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Entanglement as a resource in adiabatic quantum optimization
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We explore the role of entanglement in adiabatic quantum optimization by performing approx-
imate simulations of the real-time evolution of a quantum system while limiting the amount of
entanglement. To classically simulate the time evolution of the system with a limited amount of
entanglement, we represent the quantum state using matrix-product states and projected entangled-
pair states. We show that the probability of finding the ground state of an Ising spin glass on either
a planar or non-planar two-dimensional graph increases rapidly as the amount of entanglement in
the state is increased. Furthermore, we propose evolution in complex time as a way to improve
simulated adiabatic evolution and mimic the effects of thermal cooling of the quantum annealer.

I. INTRODUCTION

The concept of a quantum computer, originally pro-
posed by Feynman in 1982,' has stirred decades of both
experimental and theoretical research. Quantum com-
puters represent a fundamentally more powerful model
of computation than classical Turing machines, and al-
low certain problems, such as factoring? and simulation
of quantum dynamics,® to be solved exponentially faster
than by the best known classical algorithm. The exper-
imental control of quantum systems has now advanced
to the point where a small quantum computer appears
feasible. This has spurred a search for problems that a
small-scale quantum device with a limited number of im-
perfectly controlled qubits can solve more efficiently than
a classical computer.

A proposed approach that may perform very well un-
der such circumstances is adiabatic quantum optimiza-
tion,>® a variant of adiabatic quantum computation,”
tailored to solve a classical optimization problem by adi-
abatically tuning between a Hamiltonian whose ground
state is easily prepared, and one that encodes the opti-
mization problem to be solved. To be specific, we con-
sider the Ising spin glass, which we can describe by the
Hamiltonian

Hising = — Z Jijsis;, (1)

i<j

where s; = +1. Finding the ground state of this Ising
spin glass on a non-planar graph is an NP-hard task,®
i.e. no algorithm is known that can solve hard instances
in polynomial time. Local search algorithms, such as
simulated annealing,” often become trapped in local min-
ima. It has been suggested that quantum annealing can
exploit quantum tunneling effects to escape these local
minima. To realize this, we represent the classical Ising
spins by S = 1/2 quantum spins, replacing each s; with
a Pauli matrix ¢7. In the most common approach, one
prepares all spins in the ground state of the initial Hamil-
tonian Hx = —I') . of. By adiabatically turning off the
transverse field I' and increasing the Ising couplings J;;,

one can find the ground state of the classical model. The
algorithm is thus to solve the time evolution for the time-
dependent Hamiltonian

H(s) = sHiging + (1 — s)Hx, (2)

where s = ¢/T € [0,1] and T is the total annealing time.
Here, the evolution must be performed slowly enough to
ensure adiabaticity against the minimal gap of Eq. (2)
for any s.

While this approach seems promising and has even
been pursued in hardware,'? the potential of quantum
annealing as a general-purpose optimizer remains unclear
and to date no speedup has been conclusively demon-
strated in experiments on actual devices.!' Quantum
annealing can also be simulated or mimicked in clas-
sical algorithms.'> While the brute-force simulation of
the quantum dynamics is prohibitively expensive, many
approximate classical approaches to quantum annealing
have been explored, including quantum Monte Carlo
simulations,® ' mean-field models,''® and matrix-
product states.?:20

It is a widely held belief that the power of quantum
computers resides with their ability to compute using
entangled states,?’ making quantum entanglement the
key resource in quantum computing. In this paper, we
address the question of whether entanglement is a use-
ful resource also in adiabatic quantum optimization, and
explore a number of classical approaches to approximate
quantum annealing. To assess the role of entanglement,
we simulate quantum anealing using two different tensor
network approaches, namely matrix-product states??2*
(MPS) and projected entangled-pair states (PEPS).2
These methods allow us to limit the amount of entan-
glement in the state at any point in the evolution by
tuning their bond dimension.

We improve the reliability of approximate adiabatic
evolution schemes by evolving in complez time,'? i.e.
performing evolution not under exp(—idtH ), but instead
exp(—(i+€)dtH). For small €, where the evolution is close
to real-time, this approach effectively reduces errors due
to non-adiabaticity or approximations in the classical al-



gorithm. This is in many ways reminiscient of coupling
a quantum system to a cold heat bath.

II. MEAN-FIELD DYNAMICS

In the absence of entanglement, the dynamics can be
treated within a mean-field approach of product states
by replacing for each spin the quantum wavefunction
1; € C? by a classical variable MZ = 1/1351/%, where
G = (0%,0Y,0°)T are the Pauli matrices. The dynam-
ics of the classical variable are governed by

M,
ot

where the time-dependent field ﬁz(s) acting on spin 7 is a
sum of a decaying transverse field (along the z direction)
and a growing coupling term along z (c.f. Eq. (2)):

hi(s)=(1—s)Té, —s Y JMfé. (4)
J

= hi(t/T) x M; 3)

where T is again the total evolution time. We note that
such a state can be represented as a tensor network state
(PEPS or MPS), which we discuss below, with bond di-
mension M = 1. As shown in Ref. 18, the dynamics
of this model are related to the O(2) model studied in
Ref. 16.

The initial condition is to have all spins aligned along
the z direction. To introduce some amount of random-
ness, we perturb the ideal initial condition, M;(0) =
(1,0,0), and rotate each spin by a small, random an-
gle. At the end of the annealing schedule, we extract the
Ising variables s; as the sign of the z-component of the
spin, s; = sign(Mp7).

We can introduce some local entanglement by dividing
the system into clusters of size n and treating the quan-
tum Hamiltonian exactly on each cluster, while perform-
ing a mean-field decoupling for the inter-cluster terms. In
this scheme, the wavefunction of the whole system is ap-
proximated as the product state of cluster wavefunctions,
where entanglement within each cluster is fully taken into
account but the individual clusters are not entangled with
each other.

To test this approach, we apply it to the same 1000
random instances on the 108-site chimera cluster as in
Ref. 14. We choose the cluster sizes to be n = 1,4, 8, and
perform 1000 trials for each instance with different initial
states. Our results are shown in Fig. 1. Resolving the
histogram of success probabilities, we observe that as the
cluster size is increased, the number of instances that are
solved with high probability increases, while the number
of instances that cannot be solved decreases. In all cases,
the distribution is highly bimodal, i.e. most instances
are solved either all of the time or rarely regardless of
the small variations in the initial condition. Even when
including entanglement on the 8-site clusters, the average
success probability remains low, as shown in the inset of
Fig. 1.
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Figure 1. The success probability histogram of the cluster
mean-field annealing method. Inset shows the mean success
probability for various cluster size n.

III. TENSOR NETWORK REPRESENTATIONS

Another systematic way to include entanglement in the
ansatz wavefunction is to use a tensor network represen-
tation of the state. Tensor networks encompass several
classes of variational ansatz states that are constructed
to efficiently describe weakly entangled quantum states.
Here, weakly entangled generally means that they obey
an area law, as is expected for the ground states of lo-
cal Hamiltonians. The most prominent and simplest ex-
ample of a tensor network is the matrix product state
(MPS), which forms the basis of the well-known density-
matrix renormalization group method.?? While the MPS
ansatz is most efficient in one dimension and generally
faced with an exponential scaling in higher dimensions,
reliable numerical algorithms exist to perform simula-
tions also in higher dimensions or for systems with non-
local interactions. In recent years, a number of general-
izations to higher dimensions have been developed, par-
ticularly projected entangled-pair states (PEPS)?® which
hold great promise to describe entangled states of two-
dimensional quantum systems.

In all these states, a refinement parameter referred to
as bond dimension M regulates the amount of entangle-
ment captured in the state. In the example of an MPS,
the von Neumann entanglement entropy S between two
parts of the system connected by a bond of bond dimen-
sion M is bounded by S < log M. Note that M =1
corresponds to the mean-field dynamics.

To simulate the system of Eq. (1) using an MPS, the
system has to be mapped to a one-dimensional chain. If
the original system has some spatial structure, different
mappings may lead to very different results. For our test
cases here, however, we are faced with a very non-local
graph and thus expect very little difference between map-
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Figure 2. The average success probability versus the MPS
bond dimension M for the D-wave 108-bit instances, with
T = 50 and dt = 0.2 4+ 0.15. Insets: Histogram of success
probability p for two values of M.

pings. To simulate time evolution, we make use of the
time-evolving block decimation (TEBD)2%27 algorithm
combined with a swap-operator approach?® to deal with
the non-local nature of interactions. The cost of a single
timestep is thus O(N?M?3), where N is the total number
of spins. This, along with having to perform averaging
over many different runs, limits the bond dimension we
can reach to about M ~ 30.

At the end of each annealing run, we collapse the
matrix-product state to a single product state in the Z
basis by sequentially projectively measuring o7 on each
site, and compare the energy of this product state against
the known ground state energy of the spin glass problem.
The average success probability for the MPS approach is
shown in Fig. 2, where we start from a fully polarized
initial state, and the average is performed over up to
1024 instances. We observe that the success probabil-
ity increases monotonically with the bond dimension M,
indicating that increasing the entanglement helps. This
is to be contrasted with the cluster mean-field approach
in Sec. II, where inclusion of purely local entanglement
within a cluster has not significantly enhanced the prob-
ability of success. Weak, yet long-ranged entanglement
thus seems to be more helpful than strong, but strictly
local entanglement.

Similar to the mean-field approach, we can slightly per-
turb the initial state of the MPS evolution. As expected,
this improves the success probability for small bond di-
mension, but seems to be less helpful or even detrimental
for large bond dimension (not shown).

In a situation where the couplings do have some addi-
tional structure, for example in a square lattice bilayer
system,?? it may be advantageous to use an ansatz that is
tailored to this structure. An example of such an ansatz
are PEPS,?® which can be thought of as the extension of
MPS to two-dimensional lattices. As such, they should
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Figure 3. Histograms of lower bound success probability (see
text for definition) from PEPS calculation.

be able to efficiently represent states on two-dimensional
lattices that exhibit an area law for the entanglement en-
tropy, as opposed to MPS which require an exponential
number of states to do so.

We perform PEPS calculations for a square lattice bi-
layer system of 2x10x 10 sites with random +1 couplings.
We apply the algorithms for regular square lattice PEPS
by grouping two sites, one from each layer, to a supersite
with local dimension d = 4. Due to the unfavorable scal-
ing of the computational cost with the bond dimension
D, we limit ourselves to bond dimensions D = 1,2, and
to annealing times of 7' = 1000 for D = 1 and T" = 40
for D = 2. Similar to the MPS case, we use complex
time evolution. Simulations are performed by starting
from slightly perturbed initial states. At the end of the
simulation, we measure the ground state energy Ey of
the final PEPS; assuming that this final state is a su-
perposition of only the ground state and the first excited
state, with energies Fy and F1, we can determine a lower
bound for the square of the overlap with the ground state
p=|(¥|Ep)|? using Ey = pEy+ (1 —p)E;. In the follow-
ing, we will discuss the average of the success rate p over
many different initial states.

In Fig. 3, we show a histogram of p. We observe that
for D =1, the histogram is strongly bimodal, and about
half the instances appear to be easily solved (success
probability p > 0.9), whereas the other half are never
solved (success probability p < 0.1). This is consistent
with the mean-field approach. For D = 2, however, the
picture changes drastically and the number of very hard
instances with p < 0.1 is greatly suppressed, while the
number of easy instances p > 0.9 is increased. We also
observe that there are intermediate instances in particu-
lar in the regime 0.5 < p < 0.9.

IV. CONCLUSIONS

We have observed that compared to mean-field spin
dynamics, even a modest amount of entanglement is
a very useful resource for adiabatic quantum optimiza-
tion. With small bond dimensions of up to M = 30



in an MPS simulation, or tiny bond dimensions of just
M = 2 in PEPS, the success probabilities of annealing to
the ground state of a non-planar spin glass problem are
greatly enhanced.

While the potential for quantum annealing applied to
real-world applications remains unclear, this might be
taken as indication that imperfect qubits with limited
amount of entanglement may be useful as a computing
platform. Conversely, approximating quantum annealing
by efficient classical algorithms may provide interesting

classical optimization algorithms.
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