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We show that supersymmetry emerges in a large class of models in 1+ 1 dimensions with both Z2

and U(1) symmetry at the multicritical point where the Ising and Berezinskii-Kosterlitz-Thouless
transitions coincide. To arrive at this result we perform a detailed renormalization group analysis
of the multicritical theory including all perturbations allowed by symmetry. This analysis reveals
an intricate flow with a marginally irrelevant direction that preserves part of the supersymmetry of
the fixed point. The slow flow along this special line has significant consequences on the physics
of the multicritical point. In particular, we show that the scaling of the U(1) gap away from the
multicritical point is different from the usual Berezinskii-Kosterlitz-Thouless exponential gap scaling.

Introduction.–Characterizing and classifying the tran-
sitions between distinct phases of matter has been a
perennial question in physics, but also one of its great-
est successes due to the emergence of universal behavior
at continuous phase transitions. At such transitions, the
low energy physics is independent of microscopic details
and can be fully understood in terms of its universal-
ity class. Famous examples of universality classes in two
dimensional systems are the Ising transition associated
to the breaking of a Z2 symmetry and the Berezinskii-
Kosterlitz-Thouless (BKT) transition in systems with a
U(1) symmetry. In this paper we study the properties of
the multicritical point where an Ising and BKT transition
coincide in one-dimensional quantum or two-dimensional
classical systems (see Fig. 1). We find that under cer-
tain conditions, a new universality class emerges at this
multicritical point, which is characterized by emergent
supersymmetry and qualitatively new physical behavior.

Supersymmetry pertains to the invariance of the sys-
tem under a transformation that maps bosons into
fermions and vice versa. It plays an important role in
high energy physics, where it may provide a solution
to the hierarchy problem. However, supersymmetry can
also play a role in condensed matter systems, as an ex-
plicit or an emergent symmetry [1–9]. To the best of our
knowledge, the Ising-BKT multicritical point is the first
example of a condensed matter system where extended
(N > 1) supersymmetry emerges.

This multicritical point can, in principle, occur in any
system with both a Z2 and a U(1) symmetry. Possible re-
alizations include one-dimensional spin chains where the
SU(2) spin symmetry is broken down to a U(1) ⊗ Z2

symmetry, and polar molecules [10] in an optical lattice
confined to one dimension by a non-circularly symmetric
potential. In the latter example, if the dipoles are ori-
ented by an external field, the strong repulsive interac-
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FIG. 1: Schematic phase diagram for two parameters, g1

and g2. The blue dashed line is the Kosterlitz-Thouless
transition, corresponding to K = Kcrit, separating the
gapless quasi long-ranged order phase (shaded region,
K > Kcrit) from the gapped disordered phase. The red
line is the Ising transition. Inside the gapless phase the

Ising transition can have N = (1, 1) supersymmetry
(dotted red line). The multicritical point is located at

the intersection of the BKT and Ising transitions.

tions between the polar molecules give rise to a “zig-zag”
instability, where the molecules move slightly away from
the potential minimum at the center of the confining po-
tential to form an alternating pattern that increases their
distance [11–14]. In the zig-zag phase, a Z2 symmetry as-
sociated with reflection is spontaneously broken. In addi-
tion, if the density of the molecules is commensurate with
respect to the optical lattice along the system, a BKT su-
perfluid to Mott insulator occurs at a critical strength of
the lattice. The multicritical point occurs when the lat-
tice strength and the transverse confining potential are
tuned such that these two transitions coincide.

We show that in a large class of systems this multi-
critical point is described by a Lorentz-invariant theory
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with N = (3, 3) supersymmetry, where both the Lorentz-
invariance and the supersymmetry are emergent proper-
ties. We arrive at this result by a detailed renormaliza-
tion group (RG) analysis of the decoupled multicritical
theory and its symmetry-allowed perturbations. Inter-
estingly, we find a very slow flow towards the decoupled
Ising-BKT theory, as a result of marginally irrelevant op-
erators. These operators give rise to qualitatively new
behavior, such as an unusual scaling of the correlation
length away from the multicritical point.

Already in the late 80s, Foda [2] considered two-
dimensional classical systems with a U(1) and Z2 sym-
metry and found emergent N = (1, 1) supersymmetry at
the Ising transition provided it occurs at a lower tem-
perature than the KT transition. The absence of a cou-
pling between the two theories and emergence of Lorentz-
invariance is ensured by a 90o rotational symmetry of the
systems that are considered. Recently, Sitte et al. [15] re-
vealed an intricate RG flow diagram for this theory when
the constituent theories are coupled. We point out that
their result in combination with the work of Foda implies
that even systems lacking the 90o rotational symmetry
may exhibit a critical point with emergent N = (1, 1) su-
persymmetry (see fig. 1). Note that in a two dimensional
phase diagram this corresponds to a critical line that lies
within the gapless phase of the U(1) sector. The present
work is a natural extension of these results to the multi-
critical point where supersymmetry is enhanced.

Model.–We consider the Lagrangian density L0 = LΦ+
Lχ, where

LΦ =
1

2πK

(1

v
(∂τΦ)2 + v(∂xΦ)2

)
Lχ = χR(∂τ +

u

ı
∂x)χR + χL(∂τ −

u

ı
∂x)χL. (1)

Here, v,K are the velocity and Luttinger parameter of
the bosonic field, Φ, and u is the velocity of the left-
and right-moving modes of the real (Majorana) fermionic
field, χ. If Lorentz invariance is present, the fermion and
boson velocities are equal, u = v. In this case, the re-
sulting conformal field theory has an N = (1, 1) super-
symmetry generated by the supercharges χL∂zΦL and
χR∂z̄ΦR, where z = x+ıvτ and Φ(z, z̄) = ΦL(z)+ΦR(z̄).
For the special case of K = 4, there is an additional ex-
tended supersymmetry, an N = (2, 2) supersymmetry,

generated by the supercharges χL exp(±ı
√

2ΦL) for the
left-movers and similarly for the right-movers (more de-
tails are provided in Appendix A).

Adding all perturbations to the fixed point action that
are allowed if only Z2 and U(1) symmetry are imposed,
leads to

Lint = ımχRχL + g cos(
√

2Φ)− λ(∂xΦ)ıχRχL. (2)

The first term, the mass term for the fermion, is a rele-
vant term that takes us to the Ising ordered or disordered
phase. At the multicritical point, we have m = 0. The
cosine-term for the boson has scaling dimension h = K/2.
At the multicritical point, that is for K = Kcrit = 4, this

term is marginal. The last term is a marginal term that
couples the boson to the fermion [15]. Note that this
term explicitly breaks Lorentz symmetry. However, in
1+1 dimensional lattice systems (such as the ones de-
scribed above), this symmetry is typically absent, and
this term is allowed. All other perturbation are either ir-
relevant or not allowed by symmetry. Finally, the fermion
and boson velocities in the fixed point action are allowed
to be different.
RG analysis.–The renormalization group flow for L =
LΦ +Lχ +Lint for g = 0 was worked out in Ref. [15]. In
[16] we derived the flow equations to second order in the
couplings, in the presence of the cosine term. In a scheme
where the boson velocity is kept fixed and an anomalous
dynamical exponent, z, is introduced, it was found that

du

d`
= −uλ

2K

4

( 1

(v + u)2
− 1

4uv

)
dm

d`
= m

(
1− λ2K

8

[
1

u(u+ v)
+

1

(u+ v)2
− 1

2uv

])
dλ

d`
= 0

dK

d`
= −K2

(g2π2

2v2
− λ2

16uv

)
dg

d`
=
g

2
(4−K)

and

z = 1 +
λ2K

16uv
.

For λ = 0, the equations for g and K reduce to the
Kosterlitz equations. There is a line of fixed points to
second order in the couplings parametrized by

λ = 2
√

2πg, K = 4, m = 0, and u = v.

Remarkably, as shown in [16], precisely this line preserves
part of the N = (2, 2) supersymmetry. For a small ve-
locity difference we find, writing u− v = ε,

dε

d`
=
λ2K

64v3
ε2,

such that the velocity difference is relevant for u > v, and
irrelevant for u < v (this is also true for g = 0 [15]). To
determine whether for u ≤ v the flow at the multicritical
point is towards the fixed point, i.e. λ = 0, we are faced
with the rather challenging task of computing the flow
equation for λ to third order.

We proceed by fermionizing the boson and then, tak-
ing a field theoretic approach, we introduce counter terms
for the bare couplings and compute the Callan-Symanzik
equation at the cutoff scale. To fermionize the boson we
introduce a second, redundant bosonic field Φs, with ve-
locity vs and Luttinger parameter Ks, which is free and
completely decoupled from the other fields. The the-
ory is fermionized by introducing two flavours of com-
plex fermions, ψa,p where a = 1, 2 and p = ± for right
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and left movers, respectively. The precise relation be-
tween ψa,p and the bosonic fields Φ, Φs is given in Ap-
pendix B. We then find, by reverse engineering the usual
bosonization steps, that the fermionized action reads

L = Lψ + Lχ + Lint, with Lχ as defined above,

Lψ =
∑
p=±

∑
a=1,2

ψ†a,p(∂τ − ıpvF∂x)ψa,p,

and

Lint = ımχRχL + 2π2g
(
ψ†1+ψ1−ψ

†
2+ψ2− + ψ†1−ψ1+ψ

†
2−ψ2+

)
+ ḡ

∑
a=1,2

(
ψ†a,+ψa,+

) ∑
a=1,2

(
ψ†a,−ψa,−

)
−
√

2πλ
∑
p=±
a=1,2

(
ψ†a,pψa,p

)
ıχRχL + 2gv

∑
p=±

ψ†1,pψ1,pψ
†
2,pψ2,p −

∑
p=±
a=1,2

ψ†a,p(ıpεv∂x)ψa,p + ıεu(χL∂xχL − χR∂xχR),

where the last three terms are a forward scattering term
and velocity renormalizations for the fermion velocities
vF and u. These terms are included because they are
generated by the interaction terms under RG. The pa-
rameters of the bosons are related to those of the com-
plex fermions as follows: v = vF + εv + gv/π, K =
4(1− ḡ/(πvF )), vs = vF + εv − gv/π, and Ks = 1.

We refer to appendix C for the computation and ver-
ification of the RG equations to second order in the
fermionized model. We proceed to compute the beta
function for λ to third order in the couplings on the spe-
cial line that does not flow to second order. We will argue
below that this suffices to establish stability of the fixed
point. Schematically, we first perturbatively compute the

4-point function, G
(4)
λ = 〈ψ†1+ψ1+χRχL〉, to third order

in the couplings. We then introduce counter terms for
the divergent diagrams by imposing the renormalization
condition at the renormalization scale M . Finally, we
use the fact that the 4-point function obeys the Callan-
Symanzik (CS) equation to obtain the beta function:[

M
∂

∂M
−
∑
i

β(gi)
∂

∂gi
+ 2γψ + 2γχ

]
G

(4)
λ = 0,

where gi are all the couplings, β(gi) = −∂gi/∂(lnM)
and γψ,χ are the field renormalizations. Note that we
have defined the beta functions with the sign convention
commonly used in the condensed matter community (see,
e.g., [17]), which is the opposite sign convention to that
typically used in field theory textbooks (e.g. [18]).

The computation of the counter term for λ, δλ, to third
order turns out to be a great challenge in bookkeeping.
Figures 2a-2g show all the divergent diagrams for ḡ = 0
and g = λ/(2

√
2π). Roughly speaking, the loops con-

taining a propagator of both a left moving (+) and a
right moving (−) field are divergent. The first two di-
agrams, 2a and 2b, are easily computed by generalizing
the second order computations. The diagrams containing
nested loops are slightly more subtle. Note that there are
essentially two kinds: the diagrams where the inner loop
is divergent (figs. 2e-2g) and those where the outer loop
is divergent (figs. 2c and 2d). The latter is still straight-
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FIG. 2: The divergent diagrams that contribute to the
λ-counter term at third order, where a = 1, 2, p = ±
and b = 1, 2 such that b 6= a. The last diagram (2h)
contains a second order counter term that partially

cancels the divergent diagrams as explained in the main
text. Note that since we take ḡ = 0, we suppressed all
diagrams containing ḡ-vertices. Finally, we have also

suppressed the diagrams whose divergences are clearly
taken care of by the velocity counter terms.

forward, because the integral corresponding to the inner
loop can be performed without problems and the remain-
ing integral is just that corresponding to a one loop diver-
gent diagram. However, when the inner loop is divergent,
one has to proceed with a bit more caution. We discuss
this in appendix D.
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multicritical point critical Ising line

vphys, uphys vF `
−1/4 → 0 vF e

−a1`
1/5

→ 0

γ (ln 1
T

)1/4 → ∞ ea2(ln
1
T

)1/5 → ∞
∆m |m|(ln 1

|m| )
−1/4 |m|e−a3(ln

1
|m| )

1/5

TABLE I: We show the behavior of the physical
velocities, vphys and uphys, the specific heat coefficient,
γ, and the Ising gap, ∆m, asymptotically close to the
multicritical point (middle column) and the critical

Ising line inside the gapless phase (right column). In
particular, these expressions are valid for

T, |m|, 1/`� 1, where T is the temperature, m the
Ising mass and all three parameters are measured in

dimensionless units. Finally, the ai are positive
constants whose values can be found in Ref. 15.

Eventually, we obtain

δλ =
3λ3

(4vF )2

[
2

ε
− log(M2)

]
. (3)

Then working out the full CS equation for the λ-vertex
4-point function to third order, we find

β(λ) = M
∂

∂M
δλ − 2λ(γψ + γχ)

= − λ3

2v2
F

, (4)

where we used γψ = 0 for g = λ/(2
√

2π) and ḡ = 0.
We thus find that λ is marginally irrelevant and the flow
is towards λ = 0 as we go to lower energy scales. Note
that for u 6= v there will be corrections to the flow in
λ, but since they will be of the form εO(λ3), where ε
is the velocity difference as above, these terms will be
subleading for small ε.

In appendix E we present a careful analysis of the sta-
bility of the fixed point by considering small perturba-
tions away from the special line. The results are summa-
rized in the schematic flow diagram shown in figure 3. We
establish that there is an attractive plane for which the
flow is towards the special line and eventually terminates
at the fixed point. Furthermore, this plane is a separa-
trix; below the plane the flow is towards λ = g = 0, and ḡ
finite, while above the plane the flow is towards increas-
ing g and ḡ. This corresponds to the gapless and gapped
phase in the U(1) sector, respectively, that is the dashed
and drawn red lines in Fig. 1 (remember that m = 0, so
the Ising sector is gapless). It follows that the decoupled,
Lorentz invariant fixed point with N = (3, 3) supersym-
metry can be reached upon tuning to the attractive plane
and m = 0, which requires to fine tune two parameters
(as expected for the multicritical point).

Interestingly, although the Ising and U(1) sectors de-
couple at the infra-red, the physics of the multicritical
point is quite different from the usual Ising and BKT
physics. This is a consequence of the slow flow towards
the fixed point. In particular, we find that the correlation

FIG. 3: Schematic flow diagram in the (g, ḡ, λ)-space.
The red line is the special line along which there is a

slow flow towards the fixed point. The blue lines
represent the flow lines in the attractive plane. In
purple we show the flow for relevant perturbations

towards the gapped (line above the plane) and gapless
(line below the plane) phases in the U(1) sector. In the
λ = 0-plane the flow lines are governed by the usual

Kosterlitz equations.

length in the U(1) sector diverges in an unusual way as
one approaches the multicritical point from the gapped
phase:

ξ(δg0) = ξ0e
1
4

(
ln
[
λ0
δg0

])2

, (5)

where ξ0 is a constant, λ0 is the initial value of λ along
the special line, and δg0 > 0 is the distance from the spe-
cial line in the g-direction (see appendix F for details).
Note that the coefficient of the logarithm squared of 1/4
is universal. The scaling of the correlation length we
obtain is a remarkable result that should be contrasted
with the result for the conventional KT transition. Re-
member that at the KT transition the correlation length
diverges as ξ(δg0) = ξ0 exp(c1/

√
δg0), with c1 a dimen-

sionful non-universal constant, while for a conventional
phase transition driven by a relevant operator with scal-
ing dimension ∆ < 2, the correlation length scales as
ξ(δg0) ∼ (δg0)1/(∆−2). The result we obtain here is a
scenario in between these two well-known cases: the di-
vergence is faster than any power law, but subexponen-
tial in the sense that log ξ grows slower than any power
law; in particular, it is slower than at a traditional KT
transition.

To infer the gap scaling from the correlation length we
need to take into account that the λ-term gives rise to
an anomalous dynamical critical exponent that depends
on the RG scale. It follows that there is a relative fac-
tor of e`(z(`)−1) between the rescaling of the correlation
length and the gap. We have to integrate this factor
over the entire RG trajectory, but due to the fact that z
flows to z = 1 very slowly, the result actually vanishes.
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This situation is also encountered in Ref. 15 and the
consequences on the physical velocities, the specific heat
and the Ising gap are nicely discussed. Here the situa-
tion is very similar, the main difference is the scaling of
λ. Consequently, we find z − 1 ∼ `−1 for the dynamical
critical exponent at the multicritical point, while Sitte et
al. find z − 1 ∼ `−4/5 at the Ising transition inside the
gapless phase. At the multicritical point, following the
arguments in Ref. 15, we thus find that the vanishing of
the physical velocities, the specific heat coefficient diver-
gence and the Ising gap suppression take on a different
form. We summarize the results for the behavior at the
multicritical point in table I and also show the results for
the critical Ising line within the gapless U(1) phase for
comparison.

Furthermore, for the scaling of the U(1) gap we find

∆(δg0) = e
∫ `∗
0

(1−z(`))d`ξ(δg0)−1

≈ ∆0
1√

ln
[
λ0

δg0

]e− 1
4

(
ln
[
λ0
δg0

])2

.

As with the correlation length, we see that the gap shows
neither power law nor exponential scaling, but something
in between. Finally, we expect that order parameter cor-
relation functions will receive logarithmic corrections to
the usual scaling due to the slow flow. To compute these
corrections is beyond the scope of this paper, since one
needs the field renormalizations to third order in the cou-
plings.

Conclusions– we have shown that an N = (3, 3) su-
persymmetry emerges in a class of lattice models. The
requirements are: 1) the model has a U(1) and a Z2 sym-
metry, 2) the system is tuned to the multicritical point
where the Ising and BKT transitions coincide, and 3) the
bare velocity of the fermionic degree of freedom is smaller
than or equal to the bare velocity of the bosonic degree of
freedom. Apart from the emergent extended supersym-
metry, we find that the RG flow towards the fixed point
is extremely slow. Consequently, the Ising-BKT multi-
critical point with emergent supersymmetry lies in a new
universality class that is characterized, in particular, by
a superpolynomial but subexponential scaling of the cor-
rlation length in the U(1) sector. It would be interest-
ing to see if there are other multicritical points where
supersymmetry emerges, in particular, also in higher di-
mensions and investigate if a deeper connection exists
between supersymmetry and multicriticality.
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sponds to the 2nd minimal model in the N = 2 supercon-
formal series with central charge, c = 3/2. At this value
of the Luttinger parameter, K = 4, there is an additional
N = (2, 2) supersymmetry on top of the N = (1, 1) su-
persymmetry, which is present for any value of K. The
notation N = (NL,NR) implies that there are NL(R)

supercharges in the left (right) moving sector.
The supercharges are fermionic operators and as a con-

sequence they generate transformations that map bosonic
operators into fermionic operators and vice versa. Fur-
thermore, the supercurrents form a a closed superal-
gebra, an algebra with both commutators and anti-
commutators, with the stress-energy tensor and, in the
case of extended supersymmetry, a U(1) current [19, 20].

The N = (1, 1) supersymmetry is generated by the
supercurrents G0

L = χL∂zΦL and G0
R = χR∂z̄ΦR, where

z = x+ ıvτ and Φ(z, z̄) = ΦL(z) + ΦR(z̄). We define the
infinitesimal transformations generated by the conserved
charges associated to these supercurrents for some field
O in the left moving sector as O → O + ξδ0,LO, where
ξ is a Grassmannian variable, and similarly for the right
moving sector. In particular, we obtain the following
transformations:{
δ0,LχL = − 1

2∂zΦL
δ0,L∂zΦL = ∂zχL

and

{
δ0,RχR = − 1

2∂z̄ΦR
δ0,R∂z̄ΦR = ∂z̄χR

.

The theory is invariant under these transformations that
map the boson into the fermion and vice versa.

The N = (2, 2) supersymmetry at K = 4 is gener-

ated by the supercharges G±L = χL exp(±ı
√

2ΦL) for the
left movers and similarly for the right movers. The cor-
responding infinitesimal transformations for the fields in
the left moving sector are{

δ±,LχL = − 1
2e
±ı
√

2ΦL

δ±,L∂zΦL = ∓ı
√

2χLe
±ı
√

2ΦL
,

and similarly for the right moving sector.
Finally, in Ref. 16 we established that the interacting

theory preserves an N = 2 supersymmetry for u = v,
m = 0 and λ = 2

√
2πg. This corresponds precisely to

the line of fixed points to second order in the couplings.
Note that this is an extended supersymmetry in a the-
ory that is not Lorentz invariant due to the presence of
the λ-term, as a consequence the supersymmetry tran-
formations mix the left and right moving sectors. The
supercurrent conservation relation reads

∂̄G̃±L + ∂G̃±R = 0,

with

G̃±L = G±L +
g

2
ψLe

∓ı
√

2ΦR

G̃±R = ∓ıG±R ∓ ı
g

2
ψRe

±ı
√

2ΦL .

Appendix B: Fermionization of the theory

To fermionize the boson we introduce a second, redun-
dant bosonic field, with velocity vs and Luttinger param-

eter Ks, which is free and completely decoupled from the
other fields. The fermionized theory is then found by
retracing the bosonization steps. Consider the follow-
ing Hamiltonian for four types of complex fermions, ψap,
with a = 1, 2 and p = ±,

HF = H0 + ḡ
∑
a=1,2
b=1,2

ψ†a+ψa+ψ
†
b−ψb−

+2gv
∑
p=±

ψ†1pψ1pψ
†
2pψ2p.

The first term, H0, is the standard free fermion part of
the Hamiltonian for all four types of fermions with veloc-
ity vF . The latter two terms are interaction terms, the
ḡ-term is often called a dispersion term scattering left
onto right fermions, the gv-term is a forward scattering
term. We bosonize this Hamiltonian using

ψap =
1√
2π
eıϕap , ψ†apψap =

1

2π
∂xϕap,

ϕap = φa + p θa,

Φc =
1√
2

(φ1 + φ2), Φs =
1√
2

(φ1 − φ2),

Θc =
1√
2

(θ1 + θ2), Θs =
1√
2

(θ1 − θ2),

where θa is the so-called dual boson, defined by ∂xθa =
−Πa, where Πa is the canonical conjugate of the field φa.
With these definitions we obtain

HB =
vc
2π

[
Kc(∂xΘc)

2 +
1

Kc
(∂xΦc)

2

]
+
vs
2π

[
Ks(∂xΘs)

2 +
1

Ks
(∂xΦs)

2

]
,

with

vc = vF

√(
1 +

gv
πvF

)2

−
(

ḡ

πvF

)2

= vF +
gv
π

+ . . . ,

Kc =

√√√√1 + gv
πvF
− ḡ

πvF

1 + gv
πvF

+ ḡ
πvF

= 1− ḡ

πvF
+ . . . ,

vs = vF −
gv
π

+ . . . , Ks = 1.

It follows that the fermionic Hamiltonian above allows us
to recover the free part of our bosonic theory. Further-
more, we find that the cosine-term can be recovered from
an umklapp-scattering term for the fermions,

2π2
(
ψ†1+ψ1−ψ

†
2+ψ2− + h.c.

)
= cos(2

√
2Φc),

Comparing this with the cosine-term in our bosonic ac-
tion implies that we should identify Φ ≡ 2Φc. If we also
take Θ ≡ Θc/2 to ensure the canonical commutation re-
lation between Φ and Θ, we find

v = vc = vF +
gv
π
, K = 4Kc = 4− 4ḡ

πvF
.
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1+

+

−

1+

1+

(a) λ2

1+1+

1−

2−

2+

(b) g2

1+1+

1+

a−

a−

(c) ḡ2

FIG. 4: Divergent diagrams in the complex fermion
propagator to second order in the couplings. Straight

(wiggly) lines represent complex (real) fermion
propagators, respectively, and a = 1, 2.

Finally, the λ-term fermionizes to

− λ(∂xΦ)ıχRχL = −
√

2πλ
∑
p=±
a=1,2

(
ψ†a,pψa,p

)
ıχRχL.

For completeness we checked that for u + εu = vF +
εv + gv/π, corresponding to u = v, and m = 0 the
fermionic theory has N = (1, 1) supersymmetry. The

fermionized supercharges read: χL(ψ†1−ψ1− + ψ†2−ψ2−)

and χR(ψ†1+ψ1+ + ψ†2+ψ2+). Additionally, fixing also
λ = g = ḡ = 0 there is anN = (2, 2) supersymmetry gen-

erated by the supercharges χLψ1−ψ2− and χLψ
†
2−ψ

†
1− in

the left-moving sector and similarly for the right-moving
sector.

Appendix C: RG analysis to second order for
fermionized theory

In this section we compute the flow equations for the
fermionized theory by computing the beta functions,
β(gi) = −∂gi/∂(lnM), for the couplings gi, to second
order. Schematically, we first perturbatively compute n-
point functions in the presence of the interaction terms.
We then introduce counter terms for the divergent dia-
grams by imposing the renormalization conditions at the
renormalization scale M . Finally, we use the fact that the
n-point functions obey the Callan-Symanzik (CS) equa-
tion to obtain the field renormalizations and the beta
functions. For an n-point function with nψ and nχ ex-
ternal legs for the complex and real fermions respectively,
the CS equation reads[

M
∂

∂M
−
∑
i

β(gi)
∂

∂gi

+nψγψ + nχγχ

]
G(n)({Ωm, qm}) = 0,

where gi are all the couplings, n = nψ + nχ and m
runs over all n external legs. Note that we have de-
fined the beta functions with the sign convention com-
monly used in the condensed matter community (see
e.g. Shankar [17]), which is the opposite sign conven-
tion to that typically used in field theory textbooks (see
e.g. Peskin-Schroeder [18]). The field renormalizations,
γψ,χ, can be determined from the CS equation for the

fermion propagators. In fig. 4 we show the divergent di-
agrams that contribute to the complex fermion propaga-

tor, G
(2)
1+(Ω, q) = 〈ψ†1+(Ω, q)ψ1+(Ω, q)〉, to second order.

Roughly speaking the loops containing a propagator of
both a left-moving (+) and a right-moving (-) field are
divergent. To compute these diagrams we set u = vF in
the free action [21], which corresponds to u = v in the
bosonic case. We are primarily interested in computing
the leading order flow of λ and we will find that even for
u = v this is non-zero at third order in the couplings. For
u 6= v there will be corrections to this, but since they will
be of the form εO(λ3), where ε is the velocity difference
as above, these terms will be subleading for small ε. We
can thus content with setting u = v here. The divergence
corresponding to the two loop diagram can then be com-
puted using the integrals given in appendix G. Note that
since the λ-term breaks Lorentz invariance, we need to
introduce separate counter terms for the frequency and
momentum terms in the free action, i.e. in momentum
space the counter terms read∑

a=1,2

∑
p=±

(−ıΩδZψ,0 + pvqδZψ,1)ψ†a,pψa,p. (C1)

Imposing the renormalization conditions we obtain

δZψ,0 =
( ḡ2 + 2π4g2

8π2v2
F

− λ2

32v2
F

)[2

ε
− log(M2)

]
,

δZψ,1 =
( ḡ2 + 2π4g2

8π2v2
F

+
λ2

32v2
F

)[2

ε
− log(M2)

]
,

where ε is the dimensional regularization, d = 2− ε, and
M the renormalization scale. We can now solve the CS
equation to find

γf = − ḡ
2 + 2π4g2

8π2v2
F

+
λ2

32v2
F

,

β(εv) = − λ2

8vF
.

For the real fermion propagator the divergent diagram is
shown in fig. 5a. This leads to

γχ =
λ2

(4vF )2
,

β(εu) = − λ2

4vF
.

The next step is to compute the counter terms for the
interaction terms, gv, ḡ, g and λ. The divergent diagrams
in the relevant 4-point functions are given in fig. 5. We
find

β(gv) = −πλ
2

8vF
,

β(ḡ) = − π

4vF

(
λ2 − 8π2g2

)
,

β(g) =
2gḡ

πvF
,

β(λ) = 0. (C2)
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(a) λ2

+

−
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a’p’

a’p’

(b) λ2

2−

2+
1+

1−

1−

1+

(c) g2

2−/1+

2+/1−
1+

1−

2+

2−

(d) gḡ/ḡg

2−/2+

1+/1−
2+

1−

1+

2−

(e) gḡ/ḡg

ap

ap+

−

+

−

(f) λ2

FIG. 5: Divergent diagrams in the real fermion
propagator (5a) and in the vertex 4-point functions to
second order in the couplings. The λ2-diagram (5b),
where a, a′ = 1, 2 and p, p′ = ±, contributes to δgv for
a 6= a′ and p = p′, and to δḡ for p 6= p′. We note that for
a = a′ and p = p′ the diagram is zero due to fermion
sign cancellations of all possible ways to contract the

complex fermions. The g2-diagram (5c) also contributes
to δḡ. The gḡ/ḡg-diagrams, (5d) and (5e), contribute to
δg. In these diagrams the left vertex is g and the right

vertex is ḡ for one choice of the propagators in the loop,
namely the first choice, and vice versa for the second

choice. Finally, the λ2-diagram (5f), where a = 1, 2 and
p = ±, contributes to the anomalous dimension

function, γm, of the real fermion mass-term operator,
Om (represented by the dashed line, the diamond and

the two real fermion propagators).

Finally, obtaining the beta function for the mass-
term is slightly more subtle. One finds that β(m) =
(2− dm − γm)m, where dm = 1 is the scaling dimension
of the operator Om = ıχRχL and γm is the anomalous
dimension function for this operator. We find γm from
the CS equation for the Green’s function containing the
local operator Om:

[
M

∂

∂M
−
∑
i

β(gi)
∂

∂gi
+ 2γχ + γm

]
G(2;1) = 0,(C3)

where G(2;1) = 〈χR(ω1, p1)χL(ω2, p2)Om(ω, p)〉 and gi
runs over all couplings except the mass. We find γm =

λ2/(8v2
F ) and thus,

β(m) = m

(
1− λ2

8v2
F

)
. (C4)

To see that these results agree with the RG equations ob-
tained from real space RG we need to restrict the com-
parison to the case u = v. We confirm that as before
the velocities remain equal: β(v) = β(εv) + β(gv)/π =
πλ2/(4vF ), which equals β(εu). Furthermore, we easily
check that the velocity, vs, of the decoupled additional
boson that we introduced to fermionize theory, indeed
does not flow: β(vs) = β(εv) − β(gv)/π = 0. Finally,
one easily verifies the other equations using the relation
between K and ḡ.

Appendix D: Details on RG analysis to third order

In this section we provide some details on the compu-
tation of the third order term of the beta function for
λ on the special line. The main challenge is to compute
the counter term for λ to third order. Figures 2a-2g show
all the divergent diagrams for ḡ = 0 and g = λ/(2

√
2π)

that contribute to the counter term. The first two dia-
grams, 2a and 2b, are easily computed by generalizing
the second order computations. The diagrams contain-
ing nested loops are slightly more subtle. Note that there
are essentially two kinds: the diagrams where the in-
ner loop is divergent (figs. 2e-2g) and those where the
outer loop is divergent (figs. 2c and 2d). The latter is
still straightforward, because the integral corresponding
to the inner loop can be performed without problems and
the remaining integral is just that corresponding to a one
loop divergent diagram. However, when the inner loop is
divergent, one has to proceed with a bit more caution.

In the diagrams where the inner loop is divergent one
encounters the following type of integral∫

dωdk

(2π)2

1

z̄(z̄ + w̄3 + w̄4)

(2

ε
− log(|z − w2|2) + . . .

)
,

where z = ıω + vk. Although we cannot really compute
this integral, we can find the logarithmically divergent
part. This is the part that will contribute in the CS
equation via the counter term. To find the logarithmi-
cally divergent part of the last integral we proceed as
follows. First we define

I4(M) =

∫
z

1

z̄(z̄ + z̄0)
log(|z −M |2),

where we used
∫
z
≡
∫
dωdk
(2π)2 and we have chosen w2 = M ,

without loss of generality. It follows that
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∂

∂M
I4(M) =

∫
z

1

z̄(z̄ + z̄0)

( −1

z −M
+
−1

z̄ −M

)
= Γ(3)

( 3∏
i=1

∫ 1

0

dxi

)∫
z

−δ(1−
∑3
i=1 xi)(z − z0)(z̄ −M)z

[x1|z + z0|2 + x2|z −M |2 + x3|z|2]3
+ [(z, z̄ −M)←→ (z̄, z −M)]

= −2
( 3∏
i=1

∫ 1

0

dxi

)
δ(1−

3∑
i=1

xi)

∫
`

(`+ (1− x1)z0 + x2M)(¯̀− x1z̄0 − (1− x2)M)(`− x1z0 + x2M)

[|`|2 + ∆]3

+[(−(1− x2)M)←→ (x2M)],

where we in the last step we completed the square in the
denominator, changed integration variable, ` = z+x1z0−
x2M , and defined ∆ = x1|z0|2 + x2M

2 − |x1z0 − x2M |2.
The divergent part of this integral has the numerator
constant. Furthermore, we now choose z0 = 0 without
loss of generality as we will argue shortly. It follows that
∆ simplifies to ∆ = x2(1− x2)M2 and the constant part
of the numerator becomes x2

2(1− x2)M3. We then find

∂

∂M
I4(M) = 4

1

8πv

∫ 1

0

dx1

∫ 1−x1

0

dx2
x2

2(1− x2)M3

[x2(1− x2)M2]2

+ . . .

= − 1

2πv

1

M
+ . . .

Thus we obtain that the logarithmically divergent part of
I4(M) reads − logM/(2πv). Now let us briefly comment
on our choice of setting z0 to zero. What one might worry
about is that the coefficient of the logM term depends
on this choice, or more precisely on the ratio of z0 and
z3. This would imply, however, that I4(M) diverges as
z3 = M → 0, while z0 remains finite. By inspecting
I4(M) it is clear that it only diverges as both M and z0

vanish at the same time. Therefore, we can exclude this
possibility and find that setting z0 = 0, gives us the right
coefficient of the logM term.

At this point, we know how to compute all the rele-
vant diagrams and the remaining challenge is to get all
the signs and factors of 2 correct. A good check on the
computation is provided by the fact that some of the
divergences at third order are canceled by second order
counter terms. For instance, the last diagram, fig. 2h,
contains the second order counter term, δgv , and should
cancel the divergence of the diagram in fig. 2a with
ap = 2+. We verified that this is indeed the case. Fur-
thermore, the divergences of the diagram in fig. 2a with
a = 1, 2 and p = − and of the diagram in fig. 2g should
be canceled by a diagram containing the counter term
for ḡ. However, since δḡ = 0 on the line of second or-
der fixed points, we find as expected that these diagrams
cancel for g = λ/(2

√
2π). Finally, we can argue that the

divergences of the diagrams in fig. 2a with ap = 1+ and
in fig. 2f and the diagrams in fig. 2b and fig. 2e should
cancel pairwise due to fermion statistics. The diagrams
can be transformed into one another by exchanging two

identical fermionic fields (ψ†1+), which leads to a relative
minus sign. We find that this indeed works out.

Eventually, we are left with two divergent diagrams:
2c and 2d. From these we find

δλ =
3λ3

(4vF )2

[
2

ε
− log(M2)

]
. (D1)

Then working out the full CS equation for the λ-vertex
4-point function to third order, we find

β(λ) = M
∂

∂M
δλ − 2λ(γψ + γχ)

= − λ3

2v2
F

, (D2)

where we used γψ = 0 for g = λ/(2
√

2π) and ḡ = 0. We
thus find that the beta function is negative for positive
λ and positive for negative λ, which means that λ is
marginally irrelevant and the flow is towards λ = 0 as we
go to lower energy scales.

Appendix E: Stability of the fixed point

We have computed the flow of λ on the special line
ḡ = 0 and g = λ/(2

√
2π) to third order in the couplings

and found that the flow along this line is towards the
decoupled fixed point: ḡ = g = λ = 0. In this section we
show that close to the fixed point there is an attractive
plane in the (λ, g, ḡ)-parameter space for which the flow is
towards this special line and eventually towards the fixed
point. This established the stability of the decoupled
fixed point.

We first determine all the flow equations to third order
in the couplings on the special line. On this line we have:
1) λ/(2

√
2π)− g = 0 +O(gigj), 2) ḡ = 0 +O(gigj), and

3) β(gi) = 0 + O(gigjgk), where gi = g, λ, ḡ. From 1)

it follows that β(λ)/(2
√

2π) = β(g) +O(giβ(gi)), finally,

using 3) we find β(λ)/(2
√

2π) = β(g)+O(gigjgkgl). That
is, to third order in the couplings the beta function of g
on the special line is completely determined by the beta
function of λ. Similarly, we easily obtain that the beta
function of ḡ vanished to third order in the couplings on
the special line. Solving these flow equations, we obtain

λ(`) = 2
√

2πg(`) =
λ0vF√
λ2

0`+ v2
F

, ḡ(`) = 0,

where ` = − lnM and λ0 = λ(0) is a (small) constant. To
determine the flow close to the special line, we add a small
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perturbation to this solution. We write the deviations as
δλ, δg and δḡ and plug the perturbed solution back into
the full flow equations. Keeping only second order terms
in the couplings and in the deviations, we obtain

β(δḡ) = − π

4vF
(2λδλ+ δλ2 − 4

√
2πλδg − 8π2δg2)

β(δg) =
2

πvF
δḡ(λ/(2

√
2π) + δg)

β(δλ) = 0

We can linearize and solve these equations in the regime
δλ, δg, δḡ � g, λ. Since β(δλ) = 0, we find that δλ is
constant. This constant can easily be absorbed into λ(`),
so we can set δλ = 0 without loss of generality. The
linearized equations for this choice read

d

dx
δḡ =

√
2π2

vF
δg

d

dx
δg =

1√
2π2vF

δḡ

where d
dx ≡

1
λ(`)

d
d` . The general solution to these lin-

earized equations is(
δḡ
δg

)
= ~v+e

x/vF + ~v−e
−x/vF , (E1)

with ~v± = (
√

2π2,±1). Finally, x can be found by inte-
grating its defining equation. This results in

x(`) =
2vF
λ0

√
λ2

0`+ v2
F −

2v2
F

λ0
. (E2)

It follows that the deviations from the special line flow
to zero if we move away in the ~v− direction. We thus
remain in the regime of validity of our approximation:
δλ, δg, δḡ � g, λ. We conclude that there is an attractive
direction at every point on the special line and thus a
plane in the (λ, g, ḡ)-parameter space for which the flow
is towards and along this special line, eventually termi-
nating at the fixed point.

Finally, we mention that deviations from the special
line that are not parallel to v−, take us either above or
below the attractive plane. In both cases the deviations
from the line start to grow and at some point the regime
of validity of the linearized flow equations around the
special line breaks down. However, since λ is decreas-
ing under the flow, while g and/or ḡ are increasing, we
eventually reach a regime where the flow equations of
the decoupled fixed point are valid and thus g and ḡ con-
tinue to flow according to the usual Kosterlitz equations.
In particular, they continue to grow if the flow started
above the attractive plane, whereas g flows to zero if we
started below the attractive plane. This corresponds to
the gapped and gapless phase in U(1) sector, respectively
(remember that the Ising sector is always gapless). We
have checked these predictions by solving the full flow
equations numerically. We find that the couplings in-
deed flow as described for deviations below and above
the attractive plane.

Fit 1
Fit 2

10-7 10-6 10-5 10-4 0.001
0
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100

150

∆g0
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10-7 10-6 10-5 10-4 0.001

-2
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∆g0

{
*
-

Fi
t2

FIG. 6: We show the results of the numerical
computation of the renormalization scale `∗ as a

function of the deviation, δg0, from the special line in
the g-direction (blue dots). The red curve (fit 1) is a fit

to the function a ln(δg0)2 + b ln(δg0) + c, with fit
parameters a ≈ 0.26, b ≈ 5.70, c ≈ −21.62. For

comparison the black, dashed curve (fit 2) is a fit to the
function b ln(δg0) + c, with fit parameters

b ≈ 11.62, c ≈ −53.50. In the inset we show the
difference of the data and fit1 with fit 2. Clearly, the

red curve is an excellent fit, while the black curve does
not describe the scaling of `∗ that we observe.

Appendix F: Correlation length and gap scaling

The intricate flow diagram around the fixed point and,
in particular, the slow flow towards the fixed point have
consequences on the physics of the multicritical point.
In this section we compute how the correlation length di-
verges as the multicritical point is approached from the
charge gapped phase, i.e. the correlation length associ-
ated to the U(1) sector. Let us define ξ0 as the value of
the correlation in the gapped phase, that is far from the
multicritical point, where the couplings are order one. It
follows that

ξ(gi) = ξ0e
`∗ ,

where `∗ is defined by gi(`
∗) = g∗i = O(1), i.e. the renor-

malization scale at which the couplings become order one.
To compute `∗ we start at a point on the special line and
add a small perturbation, δg0, that takes us above the
attractive plane. This perturbation now grows under the
RG flow according to (E1). We now define the renor-
malization scale `1 as the scale at which this perturba-
tion reaches the size where the regime of validity of the
linearized flow equations around the special line breaks
down. More precisely, we define `1 by

δg(`1) = λ(`1)⇒

δg0e
2
λ0

√
λ2
0`1+v2F−

2vF
λ0 =

λ0vF√
λ2

0`1 + v2
F

.
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Solving this equation for `1 gives

`1 =
1

4

(
ln

[
λ0

δg0

])2

+O
(

ln

[
λ0

δg0

])
.

At this point, all the couplings are of the same order and
validity of the linearization of the flow equation around
the special line breaks down. However, since g is increas-
ing and λ is decreasing, the flow will continue to a regime
where the flow equations of the decoupled fixed point are
valid, namely when λ is sufficiently small compared to g.
We will ignore this part of the flow trajectory for now
-this will be justified below- and continue the trajectory
as governed by the decoupled fixed point. The flow in g
then obeys

g(`) =
g0

1− 2π`g0/vF
. (F1)

Defining `2 as the RG scale at which g is order one start-
ing from g(`1), we obtain

1 ∼ g(`2) =
g(`1)

1− 2π`2g(`1)/vF

⇒ `2 ≈
1

2πg(`1)/vF
∼
√
`1

We see that `2 � `1, this difference is due to the fact that
the flow in g is now much faster than close to the special
line. It is now clear that the part of the flow trajectory
that we ignored is also negligible compared to the first
part of the trajectory. We thus conclude that `∗ ≈ `1
and, consequently,

ξ(δg0) = ξ0e
1
4

(
ln
[
λ0
δg0

])2

. (F2)

We verified this scaling of the correlation length by also
solving the full flow equations numerically. We obtain a
good fit of `∗ with the function a ln(δg0)2 + b ln(δg0) + c,
where a, b, c are fit parameters (see figure 6). Moreover,
we extract a ≈ 0.26, which is in good agreement with the
expected value of 1/4. Note that this coefficient of the
leading term in `∗ is universal, i.e. independent of the
details of how one approaches the multicritical point.

Appendix G: Useful integrals

The integrals that we encounter when computing one-
and two-loop diagrams are:

I1(w, w̄) =

∫
dωdk

(2π)2

1

z̄

1

z ± w
(G1)

=
1

4πv

[2

ε
− log(|w|2) + . . .

]
,

I2(w, w̄) =

∫
dωdk

(2π)2

1

z̄

z̄ ± w̄
z ± w

(G2)

= ±w̄ 1

4πv

[2

ε
− log(|w|2) + . . .

]
,

I3(w, w̄) =

∫
dωdk

(2π)2

1

z

1

z ± w
= − 1

4πv

( w̄
w

+ 1
)
,(G3)

where z = ıω + vk and w = ıΩ + vq. Furthermore, ε is
the dimensional regularization, d = 2 − ε, and the dots
denote finite terms as ε, |w| → 0. We point out that the
last integral is not really well defined, but can be fixed on
physical grounds. We first explain why the integral is ill-
defined. Using Feynman parametrization and a change
of variables, r exp(ıφ) = z+uw, where u is the Feynman
parameter, the integral can be brought into the following
form:∫ 1

0

du

∫
drdφ

(2π)2v

(re−ıφ − uw̄)(re−ıφ + (1− u)w̄)

(r2 + (u− u2)|w|2)2
.

Carrying out the integral over the φ-independent part of
the integrand is now straight forward and gives the term
proportional to w̄/w in (G3). Naively, one might think
that the φ-dependent part of the integrand does not con-
tribute, since the integral over φ gives zero. However,
if one would carry out the r-integral first, the result is
divergent. This subtlety can be resolved as follows. We
note that this integral appears when one computes the
density-density correlator. Using the fact that this cor-
relator is known explicitly from bosonization we can fix
the ill-defined integral. Let us provide some details. We
have

∂xΦ± =
√

2π
∑
a=1,2

ρa±,

where the± refers to left and right moving modes, respec-

tively, and ρa± = ψ†a±ψa±. The fermion density-density
correlator is thus directly related to

〈qΦ±Ω,qq
′Φ±Ω′,q′〉 = δq+q′δΩ+Ω′

−2πq

±ıΩ + vq
. (G4)

Computing this correlator for the left movers in the
fermionic language gives

〈qΦ−Ω,qq
′Φ−Ω′,q′〉 = 2π2

∑
a

〈ρa−(Ω, q)ρa−(Ω′, q′)〉

= δq+q′δΩ+Ω′2π
2
∑
a

∫
dωdk

(2π)2

( 1

z(z + w)

)
,

with z, w as defined above. Since the ill-defined inte-
gral appears in the physically observable fermion density-
density correlator, we can exclude the possibility that
the integral is infinite. So let us assume I3(w, w̄) =
−1/(4πv)(w̄/w + f(w, w̄)), with f some function. We
then find

〈qΦ−Ω,qq
′Φ−Ω′,q′〉 = −δq+q′δΩ+Ω′

π

v

(−ıΩ + vq

ıΩ + vq
+ f(w, w̄)

)
.

Equating this with (G4) we find f(w, w̄) = 1.
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