη equal to any
constant less than1/2, can be solved with sample-size and total computation-time
2O(k/ logk).

PROOF. Plugging ina = 1
2 logk andb = 2k/ logk into Theorem 2 yields the

desired 2O(k/ logk) bound for constant noise rateη.

Thus, in the presence of noise we can learn parity functions over{0, 1}n in time
and sample size 2O(n/ logn), and we can learn parity functions over{0, 1}n that only
depend on the firstk = O(logn log logn) bits of the input in time and sample size
poly(n).

We begin our proof of Theorem 2 with a simple lemma about how noise becomes
amplified when examples are added together. For convenience, ifx1 and x2 are
examples, we letx1 + x2 denote the vector sum mod 2; similarly, if`1 and`2 are
labels, we let̀ 1+ `2 denote their sum mod 2.

LEMMA 4. Let(x1, `1), . . . , (xs, `s) be examples labeled by c and corrupted by
random noise of rateη. Theǹ 1+ · · ·+ `s is the correct value of(x1+ · · ·+ xs) · c
with probability 1

2 + 1
2(1− 2η)s.

PROOF. Clearly true whens= 1. Now assume that the lemma is true fors− 1.
Then the probability that̀1+ · · · + `s = (x1+ · · · + xs) · c is

(1− η)

(
1

2
+ 1

2
(1− 2η)s−1

)
+ η

(
1

2
− 1

2
(1− 2η)s−1

)
= 1

2
+ 1

2
(1− 2η)s.

The lemma then follows by induction.

The idea for the algorithm is that, by drawing many more examples than the
minimum needed to learn information-theoretically, we will be able to write basis
vectors such as (1, 0, . . . ,0) as the sum of a relatively small number of training
examples—substantially smaller than the number that would result from straight-
forward Gaussian elimination. In particular, for the lengthO(logn log logn) parity
problem, we will be able to write (1, 0, . . . ,0) as the sum of onlyO(logn) ex-
amples. By Lemma 4, this means that, for any constant noise rateη < 1/2, the
corresponding sum of labels will be polynomially distinguishable from random.
Hence, by repeating this process as needed to boost reliability, we may determine
the correct label for (1, 0, . . . ,0), which is equivalently the first bit of the target
vectorc. This process can be further repeated to determine the remaining bits ofc,
allowing us to recover the entire target concept with high probability.

To describe the algorithm for the length-k parity problem, it will be convenient
to view each example as consisting ofa blocks, eachb bits long (so,k = ab) where
a andb will be chosen later. We then introduce the following notation.

Definition 2. Let Vi be the subspace of{0, 1}ab consisting of those vectors
whose lasti blocks have all bits equal to zero. Ani -sampleof sizes is a set ofs
vectors independently and uniformly distributed overVi .

The goal of our algorithm will be to use labeled examples from{0, 1}ab (these
form a 0-sample) to create ani -sample such that each vector in thei-sample can be
written as a sum of at most 2i of the original examples, for alli = 1, 2, . . . ,a− 1.
We attain this goal via the following lemma.



512 A. BLUM ET AL .

LEMMA 5. Assume we are given an i-sample of size s. We can in time O(s)
construct an(i + 1)-sample of size at least s− 2b such that each vector in the
(i + 1)-sample is written as the sum of two vectors in the given i-sample.

PROOF. Let thei -sample bex1, . . . , xs. In these vectors, blocksa− i +1, . . . ,a
are all zero. Partitionx1, . . . , xs based on their values in blocka− i . This results in
a partition having at most 2b classes. From each nonempty classp, pick one vector
xj p at random and add it to each of the other vectors in its class; then discardxj p.
The result is a collection of vectorsu1, . . . ,us′ , wheres′ ≥ s−2b (since we discard
at most one vector per class).

What can we say aboutu1, . . . ,us′? First of all, eachu j is formed by summing
two vectors inVi which have identical components throughout blocka− i , “zeroing
out” that block. Therefore,u j is in Vi+1. Second, eachu j is formed by taking some
xj p and adding to it a random vector inVi , subject only to the condition that the
random vector agrees withxj p on blocka− i . Therefore, eachu j is an independent,
uniform-random member ofVi+1. The vectorsu1, . . . ,us′ thus form the desired
(i + 1)-sample.

Using this lemma, we can now prove our main theorem.

PROOF OFTHEOREM2. Drawa2b labeled examples. Observe that these qualify
as a 0-sample. Now apply Lemma 5,a−1 times, to construct an (a−1)-sample. This
(a−1)-sample will have size at least 2b. Recall that the vectors in an (a−1)-sample
are distributed independently and uniformly at random overVa−1, and notice that
Va−1 contains only 2b distinct vectors, one of which is (1, 0, . . . ,0). Hence, there
is at least a 1− 1/e chance that (1, 0, . . . ,0) appears in our (a− 1)-sample. If this
does not occur, we repeat the above process with new labeled examples. Note that
the expected2 number of repetitions is constant (it is at most 1/(1− 1/e)).

Now, unrolling our applications of Lemma 5, observe that we have written the
vector (1, 0, . . . ,0) as the sum of at most 2a−1 of our labeled examples—and we
have done so without examining their labels. Thus, the label noise is still random,
and we can apply Lemma 4. Hence, the sum of the labels gives us the correct value
of (1, 0, . . . ,0) · c with probability at least12 + 1

2(1− 2η)2a−1
.

We can amplify our success probability by repeating the above process using new
labeled examples each time and taking majority vote. If we do this poly((1

1−2η )2a
, b)

times, Hoeffding bounds guarantee that we will determine (1, 0, . . . ,0) · c with
probability of error exponentially small inab. This gives us the first bit ofc. By
cyclically shifting all examples, we can use the same method to findeverybit
of c. Since we usea2b samples per round, this means that with high probabil-
ity we can determinec using a number of examples and total computation-time
poly(( 1

1−2η )2a
, 2b).

3.2. EXTENSION TO OTHER DISTRIBUTIONS. While the uniform distribution is
in this case the most interesting, we can extend our algorithm to work over any
distribution, just as paritywithoutnoise can be learned for an arbitrary distribution
[Helmbold et al. 1992]. We give two methods: the first follows the same lines as

2 Standard techniques can be used to convert an algorithm with polynomialexpectedruntime into one
with polynomial runtime that works with high probability.
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the uniform distribution algorithm above; the second views learning as an online
process and gives a mistake-bounded algorithm.

3.2.1. Version 1: Pairing Similar Examples.In the case of the uniform distri-
bution, we were able to write the vector (1, 0, 0, . . . ,0) as the sum of at most 2a

labeled examples, where eachk-bit example was divided intoa blocks of width
b. We repeated that process several times and took majority vote. Here, we cannot
necessarily do that—for instance, it could be that all examples in the support of our
distributionD have a 0 in thefirst coordinate.

Instead, with high probability, we are able to write a random vector fromD
as the sum of at most 2a vectors. Again, we do this repeatedly and take majority
vote. This will allow us to generate a polynomial-sizenoiselessdata set fromD
and use standard noiseless parity learning algorithms. Note that, in the noiseless
case, one cannot always find the exact parity function since the function might be
underdetermined. Instead, one finds a parity function that agrees with all of the
training data, and with high probability this will be correct on nearly all ofD.

The basic primitive is similar: we repeatedly write an example as the sum of at
most 2a labeled examples.

LEMMA 6. Given an example x drawn fromD and m additional examples also
fromD, with probability at least1−a2a+b/m, we can write x as the sum of at most
2a of the labeled examples, in timepoly(m, k).

PROOF. First, let the multisetSbe the union of{x} with the additional random
examples. As above, we think of eachk-bit example as divided intoa blocks of
width b. Do the following:

(1) Pick two examples fromS that agree on their last nonzero block.
(2) Remove these two examples fromSand replace them by their sum.
(3) Repeat until there are no more such pairs.

When the above procedure halts, we will have a number of 0 vectors and at
mosta(2b − 1) other vectors, because there can be at most one vector for each of
the 2b − 1 possible nonzero blocks ina positions. Each vector will be the sum of
at most 2a original examples because the “tree” of additions producing any given
vector has depth at mosta. Thus, all but at mosta2a+b examples will be in sets of
size at most 2a that sum to 0. Any example in one of the sets that sum to 0 can be
written as the sum of the remaining≤2a − 1 examples. Since we includedx as a
random member ofS, by symmetry the probability thatx is not written as the sum
of ≤2a − 1 examples is at most 1− a2a+b/m.

Note that if we wanted to be slightly more efficient and more similar to the
previous section, we could group the examples into equivalence classes in Step (1)
and subtract a single example from all the others in its class. However, the above
lemma is enough to show,

THEOREM 7. The length-k parity problem over an arbitrary distributionD,
for constant noise rateη < 1/2, can be solved with number of samples and total
computation-time2O(k/ logk).

PROOF. We use a standard noiseless parity learning algorithm that with prob-
ability 1− δ/3 returns a parity function that is correct to within 1− ε overD.
Suppose this algorithm requirest = poly(k, 1/ε, 1/δ) examples.
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We drawt unlabeledexamples ands noisy data sets of sizem. By the above
lemma, with probability at least 1−(st)a2a+b/m, we can write each of the unlabeled
examples as the sum of at most 2a noisy examples from each of thes data sets.
Thus, we succeed in doing this with probability at least 1− δ/3, provided that

m≥ 3(st)a2a+b

δ
.

Now, consider a single unlabeled example. We decide its label by majority vote over
thes independent ways we have of representing it as a sum of at most 2a examples.
By Lemma 4, each one will be correct with probability at least1

2 + 1
2(1− 2η)2a

.
By Chernoff bounds, our majority will be correct with probability at least 1− δ

3t ,
provided that

s ≥
3 log

2t

δ

(1− 2η)2a+1 .

Thus, for the abovem and s, our probability of being off by more thanε is at
mostδ/3+ δ/3+ tδ/(3t) = δ, where the three terms are for the failure of parity
learner, failure to write some example as sum of 2a noisy examples, and the failure of
majority to be correct on some example. Again, usinga = 1

2 logk andb = 2k/ logk
givess,m in poly(1/ε, 1/δ, 2k/ logk) for constant noise rateη.

3.2.2. Version 2: Online Block Gaussian Elimination.We now give an alterna-
tive proof that requires a bit more notation, but is in some sense cleaner because it
works in the online mistake-bound setting [Littlestone 1988, 1989]. That is, we dis-
pense with the distribution altogether, and allow an adversary to present the learner
with an arbitrarysequenceof examples, one at a time. Given a new test example,
the algorithm will output either “I don’t know” or a prediction of the label. In the
former case, the algorithm is told the correct label, flipped with probabilityη. The
claim is that the algorithm will, with high probability, be correct in all its predic-
tions, and furthermore will output “I don’t know” only a small fraction of the time.
In the coding-theoretic view, this corresponds to producing a 1− o(1) fraction of
the desired codeword, where the remaining entries are left blank. This allows us to
recover the full codeword so long as no other codeword is within relative distance
o(1).

The algorithm is essentially a form of Gaussian elimination, but where each entry
in the matrix is an element of the vector spaceFb

2 rather than an element of the field
F2 (againk = ab). We will form a matrixM with a process to be described later,
but it will have the following properties. Letx[ j ] denote thej th block of vectorx,
sox has lengthab andx[ j ] has lengthb. The matrixM has rowsMi,v indexed by
two parameters, 1≤ i ≤ a andv ∈ {0, 1}b, whereMi,v is a lengthab vector with
the properties:

Mi,v[ j ] = 0 for j = 1, 2, . . . , i − 1, and Mi,v[i ] = v

Once we have such anM , given any vectorx, we can write it as the sum of examples
from M as follows. Letx0 = x and

xi = xi−1+ Mi,xi−1[i ], (1)
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for 1 ≤ i ≤ a, so thatxa = 0. Unravelling, we have writtenx as the sum ofa
vectors fromM . Notice thatxi has all 0’s for the firsti blocks.

Instead of forming a single matrixM , we formN such matrices,M (1),M (2), . . . ,
M (N), as follows. Each matrix begins empty. For each new examplex we get, we
try to writex as the sum of elements of matrixM (1) according to Eq. (1). If we fail,
this means that for some 1≤ i ≤ a, M (1)

i,xi−1[i ] is still empty inM (1). In this case, we
usexi−1 to fill in that entry in the matrix, which is valid becausexi−1 has 0’s for
the firsti − 1 blocks.

If we are successful in writingx as the sum of entries fromM (1), we apply the
same toM (2),M (3), . . . ,M (N) stopping as soon as we find a matrix for which we
cannot do our Gaussian elimination and outputting “I don’t know.” If we do not
stop, then we will successfully have writtenx as the sum of exactlya entries from
each of the matrices. Note that each matrix elementMi,v is in turn the sum of at
most 2i−1 examples that we have seen so far. Therefore, we choose the label ofx
according to the sum of the labels corresponding to these examples (which we can
simply store along withMi,v), and output the majority vote over allN sums. By
doing this, we observe the following:

LEMMA 8. The following hold for the above procedure:

(1) “I don’t know” is output at most Na2b times.
(2) The probability of ever erring on a prediction is at most:

2kexp

(
−N

2
(1− 2η)2a+1

)
.

PROOF. Every time we output “I don’t know,” we fill in one matrix entry, and
each of theN matrices hasa2b entriesMi,v because there area possibilities fori
and 2b possibilities forv.

Now, suppose we make a prediction on some examplex. Then we have writtenx
as the sum ofa entries from each matrix, with one entry for each 1≤ i ≤ a. Since
eachMi,v is the sum of at most 2i−1 previous examples, we have writtenx as the
sum of at most 2a entriesN times and taken a majority. By Lemma 4, each sum is a
correct prediction with probability12+ 1

2(1−2η)2a
. Thus the majority ofN of these,

by Chernoff bounds, is incorrect with probability at most exp(− N
2 (1− 2η)2a+1

).
Finally, there are only 2k different possiblex’s. All predictions for the samex will
be the same. This gives the quantity in the lemma.

Again, choosinga = 1
2 logk andb = 2k/ logk allows us to haveN = 2O(

√
k)

log 1
δ

and have no errors with probability at least 1− δ. However, we would say “I
don’t know” up to Na2b = 2O(k/ logk) log 1

δ
times. Thus, the number of examples

we need in order to give a correct answer on a 1− ε fraction is 2O(k/ logk)( 1
ε

log 1
δ
).

4. Limits of O(log n)-wise Queries

We return to the general problem of learning a target conceptc over a space of
examples with a fixed distributionD. A limitation of the statistical query model
is that it permits only what may be calledunary queries. That is, an SQ algo-
rithm can accessc only by requesting approximations of probabilities of form
Prx [Q(x, c(x))], wherex is D-random andQ is a polynomially evaluable predi-
cate. A natural question is whether problems not learnable from such queries can
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be learned, for example, from binary queries: that is, from probabilities of form
Prx1,x2 [Q(x1, x2, c(x1), c(x2))]. The following theorem demonstrates that this is
not possible, proving thatO(logn)-wise queries are no better than unary queries,
at least with respect to weak-learning.

We assume in the discussion below that all algorithms also have access to indi-
vidualunlabeledexamples from distributionD, as is usual in the SQ model. Also,
for ak-tuple of examplesEx = x1, x2, . . . , xk, let c(Ex) = (c(x1), c(x2), . . . , c(xk)).

THEOREM 9. Let k= O(log n), and assume that there exists a poly(n)-time al-
gorithm using k-wise statistical queries that weakly learns a concept class C under
distributionD. That is, this algorithm learns from approximations of probabilities
of formPrEx[Q(Ex, c(Ex))], where Q is a polynomially evaluable predicate, andEx is a
k-tuple of examples. Then there exists a poly(n)-time algorithm that weakly learns
the same class using only unary queries, underD.

PROOF. We consider eachk-wise queryQ(Ex, c(Ex)) employed by the original
algorithm. We will argue that either we can approximate it to within the required
accuracyτ , or we can weak learnc to within error 1/2− ε, whereε = τ/2k+2.
The first thing our algorithm will do is useQ to construct several candidate weak
hypotheses. It then uses unary statistical queries to test whether each of these
hypotheses is in fact noticeably correlated with the target. If none of them appear
to be good, it uses this fact to estimate the value of thek-wise query. We prove that
for any k-wise query, with high probability we either succeed in finding a weak
hypothesis or we output a good estimate of thek-wise query. In either case, we
succeed in our goal of weakly learningc using only unary queries.

Without loss of generality, let us assume that Prx[c(x) = 1] ∈ [1/2−ε, 1/2+ε].
Otherwise, weak-learning is easy by just predicting all examples are positive or
all examples are negative. This assumption implies that if a hypothesish satisfies
|Prx[h(x) = 1∧ c(x) = 1]− 1

2Prx[h(x) = 1]| ≥ ε, then eitherh(x) or 1− h(x) is
a weak hypothesis. To see this, the error ofh(x) is,

Prx[h(x) 6= c(x)] = Prx[c(x) = 1]+Prx[h(x) = 1]−2Prx[h(x) = 1∧ c(x) = 1].

The first term in the right-hand side is in [1/2− ε, 1/2+ ε] while the rest of the
right-hand side has absolute value at least 2ε, giving an error6∈ [1/2− ε, 1/2+ ε],
soh or 1− h is a weak hypothesis.

For conciseness, we use the following notational shortcuts, wherex is an example
andEz= z1, . . . , zk is ak-tuple of examples:

Eza...b = za, za+1, . . . , zb

Ezx
i
= z1...i−1, x, zi+1...k.

We now generate a set of candidate hypotheses by choosing one randomk-tuple
of unlabeled examplesEz. For each 1≤ i ≤ k and È ∈ {0, 1}k, we define candidate
hypotheseshEz,i,È as follows:

hEz,i,È(x) = 1 if Q(Ezx
i
, È), 0 otherwise,

and then use a unary statistical query to tell ifhEz,i,È(x) or 1−hEz,i,È(x) is a successful
weak hypothesis forc. As noted above, we will have found a weak hypothesis if∣∣∣∣Prx

[
Q(Ezx

i
, È) ∧ c(x) = 1

]− 1

2
Prx
[
Q(Ezx

i
, È)]∣∣∣∣ ≥ ε.
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In this case, we say thei th coordinatematters. We repeat this process forO(1/ε)
randomly chosenk-tuplesEz. We now consider two cases.

CaseI. Suppose that thei th coordinate matters to thek-wise queryQ for some
i and È. By this, we mean there is at least anε chance of the above inequality
holding for randomEz. Then, with high probability, we will discover such aEz and
thus weak learn.

CaseII. Suppose, on the contrary, that for noi or È does thei th coordinate
matter, that is, the probability of a randomz satisfying the above inequality is less
thanε. This means that

EEz

[∣∣∣∣Prx
[
Q(Ezx

i
, È) ∧ c(x) = 1

]− 1

2
Prx
[
Q(Ezx

i
, È)]∣∣∣∣] < 2ε. (2)

Consider the following quantity for anyEb ∈ {0, 1}i−1:

EEz

[∣∣∣∣Prx
[
Q(Ezx

i
, È) ∧ c(Ez1...i−1, x) = Eb, 1]− 1

2
Prx
[
Q(Ezx

i
, È) ∧ c(Ez1...i−1) = Eb

]∣∣∣∣].
We can see that the above quantity is smaller than the left-hand side of (2) and
thus less than 2ε by considering it as an average over variousEz. For thoseEz
for which c(Ez1...i−1) = Eb, the terms are the same, and for the rest of the terms,
the above quantity is 0. Next, because|E[R]| ≤ E[|R|] for any random variableR,∣∣∣∣EEz[Prx

[
Q(Ezx

i
, È) ∧ c(Ez1...i−1, x) = Eb, 1]

−1

2
Prx
[
Q(Ezx

i
, È) ∧ c(Ez1...i−1) = Eb

]]∣∣∣∣ < 2ε.

Sincezi andx are from the same distribution,∣∣∣∣PrEz[Q(Ez, È) ∧ c(Ez1...i ) = Eb, 1]− 1

2
PrEz[Q(Ez, È) ∧ c(Ez1...i−1) = Eb]

∣∣∣∣ < 2ε.

By a straightforward inductive argument oni , we conclude that for everyEb ∈ {0, 1}k,∣∣∣∣PrEz[Q(Ez, È) ∧ c(Ez) = Eb] − 1

2k
PrEz[Q(Ez, È)]

∣∣∣∣ < 4ε

(
1− 1

2k

)
.

This fact now allows us to estimate our desiredk-wise query PrEz[Q(Ez, c(Ez))]. In
particular,

PrEz[Q(Ez, c(Ez))] =
∑
È∈{0,1}k

PrEz[Q(Ez, È) ∧ c(Ez) = È].

We approximate each of the 2k = poly(n) terms corresponding to a differentÈby us-
ingunlabeleddata to estimate12k PrEz[Q(Ez, È)]. Adding up these terms gives us a good
estimate of PrEz[Q(Ez, c(Ez))] for the chosenε = τ/2k+2, with high probability.

4.1. DISCUSSION. In the above proof, we saw that either the data is statistically
“homogeneous” in a way that allows us to simulate the original learning algorithm
with unary queries, or else we discover a “heterogeneous” region that we can exploit
with an alternative learning algorithm using only unary queries. Thus any concept
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class that can be learned fromO(logn)-wise queries can also be weakly learned
from unary queries. Note that Aslam and Decatur [1998a] have shown that weak-
learning statistical query algorithms can be boosted to strong-learning algorithms,
if they weak-learn overeverydistribution. Thus, any concept class which can be
(weakly or strongly) learned fromO(logn)-wise queries overeverydistribution
can be strongly learned over every distribution from unary queries.

It is worth noting here thatk-wise queries can be used to solve the length-k parity
problem. One simply asks, for eachi ∈ {1, . . . , k}, the query: “what is the probabil-
ity thatk random examples form a basis for{0, 1}k and, upon performing Gaussian
elimination, yield a target concept whosei th bit is equal to 1?” Thus,k-wise
queries cannot be reduced to unary queries fork = ω(logn). On the other hand,
it is not at all clear how to simulate such queries in general from noisy examples.

5. Conclusion

In this article, we demonstrate a separation between the set of problems efficiently
learnable from noisy data, and the set of problems learnable in the Statistical Query
model. We do this by producing a slightly sub-exponential time algorithm for
learning parity functions in the presence of random noise. By scaling down the size
of the functions, we get a specific parity problem that can be PAC-learned from
noisy data in time poly(n), as compared to timenÄ(log logn) for the best SQ algorithm.
Even though this separation is small, it suggests the possibility of interesting new
noise-tolerant PAC-learning algorithms which go beyond the SQ model.

Corollary 3 demonstrates that we can solve the length-n parity learning problem
in time 2o(n). However, it must be emphasized that we accomplish this by using
2O(n/ logn) labeled examples. From the point of view of coding theory, it would be
useful to have an algorithm that takes time 2o(n) but uses only poly(n) or evenO(n)
examples. We do not know if this can be done. Also of interest is the question of
whether our time-bound can be improved from 2O(n/ logn) to, say, 2O(

√
n ).

It would also be desirable to reduce our algorithm’s dependence onη. The
dependence comes from Lemma 4, withs = 2a−1. For instance, consider the
problem of learning parity functions that depend on the firstk bits of input for
k = O(logn log logn). In this case, if we seta = d1

2 log logne andb = O(logn)
in Theorem 2, the running time is polynomial inn, with dependence onη of
( 1

1−2η )
√

logn. This allows us to handleη as large as 1/2− 2−
√

logn and still have
polynomial running time. While this can be improved slightly, we do not know
how to solve the length-O(logn log logn) parity problem in polynomial time forη
as large as 1/2− 1/n or even 1/2− 1/nε. What makes this interesting is that it is
an open question (Kearns, personal communication) whether noise tolerance can
in general be boosted; this example suggests why such a result may be nontrivial.

In the second half of this article, we examine an extension to the SQ model in
which one is allowed queries of arityk. We have shown that fork = O(logn), any
concept class learnable in the SQ model withk-wise queries is also (weakly) learn-
able with unary queries. On the other hand, the results of Blum et al. [1994] imply
this is not the case fork = ω(logn). An interesting open question is whether every
concept class learnable fromO(logn log logn)-wise queries is also PAC-learnable
in the presence of classification noise. If so, then this would be a generalization of
the first result of this paper.



Noise-Tolerant Learning, the Parity Problem, and the SQ Model 519

REFERENCES

AJTAI, M., KUMAR, R., AND SIVAKUMAR , D. 2001. A sieve algorithm for the shortest lattice vector
problem. InProceedings of the 33rd Annual ACM Symposium on Theory of Computing. ACM, New York.

ANGLUIN, D., AND LAIRD, P. 1988. Learning from noisy examples.Mach. Learn. 2, 4, 343–370.
ASLAM, J. A.,AND DECATUR, S. E. 1998a. General bounds on statistical query learning and PAC learning

with noise via hypothesis boosting.Inf. Comput. 141, 2 (Mar.), 85–118.
ASLAM, J. A.,AND DECATUR, S. E. 1998b. Specification and simulation of statistical query algorithms

for efficiency and noise tolerance.J. Comput. Syst. Sci. 56, 2 (Apr.), 191–208.
BLUM, A., FURST, M., JACKSON, J., KEARNS, M., MANSOUR, Y., AND RUDICH, S. 1994. Weakly learning

DNF and characterizing statistical query learning using fourier analysis. InProceedings of the 26th
Annual ACM Symposium on Theory of Computing(May). ACM New York, pp. 253–262.

DECATUR, S. E. 1993. Statistical queries and faulty PAC oracles. InProceedings of the 6th Annual ACM
Workshop on Computational Learning Theory. ACM, New York.

DECATUR, S. E. 1996. Learning in hybrid noise environments using statistical queries. InLearning from
Data: Artificial Intelligence and Statistics V,D. Fisher and H.-J. Lenz, Eds. Springer-Verlag, New York.

HELMBOLD, D., SLOAN, R.,AND WARMUTH, M. 1992. Learning integer lattices.SIAM J. Comput. 21, 2,
240–266.

MACWILLIAMS , F., AND SLOANE, N. 1977. The Theory of Error-Correcting Codes. North-Holland,
Amsterdam, The Netherlands.

JACKSON, J. 2000. On the efficiency of noise-tolerant PAC algorithms derived from statistical queries.
In Proceedings of the 13th Annual Workshop on Computational Learning Theory.

KEARNS, M. 1998. Efficient noise-tolerant learning from statistical queries.J. ACM, 45, 6 (Nov.), 983–
1006.

KUMAR, R., AND SIVAKUMAR , D. 2001. On polynomial approximations to the shortest lattice vector
length. InProceedings of the 12th Annual Symposium on Discrete Algorithms.

LITTLESTONE, N. 1988. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm.Mach. Learn. 2, 285–318.

LITTLESTONE, N. 1989. From online to batch learning. InProceedings of the 2nd Annual ACM Conference
on Computational Learning Theory. ACM, New York, pp. 269–284.

WAGNER, D. 2002. A generalized birthday problem. InProceedings in Advances in Cryptology—
CRYPTO 2002.Lecture Notes in Computer Science, vol. 2442. Springer-Verlag, New York, pp. 288–304.

RECEIVED OCTOBER2000;REVISED NOVEMBER2002;ACCEPTED NOVEMBER2002

Journal of the ACM, Vol. 50, No. 4, July 2003.


