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We examine a class of operations for topological quantumpetation based on fusing and measuring topo-
logical charges for systems with $2}4 or & = 4 Jones-Kauffman anyons. We show that such operations
augment the braiding operations, which, by themselvesnarecomputationally universal. This augmenta-
tion results in a computationally universal gate set thiotige generation of an exact, topologically protected
irrational phase gate and an approximate, topologicatiygated controlleds gate.

PACS numbers: 03.67.Lx,05.30.Pr,03.67.Pp

I. INTRODUCTION spectively, have filling’ = 2/3 and3/5. Such states provide
possible candidates for physically observed Hall platéaus

The topological approach to quantum computation pro-the second Landau lev 19].

poses the strategy of achieving fault-tolerance by utiizi  Itis known that braiding transformations of &), or JK,
nonlocal state spaces of topological phases of matter,whicanyons are not computationally universal [5]. We will show
naturally protect encoded information from local perturba that fusion and measurement operations augment the compu-
tions [1-7]. In particular, non-Abelian quasiparticlesircha  tational power of braiding operations for such anyonswailo
system collectively possess a nonlocal state space whigh mdng us to produce a computationally universal topologjcall
be used to comprise topologically protected qubits. Topoprotected gate set. This is accomplished, in part, through
logically protected computational gates acting on suctesta the generation of an exact, topologically protected iorzi

can be generated through braiding operations obtained bghase gate. These results provide a compelling demomstrati
transporting the quasiparticles around each other. Fusfion Of the utility and value of studying fusion and measurement
quasiparticles and topological charge measurement povidPperations for the purposes of topological quantum computa
a mechanism for initialization and read-out of the computadion.

tional state, at which point topological protection is ésitlly We note that another approach to achieving topologically
violated in order to extract the information from the topgito  protected computational universality for 8t); anyons us-

cal state space. In Refs| [1[3[B, 9], some additional ojperat  ing measurements and non-standard encodings of qutrits was
utilizing fusion, measurements, and ancillary anyons wereonsidered in Refl [20].

proposed for discrete gauge theories. It was later reafid
by utilizing ancillary anyons, one could generate all biragd
transformations (also in a topologically protected majhost
ing pair-wise topological charge measurements([10, 11}or b

adiabatically tuning pair-wise interactions between s cuss a number of different ways of encoding quantum infor-

ticles [12]. mation in collections of S(2), or JK; anyonic quasiparticles,

Recently, the idea of utilizing fusion operations togetherang provide protocols for changing between different encod
with topological charge measurements in order to generat@gs using fusion and measurement. In §gtwe present the
topologically protected computational operations hasnbeesjngle qubit computational gates obtained from braidingrop
further explored in Ref[[13]. In that work, it was demon- ations. In SedV] we provide a simple fusion-based protocol
strated that such operations could provide useful operatio that generates the NOT gate. In $€B.we provide a protocol
for Ising anyons/Majorana zero modes. These operationgy “topological qubit fusion,” which uses fusion and mea-
augment the computational power of the braiding gates fogyrements to reduce the number of qubits and collapses the
such quasiparticles, though they are still unable to yield &ncoded state in a specific nontrivial manner. We explain how
fully topologically protected computationally universgate  thjs protocol may be used to convert certain ancillary state
set. More generally, the utility of fusion and measurement o into computational gates. In S&II, we provide a protocol
erations for topological quantum information processiag h for generating a topologically protected irrational phgate.
been largely unexplored. This is carried out by first utilizing the operations (based o

In this paper, we advance the study of fusion and measurdusion and measurement) developed in previous sections to
ment operations in topological quantum computation by exgenerate a specific ancillary state, and then utilizing lagio
amining SU2), andk = 4 Jones-Kauffman (JK anyons, cal qubit fusion to convert the ancillary state into thetioaal
which are closely related theories. Potential physicdlzaa phase gate. Combined with braiding gates, this provides a
tions of such anyons may occur as quasiparticles in fragtion computationally universal set of topologically protecta-
quantum Hall systems, such/as- 4 Read-Rezayi statels [14] gle qubit gates. In SeB/Il[} we provide a protocol for gen-
or second level Hermanns hierarchy stafe$ [15], which, reerating a topologically protected controlléfigate, utilizing

This paper is structured as follows. In SHE¢.we provide
a brief review of anyon models, topological charge measure-
ments, and some details of the @), and JK, anyon models,
upon which the rest of the paper is focused. In B&cwe dis-
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the previously developed operations. In 384, we make a Most anyon models of interest have no fusion multiplicities
few concluding remarks. In Appendi we give general ex- i.e. NS = 0 or 1, in which case the vertex labelsare triv-
pressions for the basic data of the @) and JK, anyons ial and can be left implicit. We only consider anyon models
models, and tabulate the valuesfofsymbols andR-symbols  of this type in this paper, so we will drop these labels from
of JK, anyons that are used in this paper. In Appefliwe  now on. General states and operators are described using fu-
derive the probability of a symmetric 1D random walk com- sion/splitting trees constructed by connecting lines iita
pletely avoiding negative-valued positions during thetfirs same topological charge. Charge lines corresponding t&i-qua
steps, which is useful for analyzing the implementatiorheft particles have definite values, while charge lines furtiosvrd
irrational phase gate. the fusion tree, corresponding to nonlocal degrees of treed
permit superpositions of topological charge values.
In this manner, inner products are formed diagrammatically

Il. ANYON MODELS by stacking the corresponding vertices, which gives
In this section, we briefly review the basic fusion and braid- c c
ing properties of quasiparticles (point-like localizedcia- d.dy,
tions) in(2+1)D topological phases of matter, as described by a b = Ocer d . (4)

anyon models (a.k.a. unitary braided tensor categories). F /
additional details, see Refd 22] and referencesithere
An anyon model has a finite sétof topological charges,

which obey a commutative, associative fusion algebra This relation can be applied inside more complicated dia-

grams. Note that this diagrammatically encodes charge con-
axb= Z N&, e, 1) servation. _Since this fo_rmalis_m describe_s the states edsdc
e with anyonic quasiparticles (in a topological phase of Bratt

L o _we require the inner product to be positive definite,d.gare
whereN¢, are positive integers indicating the number of dis- required to be real and positive.

tinct ways charges andb can be combined to produce charge  associativity of fusion is represented in the state space by
c. There is a unique "vacuum” charge, denotgavhich has  he r.symbols, which (similar t@;j-symbols) provide a uni-
trivial fusion (and braiding) with all other charges (foreR- (5 isomorphism relating states written in different sadis-

ple, Ngo = dac) and which defines the unique conjugatef gy ished by the order of fusion. Diagrammatically, ths |

each topological chargevia N, = §. represented as
A quasiparticle in the physical system carries a definite
value of topological charge, because it is a localized dbjec a booc a booc

The fusion rules indicate that overall topological char§e o

. . . .. . o abe

collection of quasiparticles may take superpositions fiédi e - Z [ d Lf o (5)
entvalues, as long as the quasiparticles are well-seplaaate

there is more than one fusion channel (¢, and N¢, are

nonzero fore # ¢’). This gives rise to degenerate nonlocal |f the diagram on either side of this equation is prohibitgd b
state spaces associated with non-Abelian anyonic quéisiparthe fusion rules, the correspondifigsymbol is set td).

cles, which are topologically protected. . The quantum dimension of topological charge
More specifically, each fusion product has an associated
vector spac&’ with dim V5 = N¢,, and its dual (splitting) dy, = ds = [Fgﬁa]oo“l (6)

spacel/2®. The states in these fusion and splitting spaces are
assigned to trivalent vertices with the correspondinglmgie  is also equal to the largest eigenvalue of the ma¥jxdefined
cal charges. We write orthonormal basis vectors of the fusioby [N, ], = N¢,, and so describes how the dimensionality of
and splitting spaces as the state space grows asymptotically as one introduces more
P quasiparticles of charge (_i.e. .dim[I{“'“a] ~ d? when thg
d. \* W =g bie,u| € VE 2 numbern of chargea quasiparticles is large). We also define
dody, a y s ab the total quantum dimension of an anyon model tolbe-=
V2o, d2.
The counterclockwise and clockwise braiding exchange op-
erator of topological chargesandb are, respectively, repre-

1
1 b
< dc > a\ﬂ —la,bie,p) e veb,  (3)  Sented diagrammatically as
dadp T c
C a b

a b
wherey = 1,..., N¢,. The normalization factors in terms of R = \/\ . (BT = X )

d, are included so that the diagrams will be in the isotopy-

invariant convention, meaning bending lines and rotatety s

tions of diagrams only change amplitudes by unitary transThe action of the braiding operator on the state space can be
formations (we refer the reader to Refs.|[21, 22] for de}ails described in terms aR-symbols, which represent the unitary




operator for exchanging two anyons in a specific fusion chanwhere thev,-loop is defined as
nel, and are obtained by applying the exchange operatoeto th
corresponding trivalent vertices ‘ b ‘ b

b
C >wa = Z SOaSaw C >m = 6ab . (13)
@ I

a™ b a b I
— Rat Y . 8)
c c

An anyon model is defined entirely by if6¢,, F'-symbols,

and R-symbols. TheNg, must provide an associative and  There are two classes of topological charge measurements:
commutative algebra. Thé&-symbols andR-symbols are |gcal and interferometric.

constrained by the “coherence conditions” (also known s th | ocal measurements are capable of measuring the topolog-
“polynomial equations”), which ensure that any two series 0 jca| charge ascribed locally to a single quasiparticle (oF s

I and/orR transformations are equivalent if ﬂ;ﬁ start in thejjar object) and can also be used to measure the topological
same state space and end in the same state space [23]. Phy$jarge of the fusion channel of a pair of quasiparticles hSuc
cally, these consistency conditions are interpreted aseiny  easurements are physically performed by measuring an ex-

A. Measurements

locality in fusion and braiding processes. S ternally measurable local quantity, such as energy or f@mmi
Animportantinvariant quantity derived from braiding i®th  parity, which is correlated with the topological chargenesbf
topological twist of charge a quasiparticle or small region. In order to measure pagwis
fusion channels using such local measurements, one should
de '+ ua 1 interpret the diagram of a pairwise projector more physical
00 = ba = Z d, (R = d, ) Specifically, to perform such a measurement, one must bring
[eN7) a

the pair of quasiparticles close to each other (or modify the
system in some fashion that induces the same effect), essen-
tially fusing them, so that one can apply a local measurement
to the fusion outcome of the pair, before finally moving the
; . guasiparticles apart to their original positions (sm@tthhn?.
-1 ¢ Ve o 1 Interferometric measurements of topological cha [22,
Sap =D ZN‘“’ Gaebdc D a@() - (19 [24] are physically performed by sending probe quasiparti-
¢ cles through a device which generates coherent supeipasiti
When S is unitary, braiding is non-degenerate and the theoryf the probe quasiparticles traveling through distincthpat

which is a root of unity. Another important invariant quaynti
is the topologicals-matrix

is called a “modular” theory (MTC). around some region. The interference between differehpat
The projector onto collective topological chargeof n is correlated with the total collective topological charg-
anyons of definite charges, . . ., a,, is given by tained in the encircled region, and this is detectable by-mea

suring the probe quasiparticles exiting the interferomoete-
vice. Such measurements are capable of distinguishing be-
tween the topological charges ascribed to the overall fusio
channel of the entire collection of quasiparticles corgdin
(11)  inside the interference loop region of the device. These are
non-demolitional measurements of topological chargehén t
sense that, as long as the quasiparticles inside the irgerée
ter are kept sufficiently well-separated (distances muigela
tgan the correlation length), only their overall fusion cha
nel is collapsed by such a measurement. State information
encoded higher in the fusion tree than the overall fusiomeha
nel may be unaffected by the interferometric measurement.
%Ne emphasize that this effect cannot be achieved using local
opological charge measurements, since bringing more than
two quasiparticles close to each other will cause theseifusi
channels to evolve and decohere in some non-universal man-
ai az ... Qn ner.
The asymptotic operation of a generically tuned anyonic in-
(L) — (12) terferometer using probes that can distinguish all topokdg
hS = . ) .
Ma charge types will: (1) project the anyonic state onto the sub
’ ‘ ‘ space where the collective topological charge of evergthin

Hl(zl...’n.) —

€2,..,Cn—1

where we sum over all possible fusion channels (with the sam
values in the bra as in the ket).

For a modular theory (with unitary-matrix), we can write
the projector ofn anyons onto definite collective topological
chargex by enclosing the charge lines of these anyons with al
w, loop

—_—

contained inside the interferometry region (encircled lg t
probe paths) takes the definite valueand (2) decohere all
anyonic entanglement between the interior and exterior re-



gions of the interferometer [25]. The decohering effect (2)For JK; the topological twist factors are
requires the use of density matrix formalism to describé, an

it can be described using a superoperator acting on the den- g, = 0, = 1, 0; = —03 = ¢'%, @y = e i 5. (20)
sity matrix (as described in Ref$. [11,]22] 24]) or, equiva-
lently, by applyingw, loops to the density matrix in the di-  There are two other anyon models possible with these same

agrammatic representation (as described in Ref. [26])s, It i fusion rules, and they are simply the complex conjugates

however, possible to remove the decohering effect (2) wittsu(2), andJK; of the these two theories (the only difference

a protocol that essentially reconnects the severed tofmalbg in the above data being that the twist factors are all complex

charge line, which is projected onto chargby the measure-  conjugated).

ment, connecting the interior and exterior regions of therin There are too many’-symbols andR-symbols to write

ferometer([18, 27]. In this manner, we can use interferometr them all out explicitly, but it is straightforward to comjut

measurements to generate only the topological chargegprojethem using the general expressions given in AppendicBs

tion (1), which can equivalently be represented by insgrin  andA2] We tabulate thé-symbols and?-symbols for Ji

w, loop around the anyonic charge lines of the quasiparticleghat we will use for calculations in this paper in ApperiAig.

in the interior region of the interferometer. In the following, we focus only on JK since these are com-
Thus, we can write the effect of both types of topologi- pletely isotopy invariant (all bending and raising and Ioiwg

cal charge measurements using the standard von Neumagfjines at vertices are done freel{y) [42], which simplifias t

projective measurement formalism applied to state vectorgalculations. In particular, this allows us to apgiymoves

Specifically, a topological charge measurement for a $late  and R-moves in any orientation within a diagram. The basic

with measurement outcome equaktevill occur with proba-  results that we derive for Jwill carry over to SU2)4 anyons

bility with only minor modifications. The fact that the results garr
5 over follow from the fact that the two theories can be related
Pa = (V[ILa[¥) = [T, | %)%, (14) by simply gluing a semion onto the odd integer chardes. [43]
and transforms to the (normalized) post-measurement state
o |\I/> I11. ENCODING QUANTUM INFORMATION
|U) s — (15)
[[TLa [ W)

There are various ways in which one may encode quantum
Throughout this paper, we will always represent measureinformation in the nonlocal topological state space of non-
ment projectors using-loops, regardless of whether the mea- Abelian anyons. Even when there is a single nontrivial non-
surement used is local or interferometric (though whenithe Abelian topological charge in the theory, one may choose to
loop encircles the charge lines of more than two quasipartiencode states more densely or sparsely in the state space.
cles, it necessarily requires an interferometric measanem  The “standard encoding” of a topological qubit is given
to achieve). by four non-Abelian quasiparticles of the same topological
chargeq whose collective fusion channel (of the four quasi-
particles) is fixed to the vacuum char@e when a pair of
B. SU(2)s and JK4 Anyons chargeq quasiparticles has two possible fusion channels.
(More generally, if any two of the topological chargebave

The set of topological charges for &), and JK, anyon d possible fusion channels, then this would provide a qudit.)

models is[[41]

Cc=10,1,2,3,4}. (16) A. Encoding qubitsin JK4 and SU(2)4

The fusion rules are given by For the JK and SU2), theories, one may usge = 1 to
form a standard encoding qubit, whose basis states are the tw

0x0=0, 0x1=1, 0x2=2, fusion channels = 0 and2. These are represented diagram-
0x3=3, 0x4=4, 1x1=0+2, matically as
1x2=143,  1x3=2+4 1x4=23, (17)
Ix2=0+2+4, 2x3=1+3, 2x4=2, 11 I
3x3=0+2, 3x4=1, 4x4=0 _ 4
la) = \U (21)
(notice thata = « for all @) and the quantum dimensions are a

do=ds=1, di=ds=+3, do=2. (18)  We refer to this as the “1111” encoding.
Similarly, the standard encoding using= 3 also provides
For SU2), the topological twist factors are a qubit with fusion channels = 0 and2. In contrast, the
standard encoding using= 2 provides a qutrit, whose basis
Op=0,=1, 60, =—05=¢€'T, 0Oy=¢"%. (19)  states are the three fusion channels 0, 2, and4.
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Another qubit encoding, which will form the primary com- 1. Introduce an ancillary pair of chargequasiparticles
putational basis utilized in this paper, is given by four sjua that are pair-produced from vacuum.
particles, two of which carry topological charg@nd two of
which carry topological charg, with the collective fusion
channel of the four quasiparticles being fixed to vacuum
The topological charges of the two fusion channels encoding
the qubit basis states depend on which pair of quasipasticle 3. Fuse the (new) charge quasiparticle with one of the
we fuse. If we fuse @ and a2 quasiparticle, the two fusion original chargel quasiparticles and measure the result-
channels are = 1 and3. We refer to this last qubit encoding ing fusion outcome topological charges {0,2,4}.
as the “1221” encoding, and represent the basis states as

2. Fuse one of the chargequasiparticles with one of the
charge2 quasiparticles and measure the resulting fusion
outcome topological chargee {1, 3}.

The above steps may be applied in many different fashions,

22l e.g. where the ancillary quasiparticles are produced, lwhic
la) = 1 w _ (22) quasiparticles are fused, etc. Depending on the specifics of
Vdids this process, one may need to spatially rearrange the quasi-
a particles, e.g. via braiding operations, during or aftersth

L ) steps in order to obtain the desired physical processesraid fi
If we fuse thel and1 quasiparticles with each other, or the  cgnfiguration. These details and choices involved in engcti

and2 quasiparticles \(vith each other, t_he two fusion channelgpig protocol (following steps 1-3) are most easily spedifie
area = ( and2. (A pair of charge quasiparticles may poten- giagrammatically. For the measurement outcomesd y,

tially have fusion channels 2, and4, however, the collective \ye consider the implementation of this protocol specified di
fusion channel restriction of this encoding excludes thargé agrammatically by:

4 fusion channel.) This encoding can be related to the 1221
encoding via thé’-move

1 2 2 1 1 2 2 1

A AEDICE NG A
b=0,2

a

(25)

so we do not view it as a distinct encoding, but rather as a
change of basis.

One may also consider more dense encodings of qubits. lim this diagram, we have added dotted horizontal lines as a
particular, it may be useful to consider two qubits that are e visual aid for partitioning the diagram into three sections
coded in the collective state space of six quasiparticles. F responding to the three steps of the protocol.
six quasiparticles with respective topological charge, 2, In step 2, the probability of obtaining either fusion out@m
2,2, and 1, whose combined fusion tree is given by x = 1 or3 wil be p, = % In step 3, the probability of
obtaining a particular value af will, in general, depend on

the initial state of the qubit. Thus, the operation in stepilB w

la,b) = _ ’ (24)  read out some state information and collapse the qubit state
dav/dy n (at least partially, unless the initial state is in a basisest:)).
As usual with measurement processes in quantum mechanics,

‘ ’ the state is re-normalized to unit norm.
we have basis states for two qubits given by the possible topo In order to obtain a state in the 1221 encoding, we require
logical charge values = 1,3 andb = 1,3. We refer to this  the final fusion outcome to bg= 2. Wheny # 2, the quasi-
as the “two qubit 122221” encoding. particles no longer support a degenerate state space,so0 the
can no longer encode a qubit. In this case, we must discard or
recycle the quasiparticles. As such, we should only use this
B. Switching from the 1111 encoding to the 1221 encoding protocol on ancillary qubits.
Evaluating the diagram fay = 2, we obtain the transfor-
In order to switch between different encodings of quantummation in terms of qubit basis states of the initial 1111 elco
information, one generally needs to utilize operationsitia  ing and the final 1221 encoding after fusion and measurement
volve fusion and measurement. (For a theory in which braidwith outcomes: = 1 or 3 andy = 2 to be

1 2 2 2 2 1

ing is dense, one may use braiding operations to changehow 1 1 1 1 12 2 1
information is encoded. However, this approach may not be as

i : — > P (26)
efficient as the fusion and measurement based approach con- ba
sidered here. Moreover, we are particularly interestetién t — b=1,3

ories for which braiding is not dense.)
We now describe a process that non-deterministically take¥here
one from the 1111 encoding to the 1221 encoding. Starting

from a qubitin the 1111 encoding, we follow the steps: (27)



(Here, we wrote the relation without the normalization con-This result is obtained from the following diagrammaticleva
stants on the diagrams, and will similarly drop overall con-uation [44]
stants throughout the paper, whenever they are notimgdrtan

Bl

(i) ()
di1v/dy \ dids did,

(28)

We reemphasize that transformatiaRs”) are not unitary  as we are able to apply a NOT gate when needed to obtain the
and may (partially) collapse the initial state. Hence, thedesired outcome. In Sd¥] we will describe how to obtain a
overall factors here are not important, because one must rédeterministic)X gate using a simple fusion process.
normalize the post-measurement state anyway. Evaludingt \We observe that the diagram on the right hand side of the
F-symbols gives first line of Eq. simply displays the diagrammatic rep-

resentation of the protocol in a more symmetric form. As
p) _ 111 ‘/Ti pB) _ 110 %5 (29) §uch, it emphasjzeg. th_at different possible protocols fis-
0 34ﬁ V31 @ ’ ing and measuring in different orders) may be used to produce
the same resulting encoding changing operation. We will not
where the columns are assigned valbies 1,3 and the rows 9o into detail on these, but should keep in mind that altéreat
are assigned values= 0, 2. realizations may potentially be advantageous.

Thus, this implementation of the change of encoding proto-

col transforms the initial qubit state

C. Switching between two qubitsin 1221 encodings and a two
- Z W, |a) (30) qubit 122221 encoding
a=0,2
We can switch the encoding of two qubits from two 1221
gubit encodings to a two qubit 122221 encoding, with no state
collapse, by using a “forced measurement” procedurée [10,

in the 1111 encoding into the final qubit state

_PWw)

W) = (31) [11], as follows. Starting from two 1221 qubits (enumerating
| P@) | @) || the quasiparticles 1-8 from left to right), we follow thesse
P ¥) = Z Pb(a)qj 16) (32) 1. Measure the collective topological charge {0, 2} of
z quasiparticles 4 and 5. if # 0, go to step 2. Ifc = 0,
go to step 3.
in the 1221 encoding.
Notice that the outcomes = 1 and3 are related by appli- 2. Measure the collective topological charge {0, 2} of
cation of a NOT gate quasiparticles 5-8. (The outcome is not important.) Go
to step 1.
X = {0 1} (33)
10| 3. Remove the (now ancillary) quasiparticles 4 and 5 in
a manner that does not create entanglement, e.g. fuse
i.e. P = X P®), Thus, itis not important which measure- them together into vacuum or transport them as a pair

ment outcome was obtained feduring the protocol, as long along the same path away from the other quasipatrticles.



Steps 1 and 2 constitute a forced measurement, i.e. a “reso failure is exponentially suppressed in the number of at-
peat until success” measurement process, which mayrtake tempts. In the notation of Refs, [10,/11], we write the forced
attempts to achieve the desired= 0 measurement outcome. measurement procedure (achieving success attthattempt)
More specifically, theuth iteration of the measurementin step as

1is given by 45) 15) (5678)
<(45) (5678) (45)
e s 11 e e Uy =10, 2 T T 2 (38)
L7\l We emphasize that the measurements made in steps 1 and 2

are independent of the encoded state, as reflected by the inde
pendence of the measurement outcome probabilities on
¢ b b. This indicates that these measurements do not collapse or
otherwise alter the encoded state.
Combining steps 1 and 2 with step 3, which just removes
the now ancillary pair of quasiparticles, we obtain the den
of encoding

(34) a b

1

wherey; = 0, and thenth iteration of the measurement in = 5
step 2is
1 2 2 1 1 2 92 1 which does not collapse or otherwise alter the two qubiestat
encoded in the fusion channelsindb.
Tn It should be clear that the inverse of this change of encod-
1 1 ing, taking us from the two qubit 122221 encoding (enumerat-
ing the quasiparticles 1-3, 6-8 from left to right, with piasns
4 and 5 left vacant for the introduction of ancillary quasipa
a b ticles) back to the two 1221 qubits, may be obtained through

the steps:
1 2 2 1 1 2 2 1

cﬁw%“ 1. Introduce an ancillary pair of charge 1 quasiparticles
that are pair produced from the vacuum, taking the va-
cant positions of quasiparticles 4 and 5.

2. Measure the collective topological charge {0, 2} of
quasiparticles 5-8. (The outcome is not important.) If
y # 0, go to step 3. Ify = 0, stop.

3. Measure the collective topological charge {0, 2} of

_ i1l 1 1
[Fl ]znynﬂ g (35) quasiparticles 4 and 5. Go to step 2.
a b This utilizes the forced measurement
The probability of measurement outcome = 0 at thenth = (5678 5678 45
attempt ’ e I = e L mgengt, (40)
ptis
d 1 1
— Flll — Yn > = 36
bo “ ! ]yno a3 —d3 3 (36) V. SINGLE QUBIT BRAIDING GATES

As such, the probability of this process not succeedingiwith )
n attempts is at most Thus far, we have focused only on measurement and fusion

operations. We will need to utilize braiding operations afi w
2\" so we now present the single qubit braiding gates for the 1111
Prol(zy,...,zn #0) < (5) ’ (37) and 1221 qubit encodings of JK



A. 1111 Single qubit gates and
1 2 2 1
In the 1111 encoding, we can produce two single qubit \ 1 2 2 1
gates (and any gates generated by these) by braiding atljacen
quasiparticles. These are given by = > B w (47)
11 1 1 b=1,3

\ 11 1 1 —

:Rl111 w (41) [B%QQ}ab _ [F1122]MR32[(F1122)—1]CZ) (48)
c=0,2

a The pure braid operation in Ed4®) gives the computa-
tional gate
and
1 1 1 1
10
\ 11 1 1 Z = [0 _1} (49)
— 111
- Z (B Ja w (42) and the braiding operation in E@4) gives the computational
b=0,2
5 gate
¢ 1] 1 —iv3
B, = 3 AR EY e (43) B=3 s V) (%0
c=0,2

We note that exchanging the two charge 1 quasiparticles sim-
ilarly generates the gatg.
The gate sefZ, B} is not a computationally universal sin-

10 gle qubit gate set. Indeed, it generates a finite set of 6 gates

Ry /3= [0 w] (44)  which forms a projective representation of the permutation

groupsSs (which is equivalent to the dihedral grop), since
wherew = ¢ . The braiding operation in E®P) givesthe Z°=—-B®=1andBZ = ZB~".
gate

The braiding operation in EJ4{) gives the computational
gate

) 1 V2 V. FUSION-BASED NOT GATE
G=—|_ . (45)
V3 V2 —w
The gate setR, 4, G} is not a computationally universal sin- We now describe a protocol that generates the NOT gate
gle qubit gate set, since it generates a finite set of 12 gates. 01
This set of gates forms a projective representation of ttee-al X = { 10 } (51)

nating groupAy.
on a 1221 qubit through simple fusion operations that ingolv
no measurements. Starting from a qubit in the 1221 encoding,

B. 1221 Singlequbit gates we follow the steps:

In the 1221 encoding, we may also produce unitary single 1. Introduce an ancillary pair of charge 4 quasiparticles
gubit gates by braiding. However, in this case, one cannot that are pair-produced from vacuum.
use all braiding exchanges of adjacent quasiparticlesusec . ,
their topological charges are not all identical. We mustriets 2. Fuse one of the charge 4 quasiparticles with one of
to the braiding transformations which return the quasipleg the charge 2 quasiparticles and fuse the other charge 4
to the initial configuration of charges. The gates that may be ~ duasiparticle with the other charge 2 quasiparticle.
obtained from such operations are generated by the foltpwin

1 2 2 1

\

This process is described diagrammatically by

1 2 2 1
1 2 2 1 1 9 9 1
_ pl2p2l
— Ra Ra (46) 1 2 2 1 = w (52)
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where—a = 4 x a = 4 — a indicates that the effect of this  Steps 1 and 2 constitute a semi-forced (repeat until success
process is the application of a NOT gate. The computationaheasurement, in the following sense. The measurement out-
gate resulting from this process is independent of theldethi comez = 2 is undesired, but, as we will explain, it may be
how the charge quasiparticles are introduced and/or braided‘undone” in a manner similar to the forced measurement pro-
around the other quasiparticles, because the chageasi- cedure, since this measurement outcome does not collapse or
particles are Abelian, and so these details can only result iotherwise alter the encoded state. In contrast, the measure
unimportant overall phases on the state. Moreover, no meanent outcomes = 0 and4, will collapse the state, as we will
surements are necessary (except, perhaps, to ensuredhat #iso see. The measurement outcome 4 is not necessarily
ancillary quasiparticles indeed carry topological chafgée-  desirable, but it is generally not possible to undo the measu
cause the fusion outcome involving a quasiparticle of ohargment in this case, since this measurement outcome applies a
4is unique, i.e4 x 2 = 2. We recall that the NOT gate may projection to the encoded state. Thus, we must treat measure
be used to take us between the encoding changing operationgent outcomes = 0 or 4 as the “desired” outcomes and end
P to PG of SecllTBl the semi-forced measurement process once such an outcome
The gate sef X, Z, B} is not a computationally universal is achieved. This process may takattempts.
single qubit gate set, either. Indeed, it generates a fieite s

of 12 gates, which forms a projective representation of the ) ) . o
dihedral groupDs. Diagrammatically, thexth iteration of step 1 is given by

VI. TOPOLOGICAL QUBIT FUSION

Ref. [13] introduced protocols, referred to as “topologica
qubit fusion” (TQF), which act on multiple topological qibi
in a manner that reduces the number of topological qubits U
through a series of fusion and measurement operations. The
reduction of the computational state space using TQF may oc-
cur in a nontrivial way, in the sense that it is not simply a
projection applied to one of the qubits, but rather may have
an effect which is equivalent to applying entangling gates t
gether with measurement projections. TQF was demonstrated
to be a useful protocol for converting ancillary states tam-
putational gates [13], which is what we will use it for in this
paper.

We now describe a TQF process for two qubits in the two _ [Fu,22] o (53)
qubit 122221 encoding (see also REf][28]), reducing a fair o b
qubits to a single 1221 qubit. If we wanted to start from two
qubits in the 1221 encoding, then the preliminary step would a b
be to apply the protocol of SE@IC] to switch into the two
qubit 122221 encoding.

Starting from two qubits in the two qubit 122221 encod-
ing (enumerating the quasiparticles 1-6 from left to rigttg
follow the steps:

wherev; = 1. The probability of measurement outcome=

' o1
1. Measure the collective topological charge {0,2,4} 2 at t:ec?t:] ?tte_ltr;]ptfls”alwa?/@g 61 2f’ w:?epegdentﬁoffhe
of quasiparticles 3 and 4. f = 2, go to step 2. If encoded state. This follows from the fact thaj’ }12 V2

z =4, gotostep 3. It = 0, go to step 4. and[Fy??],, = —% foralla,b € {1,3}. We emphasize that
this verifies our claim that this measurement outcome does no
2. Measure the collective topological charge {1,3} of  collapse the state encoded in the two qubit degrees of freedo
quasiparticles 4, 5, and 6. Go to step 1. a andb. Thus, the probability of achieving the desired result
zn =00r4,iSpg + ps = % at each attempt, though we will
3. Introduce an ancillary pair of charge 4 quasiparticles.see that the individual probabilitieg andp, will depend on
Fuse one of the ancillary charge 4 quasiparticles withthe encoded state. It is easy to see that the fusion rulegeequ
quasiparticle 4 and the other one with quasiparticle 5. thata = b whenz = 0 and thata = —b = 4 — b when
z = 4 (and thatz = 2 does not impose any additional relation
4. Remove the (now ancillary) quasiparticles 3 and 4 inpetweer: andb).
a manner that does not create entanglement, e.g. fuse
them together into vacuum or transport them as a pair
along the same path away from the other quasiparticles. Thenth iteration of step 2 (which is only used whep =
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2) is diagrammatically given by Thus, for a two qubit statel) = >° ,_; 3 ¥4 la,b), the
effect of the TQF process with measurement outcomes)
and4 are, respectively, given by the maps

2 QO |w Ty q[1) + Us5)3
W o Em (e0)
HQ | >H |\I/171|2+|\I/373|2
a b 4)
1 2 2 2 2 1 |\I!> |\Ij> _ \1}173|1> + \113,1|3> (61)

4)

HQ( A |\11173|2 + |\11371|2
to single qubit states. The possible outcomes 0 and4 of

the entire TQF process will, respectively, occur with pioba
itiespo = |W1,1]? + [V33% andpy = [P 3% + [V31]%. We
emphasize that this TQF process is not deterministic, as the
probability of these outcomes generally depend on the quan-
tum state encoded in the qubits. As such, they generically
collapse the initial encoded state (in some nontrivial i@s)

so one should be careful how and when the TQF process is

_ b
= [F2],, W . (54)
Un+1

a b
Again, the outcome is independent of the encoded state anlfjSeOI
does not collapse nor alter it.

Step 3 simply decouples the quasiparticles 3 and 4 from
the other computational quasiparticles when the measureme
outcome isz = 4. The process in step 3 (which is only used
whenz,, = 4) is represented diagrammatically by

A. Converting statesinto gates

As demonstrated in Ref._[13], one of the useful applica-
tions of TQF is to convert ancillary states into operations o
a computational state. If we use an ancillary qubit in a state
with equal magnitude superposition of its basis states i
generate a unitary phase gate on the computational qubit. If
we use a non-balanced ancillary qubit state, the effect en th
computational state will generically not be unitary, sirice
will involve some projection.

We now describe this protocol for Jkanyons with qubits
Y in the 1221 encoding and the ancillary qubit in the state
=[R2, . (5) [Ry/2) = % (cEm+ed).  (62)

Starting from a computational staf&) with a qubit (at

least one) in the 1221 encoding and an ancillary qubit state
Step 4 removes the now ancillary quasiparticles 3 and 4|’R »/2) inthe 1221 encoding, we follow the steps:
leaving a single qubit in the 1221 encoding.

We denote the operation corresponding to the TQF process 1. Switch the two 1221 qubits (computational and ancil-
described in this section, with final measurement outcome lary) into the two qubit 122221 encoding.
0 or 4, by Q*), with the effect on the two qubit basis states

1 2 2 2 2 1

a

2. Apply TQF to these two qubits.

given by
) This protocol will have TQF outcome = 0 and4 with
la,0) = QPa,b) = > QL e (56)  equal probability, = ps = 1. Using the analysis of our TQF
c=1,3 operation, the resulting operations for these two outcames
where respectively
Qo= [, [F™] 5, duc (57) (D) Ry2) = VEQO|)|Ryp0) = Rypol W) (63)
Evaluating theF'-symbols, we have |U) Ry o) + \/562(4)|\I/>|R¢/2) = R_,2|¥). (64)
Qg , = 1 S (58) We emphe}s_ize that this protoc_ol_essentially consumes the an
\/5 ' cillary qubit in order to convert it into the phase gate
which we can write in matrix notation as R [ 1 0 } (65)
1 1 +¢/2 = +ip
QO — 7 00 0 QW — 05 00 0e
0 00 =% |’ 00 =0 i h ional h d— ph
NG} 72 acting on the computational state, where thand— phases

are obtained with equal probabilities.
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VIl. IRRATIONAL PHASE GATE qubits in the states
The topologically protected computational gates obtained By11) = 3 1 i2\/§ 1)+ [3) (68)
from braiding transformations in the 1221 qubit encoding, h 10 3

which are generated by the gate $&t B}, are not compu-

tationally universal. (Supplementing the braiding gatés w 1By 5)
the gateX does not make them computationally universal, "
either.) We propose to supplement these operations with an

g2
10

1) + (1 —|—i2\3/§> |3>] . (69)

irrational phase gate We generate ancillary qubits in these states using thewello
ing protocol.
K=R. ., — 10 (66) Starting from an ancillary qubit in the 1111 encoding (enu-
a/2 0 e>|’ merating the quasiparticle 1-4), we follow the steps:
whereei® — 71%1'4\/5_ Olmsted's theoren] [29] assures us 1. Initialize the 1111 qubit in the state).
thata/2r is an irational numbef [45] and, hendé has infi- 2. Perform a braiding operation interchanging quasiparti-

nite order.

It is straightforward to demonstrate that the gate set
{X,Z, B, K} is computationally universal for single qubits. 3. Switch from the 1111 encoding to the 1221 encoding,
In order to verify that any given set of single qubit gates using the protocol of SeffllBl
is computationally universal (dense in the set of all single . . . .
gubit gates), we can use the fact that the only infinite proper Step 1 may be ca_rr_n_ed_out In various different ways. For
Lie subgroups of P(2) = SO(3) are isomorphic to either ©X@MPle, one may initialize the qubit in the stade using
U(1) = SO(2) or to O(2). It follows that, if an infinite sub- & forced measurem_er}ﬂ]@ 11]. Specifically, this means first
group of PU2) is not isomorphic to a subgroup of eithef1) measure the collective tqpologmal charge of quasipadi@
or O(2), then its closure must be equal to @Yl Clearly, the and 3 (the outcome or 2 is unimportant) and then measure

gatesB and K projectively generate an infinite subgroup of tﬂe collective t](c)phologlcal <(:jharge of quasiparticles 1 ang 2
PU(2). However,B and K do not (projectively) commute the outcome of the second measurement is chiargeen the
with each other, so they cannot generate a subgroup isomo‘ij-es'red state has been prepared. If the outcome of the second

phic to U(1). Additionally, we notice that the (nested) group Measurement is charge then simply repeat these two mea-
commutator[B, K], [B, K]] # 1, where the group com- surements until the outcome of the second measurement is

mutator|a, b] is defined here to be~b=1ab. (There is no Anotherway to obtain this initiglizeq state is giver_l by _mpl
distinction between checking this simply by multiplying ma ing the measurements of q.uaS|pa}rt.|cIes 2 anq 3 in this forced
trices and checking it in the projective quotient @@ since measurement procedure with braiding operations of quasipa
overall phases cancel inside a commutator.) This implies thticles 2 and 3. . . .
infinite subgroup generated Byand K cannot be a subgroup In step .2’ the t_>ra|d|ng Qpera'g|on may pe counterclockwise
of any 2-stage solvable group, such ag2@ Thus, the gate ©' clockwise, which we will distinguish with a label= +1
set{ B, K} must generate a subgroup of PYthat is dense, or —1, respectively. Th|s applies the gaiE 1o the qubit.

i.e. has closure equal to PR). In step 3, the encoding change involves a measurement out-

We have shown in SeB/TA] how to convert an ancillary ¢9Me< = 1 0r3, as dgscrlbeg In SSHIBJ If thle deswedl
qubit in the statéR,») into a unitary phase gati. /2, S0 measurement outcomeis not obtained, we can always apply

what remains to be shown is that we can generate the irrationd NOT gate to SW'_tCh to the desired outcome, as _prev_lously
explained. There is also a second measurement in this step,

cles 2 and 3.

state S - ) :
which is assumed to bg = 2, in order to result in a state in
3 23 23 the 1221 encoding. When this measurement yiglels2, we
|K) = |- )+ |1+ e 13) must discard or recycle the quasiparticles and start ovés T
. is not a problem, since we are only generating ancillanestat
I Sy i . at this stage.
V2 (e P+ et |3>) N ’RO‘/2> ©7) The resulting ancillary qubit produced from this protool i
, i ) o in the 1221 encoding and in the state
in the 1221 encoding, using measurements, braiding, and fu-
sion operations. The previous sections have developeldeall t PEG#|2)
operational tools we need to produce this state, so it only re |Ps0) = m (70)

mains to assemble them.

It is straightforward to check that this gives the states in
Eqgs. and 9.
A. Generatingtheirrational state |K’) Finally, in order to obtain an ancillary 1221 qubit in the
irrational statd K'), we start from two ancillary 1221 qubits,
As a preliminary step in producing an ancillary 1221 qubitrespectively prepared in the statds,; ;) and|®_; 3), and
in the irrational stateX’), we first prepare two ancillary 1221 follow the steps:
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1. Switch the two 1221 qubits into the two qubit 122221 until successful is only viable if the probability of achieyg

encoding. the desired result goes foas the numben of repeated ap-
. plications of the protocol gets large (— o0). We analyze
2. Apply TQF to these two qubits. the random walk in AppendiB and find that this is indeed

= the case, but that the probability of not achieving the a@elsir

From the analysis of SE¥I] we find that the result of the TQ tresult (a positive valued position) insteps, where. is odd,

operation on this pair of ancillary qubits with measuremen
outcomez = 0 is the desired ancillary 1221 qubit state

n!!
Prob(xy,...,2, <0) =

<= 0

QD1 1)|P_13)

W[ 41 19D
QP41 1)|P13)l which goes to zero aﬁ/% for n large. This is certainly
When the TQF operation has measurement outcorse4,  |ess ideal than an exponentially fast convergence (which is
the resulting state is not in the desired form, nor can itigasi what we found for all our other probabilistic protocols)tbu
be salvaged for our purposes. Since these are ancillarysgubit nonetheless permits a higher level strategy that alldves t
we may simply discard or recycle the final qubit when theyse of such random walk generated gates to be used in BQP

|D11,1)|P-13) =

= |K). (71)

TQF operation has = 4. (bounded error quantum polynomial time) quantum computa-
tions.
_ _ A strategy for using such random walk generatédjates
B. Converting|K) intothe phase gate K while satisfying the conditions for BQP is the following. If

the quantum computation we wish to carry out invol¥esp-

Once we have an ancillary qubit in the 1221 encoding preplications of the gaté<, then we allot eacti gate at most
pared in the irrational stateék’), we can use TQF to convert k? steps in the random walk used to generate it. For édch
the ancillary qubit into a phase gate acting on a computation gate, if the random walk reach&s$ steps without achieving
qubit in the 1221 encoding, following the protocol desctibe the desired result, we terminate the process and consider th
in Sec[VTA] However, this is not a deterministic process, asgate and, hence, the entire computation to have failed. Kach
the measurement outcomes- 0 and4 of the TQF procedure gate that we attempt to implement in this way will thus have a
will occur with equal probabilitiepy = ps = % The out-  probability
comez = 0 results in an application of the unitary phase gate (k2)!
K to the computational state, while the outcome 4 results PKfail = —————
in an application ofK ~!. If we intended to apply dC gate (k2 + 1!
in our quantum computation, but instead generated the gatsf failing and 1 — px.ri of being successfully generated.
K~ from this protocol, we need a strategy for correcting thisconsequently, the entire computation will have a probgbili
undesired outcome. We obviously cannot correct this simpl;(l — prail)* of being successfully implemented (at least with
by applying gates from our deterministic gate §& Z, B}.  respect to thék gates’ random walk issue). In the limit &s

A simple strategy for dealing with this issue is to repeat-gets large, we see that the probability for the entire comput
edly apply the protocol for converting statds) into phase  tjon being successfully implemented is
gates until the product of gates applied is equal to the elésir L
phase gatd{. More specifically, after one application of the f ) 2 _JZ
protocol, we will generate th&™ gate with probabilityl /2 klg]g@(l —PRail)” = Jm (1—y/—5 ) =eVr. (74)
and K —! with probability1/2. If we generated the undesired
gateK —!, then we apply the protocol two more times. TheseThus, the probability of failure of the computation due te th
two applications have probability/4 of generating<?, prob-  random walk generate gates using this implementation
ability 1/2 of generatindL, and probabilityl /4 of generating  strategy is bounded, and hence this strategy satisfies the co
K~2. Thus, following the initial gatd{ ~!, the two additional  ditions for BQP. (We note that it can be inferred from the mea-
applications of the protocol have probability4 of making  surement outcomes whether or not thiegate has been suc-
the total product of gates generated equdktolf the desired  cessfully applied, so there is no requirement for the succes
outcome is not achieved after these two additional applicaprobability to be greater thaty2.) However, we notice that
tions of the protocol, then we continue to repeatedly applythe number of operations that may be required to implement
the protocol in this way, until the desired outcome is finally all ¥ applications ofK gates using this strategy scaleskds

(73)

achieved. so the polynomial exponent of the computation length sgalin
We can think of this as carrying out a random walk on theincreases by a factor of 3.
integers, where the positiorn, € Z aftern steps is the expo- Clearly, the crude strategy described here is far from jdeal

nent of the produck*~ of gates aftem applications of the as our goal was merely to demonstrate the existence of a strat
protocol. As such, the random walk starts fragn= 0 and  egy that works, in principle, within BQP. There are a num-
each step has an equal probability of moving the position tder of strategies for algorithm optimization. One simpleywa
Tp+1 =2Tp +10rx, —1. to reduce the negative impact (i.e. the costliness and conve
This random walk strategy for generating the gate by  gence issues) of the irration&l gate is to compile the quan-
repeatedly converting/() states into phase gates using TQF tum algorithm with an aversion to th€ gate. In other words,
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when synthesizing gates or algorithms from the generating A. Generating entanglement resour ces
gate set{ X, Z, B, K'}, the optimization should minimize a
weighted combination of both the word length and the total
number of K gates used.

Another strategy for improving the situation is to employ a
sliding cutoff for the number of attempts allowed beforerter
nating the random walk attempting to implemeritaate. In |®py) = H|®T) =
particular, one may wish to terminate random walks sooner at
earlier stages of the computation, while allowing longelksa (1) + [33)
as one nears the end of the computation. A more drastic mod V2
fication of the strategy is to pick a cutoff point in each ramdo and [¥) = —=(|13) + [31)) for the Bell states.] The
walk (which could even be after one step), after which one reHadamard operator here can be equivalently applied toreithe
compiles the algorithm to see if a different path forward Wou  the first or the second qubit in this expression. We now pro-
be more economical [30]. vide a protocol for generating such states.

Starting from two ancillary qubits in the 1221 encoding
(enumerating the quasiparticles 1-8 from left to right),fale

We wish to generate ancillary pairs of qubits in the 1221
encoding which are in the entangled two qubit state

(J11) +|13) +131) — 33)).  (77)

N | =

E\_Ne use the conventional notatio®*) =

VIIl. CONTROLLED-Z ENTANGLING GATE low the steps:
The set of single qubit gatdsY, Z, B, K'} is computation- 1. Initialize each 1221 qubit in the state-) = H|1) =
ally universal for single qubits. If we can supplement trasegy \/%(|1) +13)).

set with any entangling gate, we would obtain a full computa-
tionally universal gate set. In this section, we provideat@r

! . . 2. Measure the collective topological chan 0,2,4
col for generating the two qubit entangling gate, contblie poeg g€ {0,2,4}

of quasiparticles 3, 4, 5, and 6.1 0, go to step 1. If
r =0, go to step 3.

C(2) = (75) 3. Perform a braiding operation that interchanges quasi-
1 particles 3 and 4 and one that interchanges quasiparti-
cles 5 and 6, with the opposite chirality.

100 O
010 0
001 0
000

In addition to the inexpensive gates and operations (such
as topological charge measurements, braiding, and TQF), ou 4. Move the quasiparticles 3, 4, 5, and 6 to the right of
protocol will utilize a single application of the Hadamaratg quasiparticles 7 and 8 in a manner that does not create
) entanglement (i.e. have them all follow the same path).
H=— {1 ! ] . (76)

N

The Hadamard gate is costly, as it requires a long string of

the generating gates to accurately produce, includingge lar

number of applications of the irrational phase gateeach

of which is relatively expensive to implement, as seen in

the previous section. More specifically, Réf.|[31] devetbpe

algorithms for synthesizing single qubit gates from the se

{Z, B, K'} that produces approximate implementationg/of

to precisions with K-count aroundtlog;(1/¢). For exam- 1227 _ 1 (11 _

. . . [Fl } _ Hap (78)

ple, they produce an approximaté gate with trace preci- ab o1 -1,

sione < 1078 using a string of 67 gates, 40 of which ake

gates[[31]. wherea = 1,3 andb = 0,2. From this, we see that, for a
However, the single application @f is utilized during the  qubit in the 1221 encoding, we can simply measure the topo-

ancillary state preparation stage of the protocol, so iteege logical chargeh € {0,2} of the pair of charge 2 quasiparti-

ation can be carried out in a parallelized fashion that avoidcles. (We could, equivalently, measure the topologicaigha

the previously discussed issues with applyikigo the com- b € {0, 2} of the pair of charge 1 quasipatrticles, if desired.) If

putational state within a quantum computation. The useef ththe measurement outcomebis= 0, then the 1221 qubit is in

Hadamard gate also means that the precision ofguf) gate  the desired statgt). If the measurement outcometis= 2,

will depend upon the precision to which we approximate thethen the 1221 qubit is in the state) = Z|+), so we merely

Hadamard gaté/ that is applied in this protocol. apply the gateZ to obtain the desired initial state. Similarly,
We split the protocol for generating(7) into two parts:  we could initialize the 1221 qubit in the stdte) by pair pro-

(A) generating the ancillary two qubit states that will ®as  ducing a pair of charge 1 quasiparticles from vacuum and pair

entanglement resources, and (B) converting the entangtemeproducing a pair of charge 2 quasiparticles from vacuum and

resource ancillary state into tligZ) gate using TQF. then aligning them into the 1221 qubit configuration.

5. Apply the Hadamard gat# to one of the qubits.

Step 1 may be carried out by applying a Hadamard gate
to the qubit initialized in the basis stafe). However, this
is not the best way to perform this initialization, since the
Hadamard gate is costly and not exact. A better method is
guggested by Eq20) and the corresponding-symbol
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The measurement in Step 2 is diagrammatically given by |®), we can convert this ancillary state into thg€7) gate
acting on two computational qubits in the 1221 encoding us-

S S S ing the following protocol.
Starting from two computational qubitsi(and B) in the
1221 encodings and an ancillary pair of qubits (1 and 2) in
the 1221 encoding in the entangled stdtg ), we follow the
a b

steps:

L T_i_i_? T 1. Perform TQF on qubitgl and1, with measurement out-
— — (79) comeza; € {0,4}. If z4; = 4, apply the gateZ to
qubit A.
a b

2. Perform TQF on qubit® and2, with measurement out-

Whenr — 0. this is equal to comezps € {0,4}. If zpo = 4, apply the gateZ to

qubit B.
r o2 2 1 1 2 2 1 Itis straightforward to check that the effect of this praibc
1 which can be written for the computational qubit basis state
Sab— (80)
dq as

a.0)|x1) = 2QQig)la.b)|@r) (84)

. ‘ . o b)|® 225Q0) Q' a, b)|® 85

Steps 3 and 4 are simply rearranging the configuration of j,0)[®r) = BQQ§Q£§ @ 0)|n) (85)

quasiparticles to that of two qubits in the 1221 encoding, in la,b)|Pr) = 2Z24Q 41 Qpsla,b)|Pw) (86)

manner that does not affect the state. Now, the originaliquas la,b)|®5) ZZAZBQ%)Q%% a, b)|® ) 87)

particles 1, 2, 7, and 8 comprise the first 1221 qubit and guasi

particles 4, 3, 6, and 5 comprise the second 1221 qubit.  for the four possible combinations of TQF measurement out-

Combining steps 2, 3, and 4 (with measurement outcomgomes; 4, andzp., all give the same result, which is an ap-
r = 0), the effect on basis states can be written diagrammati|ication of the controlledZ gate to the two computational
cally as qubits

1 2 2 1 1 2 2 1
la,b)|P ) — C(Z)|a,b). (88)
w w We emphasize that this protocol consumes the ancillaryenta
glement resource pair of qubits in order to convert them into
a b

theC'(Z) gate acting on qubitd and B of the computational

1 2 2 1 1 2 2 1 state.
1
— 5,117— . (81)
V3 W W IX. CONCLUSION
The effect on the initialized states (i.e. combining stegy 1 N the example of St2), and JK, anyons, we have seen
is thus that it is possible for an anyon model to not be computa-
tionally universal with braiding alone, but to become compu
[+)[+) = |@T). (82) tationally universal when braiding is supplemented with fu

sion and measurement operations. This demonstration of the
utility of fusion and measurement operations encourages fu
ther analysis of such operations and exploration for amlai
|Dy) = 1@ H|®T) = Ho 1|dT). (83) theories whose computational power can be supplemented or
even made computationally universal in this way, partidula
In contrast with the initialization step 1, we do notknow aywa for theories that would be easier to physically realize.
to circumvent the use of the costly Hadamard gdté this The same strategy of supplementing braiding operations by
last step. fusion and measurement operations can also be considered
for theories with symmetry defects, which are described by
G-crossed braided categories, in which braiding is general-
B. Converting [®5) intoa controlled-Z gate ized to incorporate symmetry actidn [32]. The defect thesri
that are relatively easy to physically realize appear toehav
Assuming that we now have two ancillary qubits in the (G-crossed) braiding which is not computationally universal
1221 encoding paired up in the entangled two qubit stateso it would be interesting to determine whether any of them

Step 5 takes us from the Bell stafe™ ), obtained by apply-
ing steps 1-4, to the desired state



15

could be made computationally universal via fusion and mea#2-symbols that we use in this paper, for convenience.
surement operations. One known example of a defect theory

which may benefit from fusion and measurement operations is

a bilayer Ising TQFT system with layer interchange symmetry

(G = Z5); fusion and measurement may be used to switch be- 1. SU(2), Anyons

tween a qubit state being encodedsimuasiparticles, where
they may be relatively easier to physically manipulate, and
being encoded in defects (also known as “genons”), whicrb
provide computational universality through braiding| [33]

The SU2), anyon models (fork an integer) are ¢-
eformed” versions of the usual $2J representation the-
ory [34]. Roughly speaking, this means integersire re-

placed by 4-integers”[n] g = % where the defor-
Appendix A: Basic Data of the Anyon Models mation parametey = ¢'*+2 is taken to be a simple root of

unity. These anyon models describe (8)) Chern-Simons
In this section, we provide general expressions for thechasitheories [[35] and WZW CFT$ [86, 37], and give rise to the
data (topological charges, fusion rulgs;symbols, andR-  Jones polynomials of knot theorly [38]. Their braiding stati
symbols) of the S(2),, and JK, anyon models, for general tics are knownl[5] to be computationally universal for Al
k. For JKy, we also evaluate and tabulate thesymbols and exceptk = 1, 2, and4. The anyon models are described by:

min{ji+j2,k—j1—j2}

C={0,3,....5}, jixja= )y j
Jj=|j1—J2|
] —(—UWWH¢[2j12+1]q[2j23+1]q{?1 2 3.12} :
’ J12,J23 73 7 J23

{j.l ‘7]2 ;12} = A (j1, 72, J12) A (J12, 73, J) A (42, J3. J23) A (41, 523, )
3 23

(=17 [z41],!
X ZZ: { [e—d1—je—ji2] Mz —dr2 —js—il [z —d2—Js —j2s], [z —d1 —j2z =3l !

1
x [J1ti2+is+i—z], 1 +ii2+His+ies —2] iz +ire+i+j2s —2] ! } ’

L [— 1 +g2+7s], [ —d2+35], i1 +i2 —ds],! _
A(31’32’33):\/ — 3[j1+j2+2j3+31]q! — gt = 11 [ml,

R;ﬁw'z = (—=1)Y 772 g3 GUHD =i (1 +D)—j2(G2+1)

s (2i+ D)7 k12 .
dj=[2j+1), =282 po V| gy
i =Ri+ = iy () |9 = (1
. X CESY) . s
0; = qJ(J+1) _ pizniiY i Sjj» = _ki sin ((2J1+113§_22J2+1)ﬂ)

where{ } isa“g-deformed” version of the usual $2) 6;-symbols. The sum overin this expression is over all integers for
which each term is well-defined, i.emin < 2z < zmax, Wherezmin = max{j1 +jo +js + 7, j1 + j1i2 +Jjs + jos, jo + ji2 + 7 + jos }
andzmax = min{j; + jo + j12, ji2 + j3 + 4, j2 + ja + jes, j1 + jes + 5} The Frobenius-Schur indicates; = d; [Fj“} o is a
gauge invariant quantity which plays a role in bending argightening lines.

2. JKi Anyons

There are anyon models based on the Jones-Kauffman br&éiéf]], which may be derived from Temperley-Lieb recouplin
theory. These anyon models, which we denote as 3ike closely related to the $2), anyon models. They have the same
number of topological charges and the same fusion rules g8)glt the corresponding level, and the basic data shares a
very similar structure. It is conventional to label the tlggical charges of JKby integers, rather than both integers and half-

integers, so there will be a translation between these byiphuhg/dividing the charge labels by 2. We defide= je 2Ty



16

and[n], = Az’;—if‘ The anyon model data is given by:

c={0,1,....k}, axb=la—b+(la—bl+2)+...+min{a+b,2k —a— b}
[ngc] - \/dedy Tetla b e

ef  \/0(ab,e)0(c,d.e)0(b.c,f)b(a,d,f) cd f

o A { (—1)*[e+1],!
cdf|, Tl ey

[rare ] mesrre] e <] !

[al A T0] 4 T[] 4! ’ [mlal=
E!:[a]A![b]A![C]A![d]A![e]A![f]A! )
IV = [mefbe] r[egre] [etgme] [ =ohte] (=gt ], [<5) ,!

« [—a+d+,f:| ! [a—d-ﬁ-f] ! [a+d—f] ! |:—b+c+f:| ! {b—c+f:| ! {b+c—f:| !
2 A 2 a 2 Ja 2 A 2 la 2 la
R = (—1)77 " A¥(clct)—a(at2)—b(b+2)

C

X [a+b;c+dz]A![a+e42ch}fZ]A![b+e§d+fz]A!} )
n
I1

0 (a,b,c) =

a sin( (a+1)ﬂ) +
da:(—l) [a—i—l]A:i"“ R Dzi f %azl
sm(k+2) sm(k—+2)
a(at2)
B — (—1) A%t — - BTG Sy = \[ 2 (1) sin (T
[

The sum ovet in this expression is over all integers for which 3. Some Useful F-symbolsand R-symbols of JK 4
each term is well-defined, i.ezmin < 2z < 2zmax Where
zmin = max{a +b+c+da+e+c+ fib+e+d+ f} In this section, we tabulate the-symbols andz-symbols

andzmax = min{a +b+e,e+c+db+c+ fa+ f+d}.  of JK, that are used for calculations in this paper, for conve-
It is straightforward to check that the conditions for coatpl  pience.

isotopy invariance are satisfied for jJKi.e. all the bending

transformations in this theory (for the choice of gauge use j[Fabc} =0 if N, N =0 or NfN 4 =0
above) are trivial, sincgF ", = [Fi], = \/a%; 10 |[Fg] — 1 a,b,c,0rd = 0 andNg, N = NLNZ, 20
?:I(;z{g’_cw'th N¢, # 0. We note thak = 2 is the Ising anyon [Foet] = [ngb] - \/g if N, £ 0
Comparing the basic data of JKo that of SU2),, we no-  |[F1%%],, = [F1122]12 [F1122]30 =73 [F*2],, = —%
tice that the structure of these expressions and the{ U [Fa2!] L [P, = -1 [, = V3
counterparts are nearly identical. The main differenceas t |-, 1= o 2 Lo
the ¢-deformation factor is changed by a minus sign (note[ 1 }02 \/> [F1 }2 VAR [F3 ]22 =1
that A2 plays the role of;), which requires minus sign fac- [F§ 1}13 1, [F. 321] = @ [F321}13 =1
tors that necessarily arise in the associativity expressias [F113] \/7 [Fi%],, =1, [F3],, = ==
well as factors of that arise in the braiding. Notice that the |I"3 Jo2 3 J22 T 3
Frobenius-Schur indicatot, = d, [F7*"], hereis trivial, as | [F}! 1}00 [Fllll] = \/g
required for the theory to be completely isotopy invariant. [ 2} [F322] B [F122] _ [F?,QQ} _ 1
In fact, the two theories can be related by gluing a semion: ° 11— 1421 313 bl va
onto the odd/half-integer charges. More specifically, thig [F } [F ] _1
means we take the direct product of one of these theories wiftR}! = ¢~ #5, R}l = i1
a semion anq then restrict the topolqgmal charge set so thagl2 — R21 — eﬂ—,R =R = T
odd charges in the JKsector (or half-integer charges in the R22 = ei%"R%Q = i B2 = zg
SU(2) sector) and the nontrivial charge in the semion sec
tor are always paired up. We can write this as(8)) =
IR, x 7832 o wherez{*? = SU(2 SU(2), is the Z») semion Appendix B: Random Walk
with F{'' = —1 and#; = —i, andC = {(a,b)|a €
{0,1,...,k},b € {0,1},a = b mod 2}. This relation In this section, we consider a random walk over the inte-

is confirmed by the corresponding values of the topologicagiersZ, starting at positior: = 0, with each step having equal
twists andS-matrices of the respective theories. probability% of taking a step fromx tox + 1 orz — 1. We
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compute the probability of never taking a positive valued po of never going negative within = 2m — 1 steps can similarly
sition during a walk of: steps or, equivalently, of never taking be expressed iteratively as

a negative valued position during a walkofsteps. Since a

walk starting at O can only become positive on an odd step, it

is clear that this probability is the same fomndn + 1 steps, (m41) NHD N N

whenn is odd. As the problem is symmetric between avoiding Py = N = AN

positive and negative positions, we will simplify notatiby total total

computing the probability of the position never going nagat Nl(m) (m)

within n steps. We compute this iteratively by counting the to- = - AN Dy

tal number of paths one can take without ever going negative +

within n steps fom = 2m — 1 odd. (o1 ) o (B6)
First we note that the total number of unconstrained paths 2m+1)) 7t 7

possible after, = 2m — 1 steps isN,") = 2m = 22m~1, where we used the property
After the first step«{. = 1), there is equal probability of

going toz = +1 and—1, so the number of paths that end up 9

at positive position: without ever going negative is simply Nl(m) = m—HNT). (B7)

N =4, . (B1)

Solving the resulting iterative expression of HBBY, we ob-
Bain the probability of avoiding going negativenn= 2m — 1
r]‘steps to be

Since each step has equal probability of moving the positio
by 41 or —1, a consecutive pair of steps can move the positio
by +2, 0, or —2, with there being one way to mowe2 and
two ways to remain in the same position (i.e. first step fodvar

and then step backward, or first step backward and then step m 1 (2m —1)
forward). Thus, we can write the iterative expression fer th pﬂr’”) = H ( — 2_) = o (B8)
numberN{™ of possiblen = 2m — 1 step paths that end up p=1 P (2m)!

at positive positior: without ever going negative as

(m+1) _ (m) (m) _
Nl(m+1) - 2]\([7171 + Ni’zm) (m) for z=1 i In order to obtain the scaling pﬁ") form large, we use the
Nz =N, 5 +2Na "+ Nypp for z>1 relations of double factorials to the Gamma function togeth

(B2)  with Stirling’s formula
(We notice that the contribution from position- 2 is missing
fromx = 1, because that would have included a path that went

negative.) (m) L(m+ 3)
The total number of possible = 2m — 1 step paths that P+ = Val(m +1)
end up at positive position without ever going negative issth 1 1 1
~ —exp mln(m+-)—(m+=)+...
Nim) _ Z Nggm)’ (B3) \/E 2 2
x>0

1
—(m + E)ln(m—i-l)—i—(m—i-l)—i—...
which satisfies the iterative expression
1 3
= —m 2 +0(m 2). (B9)
NHD g N N, (B4) VT

Thus, the probability Thus, we find that the probability of taking steps without

(™) ever taking a negative valued position goes to zeroas as
p(m) == (B5) n— .
+ (m)
Nt
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