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In the quest to reach lower temperatures of ultra-cold gases in optical lattice experiments, nonadi-
abaticities during lattice loading are one of the limiting factors that prevent the same low tempera-
tures to be reached as in experiments without lattice. Simulating the loading of a bosonic quantum
gas into a one-dimensional optical lattice with and without a trap, we find that the redistribution
of atomic density inside a global confining potential is by far the dominant source of heating. Based
on these results we propose to adjust the trapping potential during loading to minimize changes
to the density distribution. Our simulations confirm that a very simple linear interpolation of the
trapping potential during loading already significantly decreases the heating of a quantum gas and
we discuss how loading protocols minimizing density redistributions can be designed.

PACS numbers: 37.10.Jk, 67.85.De, 67.85.Hj

I. INTRODUCTION

Quantum simulations using ultracold atoms confined
in a trap allow many interesting phenomena of interact-
ing quantum many body problems to be studied [1–3],
but are faced with a continuous quest for lower and lower
temperatures that would allow the observation of the
myriad of interesting exotic phenomena observed in con-
densed matter systems. Progress in cooling was crucial
for the realization of Bose-Einstein condensation [4, 5],
and the observation of the superfluid to Mott insulator
transition both for bosons [6] and fermions [7, 8], to name
just a few examples. Despite recently observed short-
range magnetic correlations [9, 10], the transition to a
Néel state with long range order has not yet been ob-
served. Other, more exotic, phases of interacting strongly
correlated fermions, such as high-temperature supercon-
ducivity [11], occur at even lower temperatures. Both
in cuprate superconductors and in the Hubbard model
[12], the superconducting transition temperature is more
than ten times lower than the scale of antiferromagnetic
ordering.

While cooling of fermionic quantum gases has reached
temperatures as low as T/EF ≈ 0.05 in the continuum
[13], it has been harder to achieve low temperatures in
lattice experiments. In particular, ramping up the optical
lattice potential cannot practically happen fully adiabat-
ically and the temperature of the gas increases substan-
tially during loading [2]. Ramping up the lattice more
slowly to get closer to adiabaticity is not expedient ei-
ther, since the quantum gas heats up over time due to
spontaneous emission from the optical lattice [14, 15].
Adding compensating beams allows evaporating cooling
also in the lattice [16], but experimentally achieving lower
temperatures is still an open challenge.

Given this challenges, finding a way to reduce heating
due to unavoidable non-adiabatic lattice loading would
be highly welcome to reach lower temperatures than are

accessible today. In this paper we explore strategies to
achieve this goal by numerically simulating the loading of
a one-dimensional Bose gas into an optical lattice. Our
main result is that neither non-adiabatic loading into
higher bands of the optical lattice, nor the crossing of
the phase transition to a Mott insulator are the domi-
nant sources of heating. These effects are more than an
order of magnitude smaller than the heating due to redis-
tributing the atoms in the trap. Adjusting the trapping
potential during loading, which is easy to achieve exper-
imentally, can significantly reduce heating during optical
lattice loading.

An accurate description of lattice loading needs to
start from a continuum model since initially the lattice is
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Figure 1. (Color online) Sketch of optical lattice loading.
We show the potential at various times corresponding to lat-
tice strengths V0 ranging from 0 to 8ER, illustrating how the
lattice is ramped up. a) in a homogeneous system; b) in a
constant trapping potential and c) while changing the trap to
minimize density redistributions.
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turned off. Approximating the optical lattice by a one-
band model [17], as has been done in Refs. [18–20] is
valid only in deep lattices during the last phase of load-
ing. Mean-field approaches for continuum models [21, 22]
may not reliably catch excitations above the ground state
nor accurately describe the crossing of phase transitions.

In this paper we thus perform numerical simulations
for a continuum model that allows us to reliably treat
both the shallow lattice regime as well as the strong cor-
relation effects in deep optical lattices in a controlled
fashion. Specifically, we study N interacting bosons in
one dimension described by the Hamiltonian

H =

∫ L

0

dx ψ̂†(x)

[
− ~2

2m

d2

dx2
+ V (x)

]
ψ̂(x)

+
g

2

∫ L

0

dx ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x), (1)

where the external potential due to the optical lattice
and an external confinement with frequency ω is given
by

V (x) = V0 cos2(2π/λ · x) +
1

2
mω2x2. (2)

The field operator ψ̂†(x) creates a boson with mass m
(we will consider 87Rb atoms) at position x , L denotes
the number of unit cells of size a = λ/2, where for the
laser wavelength λ = 826nm we use the values of the
experiment in Ref. [23]. The interaction strength g =
2~ω⊥as is determined by the scattering length as and
the transverse confining frequency ω⊥ [24]. Unless noted
otherwise we specify energies in terms of the recoil energy
Er = h2/(2mλ2).

We use a finite difference discretization to simulate
the continuum Hamiltonian (1) on a grid with M grid
points per unit cell, corresponding to a lattice spac-
ing ∆x = a/M . The continuum model then maps
to a lattice Bose-Hubbard model with nearest neigh-
bour hopping J(∆x) = (~2/2m)/∆x2, on-site interaction
U(∆x) = g/∆x and a site-dependent chemical potential
Vi(∆x) = V (∆x/2 + i∆x) + 2(~2/2m)/∆x2. Note that
this model is different from the effective Hubbard model
for deep lattices [17], since it consists of M lattice sites
per unit cell and explicitly includes the optical lattice
potential.

II. SIMULATION METHOD

To solve this model we use the density matrix renor-
malization group method (DMRG) [25, 26], which in
one dimension provide excellent approximation for low-
energy states, and has also proven to yield very good
comparisons to experimental data [27, 28]. The stan-
dard DMRG approach has serious convergence problems
for large dilute lattices that arise from a discretization as
described above with small ∆x. To overcome these prob-
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Figure 2. (Color online) Dependence on the ramp time tR of
a) the fidelity of the final state after ramping, b) the same
data plotted as the probability of being in an excited state
1 − |〈ψ0(Vf )|ψ(tR)〉|2 in log-scale - and c) the excess energy
per particle q in units of the recoil energy Er and of the ef-
fective final hopping amplitude Jeff . The optical lattice is
ramped up to a final strength of Vf = 8Er at fixed inter-
actions g = 2Er λ/2. Results are shown for three different
ramp profiles, displayed in the inset of a), and described in
Eqns. (4)–(6). Full symbols refer to homogeneous system with
N = 24 particles in L = 24 sites with hard wall boundary
conditions. Open symbols refer to an inhomogenous system
of the same size but with with N = 12 particles in a confining
harmonic potential with ω = 0.3 (~/Er)−1.

lems we use the multigrid DMRG algorithm [29] which
leads to fast convergence even for very dilute systems on
large lattices. In essence, the multigrid DMRG method
avoids the convergence issues of dilute systems by first
solving the model for a large discretization ∆x. This so-
lution is then used to recursively initialize simulations at
decreasing values of ∆x, down to ∆x = a/8. We use
this algorithm both to prepare the initial state of the
system in the absence of an optical lattice and to calcu-
late reference ground state wave functions |ψ0(V0)〉 and
corresponding energies E0(V0) at various optical lattice
depths V0. In all simulations we used a discretization
of up to M = 8 grid points per optical lattice site, and
found that a bond dimension D = 400 is large enough to
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see convergence to the ground state.
Time evolution during optical lattice loading is simu-

lated using time-dependent variants of DMRG [30–32],
employing a second-order Trotter decomposition of the
time evolution operator at constant time step ∆t =
0.01 ~/Er and D = 400. Starting from the ground state
without any optical lattice (V0 = 0), we can simulate the
evolution of the wave function |ψ(t)〉 and its mean en-
ergy E(t) = 〈ψ(t)|H(t) |ψ(t)〉 under arbitrary ramping
profiles V (t) up to a final strength Vf ≡ V0(tR) at the
end of loading at time tR. We calculate, in particular,
the excess energy per particle

q(t) = [E(t)− E0(V (t))]/N (3)

and the fidelity | 〈ψ0(V0(t))| ψ(t)〉 | with respect to the
ground state |ψ0(V0)〉 of the instantaneous Hamiltonian.

III. HOMOGENEOUS SYSTEM

We start by investigating the effects of nonadiabatici-
ties during optical lattice loading in the absence of a har-
monic confinement ω. A one-dimensional optical lattice
with bosons at integer fillings undergoes a phase transi-
tion from a superfluid phase to a Mott insulator when
the strength of the optical lattice V0 is increased [33, 34].
For our simulations we choose unit filling with N = L
and an interaction strength g = 2Er λ/2, for which the
final state with optical lattice strength Vf = 8Er is in
the Mott insulating phase, with a dimensionless Lieb-
Liniger parameter γ = Lmg/~2N ≈ 10. In the final
deep optical lattice the system is well described by an ef-
fective single-band Bose-Hubbard model with a nearest-
neighbors hopping amplitude Jeff ≈ 0.03Er and on-site
interaction Ueff/Jeff ≈ 125.

Our first goal is to investigate which ramp profile gives
minimal heating. We consider in particular the following
three ramp shapes:

V linear
0 (t)/Vf = t/tR (4)

V exponential
0 (t)/Vf =

[
et/τ − 1

]
/
[
etR/τ − 1

]
(5)

V sigmoid
0 (t)/Vf = (t/tR)2 [−2(t/tR) + 3] (6)

with τ = 0.25 tR. As our results in Fig. 2 show, the
exponential profile, starting with a slow initial turn-on of
the lattice leads to the lowest excess energy and highest
fidelity. This result can be qualitatively understood by
considering the small band gap between bands in weak
optical lattices, which requires that care must be taken
not to populate higher bands.

Comparing to analytical predictions for the number of
defects based on an effective sine-Gordon model [35] we
find that the decay of the excess energy q(tr) is inconsis-
tent with the predicted exponents. Similar discrepancies
were previously seen in numerical simulations of a Bose-
Hubbard model [19]. This indicates that non-universal
physics beyond the sine-Gordon model is relevant at ex-
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Figure 3. (Color online) Dependence of the final excess
energy per particle q(tR) in units of the recoil energy Er

and of the effective final hopping amplitude Jeff . The op-
tical lattice is ramped up to a final strength of Vf = 8Er

at fixed interactions g = 2Er λ/2 for various system sizes
L = 16, 20, 24, 28, 32 at unit filling. Results in the subpan-
els show three different ramp profiles a) linear, b) exponen-
tial and c) sigmoid, as plotted in Fig. 2 and described in
Eqns. (4)–(6).

perimental ramp speeds and that a numerical simulation
of the full model is important.

DMRG methods are performed in finite size systems
with open boundary conditions. This might produce fi-
nite size effects in our results. Fig. 3 shows that for all
ramp up profiles the finite system size causes the heat-
ing to drop significantly for long ramp times tR. With
increasing system size the power-law decay is seen for a
larger range of ramp times.

IV. TRAP EFFECTS

Using realistic experimental parameters we find that
even with very short loading of only tR = 64 ~/Er ≈ 3ms
we only have minimal heating of less than 1% of Jeff , far
less than observed in experiments. While further opti-
mization of the ramp profile will certainly decrease heat-
ing further, we do not follow this route since our results
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Figure 4. (Color online) a) Local density profile for the initial state with the same trapping frequency ωi = ωf = 0.3 (~/Er)−1

as the final target state (bold solid line in the upper panel), and for optimal initial state with ωi ≈ 0.16 (~/Er)−1 (thin solid
line in the upper panel). The final state, a unit filling Mott insulator, is shown in the lower panel. b) Excess energy per particle
q = (E(tR)−E0)/N at the end of the ramp up as a function of the initial trap frequency ωi for various ramp times. c) Fidelity
of the final wave function |ψ(tR)〉 against the true ground state |ψ0(Vf )〉 = |ψ0(V0 = V0(tR))〉 as a function of the initial trap
frequency ωi for various ramp times. All calculations are performed on a system of L = 24 optical lattice sites with N = 12
particles and targeting a final state with trapping frequency ωf = 0.3 (~/Er)−1.

already indicate that ramping up the lattice in a homo-
geneous system cannot be the main source of heating in
experiments.

Repeating the simulation with an added harmonic
trapping potential ω = 0.3 (~/Er)−1, also shown in
Fig. 2, immediately leads to significantly stronger heat-
ing that decreases much more slowly upon increasing tR.
This demonstrates that trap effects are the main source
of heating during optical lattice loading.

The main effect of the trapping potential ω > 0 is to
modify the homogeneous density distribution to an in-
homogeneous one, initially a Gaussian density profile as
shown in Figs. 4 and 6. During loading the density distri-
bution changes significantly. We focus our simulations on
a linear ramp and two commonly targeted final states: a
unit filling Mott insulating core region in Fig. 4 obtained
with a trapping frequency ω = 0.3 (~/Er)−1 and a super-
fluid core with density larger than one in Fig. 6 obtained
with a trapping frequency ω = 0.4 (~/Er)−1 and more
particles.

The redistribution of the atoms from the center to-
wards the edges is the dominant source of non-adiabatic
heating during loading. We find that the excess energy
q(tR) > Jeff and the fidelity is close to zero even for
the longest ramp times (see the right-most data point
ωi = ωf in Figs. 4 and 6). Significant heating due to den-
sity redistribution will occur even for the longest ramp
times used in experiments.

Note that when the physical model contains the trap-
ping harmonic potential, the system adapts its size ac-
cordingly. Hence, boundary effects are expected in the
actual physical system. Technically, the DMRG simula-
tion is anyway performed on a finite system with open
boundary conditions, but the system size is chosen to be

larger than the actual physical size, such that the open
boundary effects are negligible.

V. REDUCING HEATING BY TRAP SHAPING

The insight that density redistribution of the main
source of heating opens a way to significantly reduce
heating. We propose to dynamically adjust the trap-
ping potential during loading to minimize the change in
particle distribution. We find that already a very simple
protocol, of linearly interpolating the trapping frequency
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target state of Fig. 4 with fixed trap (T1, fixed) and optimal
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state of Fig. 6 with fixed trap (T2, fixed) and optimal initial
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Figure 6. (Color online) a) Local density profile for the initial state with the same trapping frequency ωi = ωf = 0.4 (~/Er)−1

as the final target state (bold solid line in the upper panel), and for optimal initial state with ωi ≈ 0.25 (~/Er)−1 (thin solid
line in the upper panel). The final state, a Mott insulator with a superfluid core, is shown in the lower panel. b) Excess energy
per particle q = (E(tR)−E0)/N at the end of the ramp up as a function of the initial trap frequency ωi for various ramp times.
c) Fidelity of the final wave function |ψ(tR)〉 against the true ground state |ψ0(Vf )〉 = |ψ0(V0 = V0(tR))〉 as a function of the
initial trap frequency ωi for various ramp times. All calculations are performed on a system of L = 24 optical lattice sites with
N = 16 particles and targeting a final state with trapping frequency ωf = 0.4 (~/Er)−1.

during loading

ω(t) = ωi +
t

tR
(ωf − ωi) (7)

drastically reduces heating and can easily be imple-
mented experimentally. Calculating heating and fidelity
for various values of the initial trapping frequency ωi we
find a reduction in heating by more than an order of mag-
nitude. We also find that, indeed, heating is minimized
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Figure 7. (Color online) Comparison of linear (solid blue line)
and exponential (dotted red line) lattice loading in a trapped
system of length L = 24 and N = 12 particles. a) Dependence
on the ramp time tR of the excess energy per particle q =
(E(tR)−E0)/N in units of the recoil energy Er for an initial
trap frequency ωi = 0.12 (~/Er)−1 which provides the best
results for the exponential loading (see panel b) ). b) Excess
energy per particle q at the end of the ramp up as a function
of the initial trap frequency ωi for a ramp time tR = 128 ~/Er.

if the initial density distribution closely mimics the final
one. We show these optimal initial distributions in the
left panels of Figs. 4 and 6. Fig. 5 shows that the power
law decrease of the fidelity and excess energy with tR
that we had seen for a homogeneous system is recovered
in the trapped case for an optimal value of the initial fre-
quency of ωi ≈ 0.16 (~/Er)−1 and ωi ≈ 0.25 (~/Er)−1 for
loading into the superfluid and Mott insulating phases,
respectively.

The proposed protocol achieves very similar results
also for more complex lattice loading profiles as shown
in Fig. 7 where we compare the linear and exponential
loading combined with the linear change in the trap fre-
quency. In this specific results the linear ramp slightly
outperformed the chosen exponential ramp. This is not
totally unexpected if one considers that, because of the
local varying chemical potential in the trap, there is al-
ways a spacial region which is critical, therefore we have
to move slow throughout the whole ramp and not only
in the beginning.

VI. DISCUSSION AND OUTLOOK

The strong effects of the density redistribution in a
trap compared to loading in a homogeneous lattice can
be understood as follows. In the homogeneous system
the mean density remains the same and the main effect
of ramping up the lattice is to locally change the Wannier
functions and the density fluctuations. Since there is a
gap between the energy levels within a lattice site and
a large overlap matrix element for the evolution within
the lowest state this is easy to follow adiabatically. Re-
distribution in the lattice, however, requires atoms to
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tunnel across several lattice sites. The matrix elements
for tunneling are much smaller and additionally changing
the density distribution can easily induce density oscil-
lations. Since these have a much smaller gap (and are
gapless in the thermodynamic limit) one thus has to load
much slower in the presence of a trap.

While our numerical results were obtained for a one-
dimensional system, the finding that density redistribu-
tion is the dominant source of heating applies more gener-
ally also to higher dimensional optical lattices, fermionic
quantum gases and mixtures. While dynamical simula-
tions beyond one dimension are out of reach of current
simulation methods, we propose a procedure to find op-
timized loading protocols based on purely static simula-
tions. Using quantum Monte Carlo (QMC) simulations
for bosons in continuum descriptions of weak optical lat-
tices [36] or realistically sized lattice models [14]) one can
calculate the density profiles to find a sequence ω(t) of
trapping frequencies that minimizes density redistribu-
tions. For fermionic systems, QMC results for homoge-
neous lattice models [37–39], QMC results for continuum
models [40], or density functional theory results [41] can
be combined with a local density approximation to sim-
ilarly obtain density profiles of fermions in a trap and

design improved loading strategies.
As we observed in one-dimensional Bose gases, we ex-

pect that also there linearly interpolating the trap from
ωi to ωf chosen such that density redistribution is min-
imized will significantly decrease heating. Better proto-
cols may be designed by using an optimized form of ω(t),
or by designing anharmonic traps that are able to fur-
ther reduce density redistributions. By reducing heating
during optical lattice loading interesting phases, such as
a Néel state with true long range order may already be
feasible with current experimental setups.
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[26] U. Schollwöck, Ann. Phys. (N.Y.) 326, 96 (2011).
[27] M. Cheneau, P. Barmettler, D. Poletti, M. Endres,

P. Schausz, T. Fukuhara, C. Gross, I. Bloch, C. Kollath,
and S. Kuhr, Nature 481, 484 (2012).

[28] T. Fukuhara, A. Kantian, M. Endres, M. Cheneau,
P. Schausz, S. Hild, D. Bellem, U. Schollwock, T. Gi-
amarchi, C. Gross, I. Bloch, and S. Kuhr, Nat Phys 9,
235 (2013).

[29] M. Dolfi, B. Bauer, M. Troyer, and Z. Ristivojevic, Phys.
Rev. Lett. 109, 020604 (2012).

[30] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[31] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J.
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