Logical Methods in Computer Science
Vol. 9(3:11)2013, pp. 1-39 Submitted Jan. 29, 2012
www.Imcs-online.org Published Sep. 9, 2013

MEASURE TRANSFORMER SEMANTICS FOR
BAYESIAN MACHINE LEARNING *

JOHANNES BORGSTRM?2, ANDREW D. GORDON, MICHAEL GREENBERG, JAMES MARGETSON,
AND JURGEN VAN GAEL®

@ Dept. of Information Technology, Uppsala University, Uplas Sweden
e-mail addressborgstrom@acm.org

bd Microsoft Research, Cambridge, UK
e-mail addressadg@microsoft.com, jfdm1@roundwood.org

¢ University of Pennsylvania, Philadelphia, PA, USA
e-mail addressmgree@seas.upenn.edu

€ Microsoft FUSE Labs, Cambridge, UK
e-mail addressjurgen.vangael@gmail.com

ABSTRACT. The Bayesian approach to machine learning amounts to damgguosterior distribu-
tions of random variables from a probabilistic model of hbw variables are related (that is, a prior
distribution) and a set of observations of variables. Thegetrend in machine learning towards ex-
pressing Bayesian models as probabilistic programs. Asiredfation for this kind of programming,
we propose a core functional calculus with primitives fampéing prior distributions and observing
variables. We define measure-transformer combinatorsr@tspy theorems in measure theory, and
use these to give a rigorous semantics to our core calculs.ofiginal features of our semantics
include its support for discrete, continuous, and hybricsuees, and, in particular, for observations
of zero-probability events. We compile our core language $mall imperative language that is pro-
cessed by an existing inference engine for factor graphighadre data structures that enable many
efficient inference algorithms. This allows efficient appnoate inference of posterior marginal dis-
tributions, treating thousands of observations per setmnldrge instances of realistic models.

1. INTRODUCTION

In the past 15 years, statistical machine learning has dnifiany seemingly unrelated methods
through the Bayesian paradigm. With a solid understandirigectheoretical foundations, advances
in algorithms for inference, and numerous applications,Bhayesian paradigm is now the state of
the art for learning from data. The theme of this paper isdlea iof expressing Bayesian models as
probabilistic programs, which was pioneered by BUGE fand is recently gaining in popularity,

2012 ACM CCS:[Theory of computation]: Semantics and reasoning—Program constru@sniputing method-
ologieg: Machine learning—Machine learning approaches.
Key words and phrasesProbabilistic Programming, Model-based Machine Learnfrggramming Languages, De-
notational Semantics.
* An abridged version of this paper appears in the proceedifigise 20th European Symposium on Programming
(ESOP’11), part of ETAPS 2011, held in Saarbriicken, Geymdarch 26—April 3, 2011.

|IEm|LOGICA|_ METHODS © J.Borgstrom, A. D. Gordon, M. Greenberg, J. Margetson, and J. Van Gael
IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(3:11)2013 @ Creative Commons

http://creativecommons.org/about/licenses

2 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

witness the following list of probabilistic programmingiguages: AutoBaye$(], Alchemy [11],
Blaise [7], BLOG [36], Church [L5], Csoft [52], FACTORIE [32], Figaro [44], HANSEI [24],
HBC [10], IBAL [42], A, [41], Probabilistic cc 18], PFP [L2], and Probabilistic Schemd].

In particular, we draw inspiration from Csof6%], an imperative language where programs
denote factor graph£8], data structures that support efficient inference algorg R5]. Csoft is
the native language of Infer.NEBT], a software library for Bayesian reasoning. This papeegiv
an alternative probabilistic semantics to languages ve#tures similar to those of Csoft.

Bayesian Models as Probabilistic Expressioi@onsider a simplified form of TrueSkilllp], a
large-scale online system for ranking computer gamers.reTtsea population of players, each
assumed to have a skill, which is a real number that cannotirbetlg observed. We observe
skills only indirectly via a series of matches. The problentd infer the skills of players given
the outcomes of the matches. Here is a concrete examite, Bob, and Cyd are new players.
In a tournament of three games, Alice beats Bob, Bob beats &ytlAlice beats Cyd. What are
their skills?In a Bayesian setting, we represent our uncertain knowletiges skills as continuous
probability distributions. The following probabilistixpression models the situation by generating
probability distributions for the players’ skills, givehree played games (observations).

/I prior distributions, the hypothesis

let skill() = random (Gaussian(10.0,20.0))

let Alice,Bob,Cyd = skill(),skill(),skill ()

/I observe the evidence

let performance player = random (Gaussian(player,1.0))
observe(performance Alice > performance Bob) //Alice beats Bob
observe(performance Bob > performance Cyd) /Bob beats Cyd
observe(performance Alice > performance Cyd) //Alice beats Cyd
/I return the skills

Alice,Bob,Cyd

A run of this expression goes as follows. We sample the siflthe three players from therior
distribution Gaussian(10.0,20.0). Such a distribution can be pictured as a bell curve centred o
themeanl0.0, and gradually tailing off at a rate given by theiance here 20.0. Sampling from
such a distribution is a randomized operation that returresahnumber, most likely close to the
mean. For each match, the run continues by sampling an thdiViperformance for each of the
two players. Each performance is centred on the skill of ggulavith low variance, making the
performance closely correlated with but not identical ®$kill. We then observe that the winner's
performance is greater than the loser’s. gbservationrobserveM always returns (), but represents
a constraint tham must be true. A whole run is valid if all encountered obseovet are true. The
run terminates by returning the three skills.

A classic computational method to compute an approximagtepor distribution of each of
the skills is Monte Carlo samplin@l]. We run the expression many times, but keep just the valid
runs—the ones where the sampled skills and performancesoassstent with the observed out-
comes. We then compute the means of the resulting skills plyiag standard statistical formulas.
In the example above, thmosterior distributionof the returned skills moves so that the mean of Al-
ice’s skill is greater than Bob’s, which is greater than Gydo the best of our knowledge, all prior
inference techniques for probabilistic languages withiooiwus distributions, apart from Csoft and

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 3

recent versions of IBAL43], are based on nondeterministic inference using some fdriviomte
Carlo sampling.

Inference algorithms based on factor graf2&; 5] are an efficient alternative to Monte Carlo
sampling. Factor graphs, used in Csoft, allow determiistit approximate inference algorithms,
which are known to be significantly more efficient than sangplnethods, where applicable.

Observations with zero probability arise naturally in Bsigg models. For example, in the
model above, a drawn game would be modelled as the perfomariwo players being observed
to be equal. Since the performances are randomly drawn froomtinuous distribution, the proba-
bility of them actually being equal is zero, so we would ngbeot to seenyvalid runs in a Monte
Carlo simulation. (To use Monte Carlo methods, one must¢atstvrite that the absolute difference
between two drawn performances is less than some smalHowever, our semantics based on
measure theory makes sense of such observations. Our sesnsitte first for languages with con-
tinuous or hybrid distributions, such as Fun or Imp, thatismglemented by deterministic inference
via factor graphs.

Plan of the Paper.We propose Fun:

e Fun is a functional language for Bayesian models with pru@st for probabilistic sampling and
observations (Sectio?).

e Fun programs have a rigorous probabilistic semantics asune&ansformers (Secti@).

e Fun has an efficient implementation: our system compilestBump (Sectiord), a subset of
Csoft, and then relies on Infer.NET (Sectién

e Fun supports array types and array comprehensions in ardexpress Bayesian models over
large datasets (Sectic).

Our main contribution is a framework for finite measure tfamser semantics, which supports
discrete measures, continuous measures, and mixtures wiohand also supports observations of
zero probability events.

As a substantial application, we supply measure transfosamantics for Fun and Imp, and
use the semantics to verify the translations in our compileeorenB.3establishes agreement with
the discrete semantics of Secti@rior Bernoulli Fun. Theorend.4 establishes the correctness of
the compilation from Fun to Imp.

We designed Fun to be a subset of the F# dialect of B, [for implementation convenience:
F# reflection allows easy access to the abstract syntax afgargm. All the examples in the paper
have been executed with our system, described in Se@tidve end the paper with a description of
related work (Sectioff) and some concluding remarks (Sect&n

Appendix A contains proofs omitted from the main body of the paper. HBuobrical report
version of our paperg] includes additional details, including the code of an Fliementation of
measure transformers in the discrete case.

2. BAYESIAN MODELS ASPROBABILISTIC EXPRESSIONS

We introduce the idea of expressing a probabilistic modalagke in a functional language, Fun,

with primitives for generating and observing random vagabAs an illustration, we first consider

a subset, Bernoulli Fun, limited to weighted Boolean chaid&/e describe in elementary terms an
operational semantics for Bernoulli Fun that allows us tmpate the conditional probability that

the expression yields a given value given that the run wad.val

4 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

2.1. Syntax, Informal Semantics, and Bayesian ReadingExpressions are strongly typed, with
typest, u built up from base scalar typ&sand pair types. We letrange over constant data of scalar
type,n over integers, and over real numbers. We write (y) =t to mean that constathas type

t. For each base tydg we define aero elemend, with Oy = true, and let @, = (G, 04). We
have arithmetic and Boolean operatiagh®n base types.

Types, Constant Data, and Zero Elements:

"b:= bool |int | real base type
t,us=unit | b (txu) compound type
ty(()) =unit ty(true) = ty(false) = bool ty(n)=int ty(r) =real

Opgo=true Ojpt =0 Oreq =00

Signatures of Arithmetic and Logical Operators: ® : by,b, — bs

I
&&,||,= : bool,bool — bool >, =int,int — bool
+,—,%,% :int,int — int > : real,real — bool +,—,%* : real,real — real

We have several standard probability distributions asifiiea D : t — u takes parameters tnand
yields a random value in. The names; below only document the meaning of the parameters.

Signatures of Distributions: D : (g : by *--- %X, :b,) — b

Bernoulli : (success : real) — bool

Binomial : (trials : int * success : real) — int
Poisson : (rate : real) — int

DiscreteUniform : (max : int) — int

Gaussian : (mean : real x variance : real) — real
Beta: (a:real«b:real) — real

Gamma: (shape : real x scale : real) — real

The expressions and values of Fun are below. Expressioris alénited syntax akin to A-normal
form, with let-expressions for sequential composition.

Fun: Values and Expressions

Vi=x|c|(VV) value
M,N .= expression
\% value
Vi@V, arithmetic or logical operator
V.1 left projection from pair
V.2 right projection from pair
if V then M, elseM, conditional
letx=Min N let (scope ofkis N)
random (D(V)) primitive distribution
observeV observation

In the discrete case, Fun has a standamhpling semantickf. [41]); the formal semantics for the
general case comes later. A run of a closed expreddiamthe process of evaluatirlg to a value.
The evaluation of most expressions is standard, apart fesnpkng and observation.

To runrandom (D(V)), whereV = (cy,...,Cq), choose a value at random from the distribu-
tion D(cy,...,C,) (independently from earlier random choices) and return

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 5

To runobserveV, always return (). We say the observatiowadid if and only if the value/ is
some zero element,0

Due to the presence of sampling, different runs of the sampessgion may yield more than
one value, with differing probabilities. Let a run kselid so long as every encountered observation
is valid. The sampling semantics of an expression is theitondl probability of returning a
particular value, given a valid run. Intuitively, Booleabservations are akin to assume statements in
assertion-based program specifications, where runs ofgagiroare ignored if an assumed formula
is false.

Example: Two Coins, Not Both Tails

let heads1 = random (Bernoulli(0.5))in
let heads2 = random (Bernoulli(0.5))in
let u = observe(headsl || heads2) in
(heads1,heads?2)

The subexpressiorandom (Bernoulli(0.5)) generatesrue or false with equal likelihood. The
whole expression has four distinct runs, each with proitghil/4, corresponding to the possible
combinations of Booleanseads1 andheads2. All these runs are valid, apart from the one where
headsl = false and heads2 = false (representing two tails), sinagbservefalsel|false) is not a
valid observation. The sampling semantics of this expoassi a probability distribution assigning
probability 1/3 to the valuegtrue,false), (falsetrue), and(true,true), but probability O to the
value (false, false).

The sampling semantics allows us to interpret an expressi@Bayesian model. We interpret
the distribution of possible return values as fhréor probability of the model. The constraints
on valid runs induced by observations represent new evaendraining data. The conditional
probability of a value given a valid run is thmosterior probability an adjustment of the prior
probability given the evidence or training data.

Thus, the expression above can be read as a Bayesian moldelgbblem: toss two cains. |
observe that not both are tails. What is the probability afleautcome? The uniform distribution
of two Booleans represents our prior knowledge about twos;aheobserveexpression represents
the evidence that not both are tails, and the overall sagsimantics is the posterior probability
of two coins given this evidence.

Next, we define syntactic conventions and a type system far 8efine a formal semantics
for the discrete subset of Fun, and describe further exaan@er discrete semantics is a warm up
before Sectior8. There we deploy measure theory to give a semantics to duafiguage, which
allows both discrete and continuous prior distributions.

2.2. Syntactic Conventions and Monomorphic Typing Rules.We recite our standard syntactic
conventions and typing rules.

We identify phrases of syntag (such as values and expressions) up to consistent renaming
of bound variables (such asin a let-expression). Let fw) be the set of variables occurring
free in phrasep. Let {¥/x} be the outcome of substituting phragefor each free occurrence of
variablex in phrase@. To keep our core calculus small, we treat function defingias macros
with call-by-value semantics. In particular, in examples,write first-order non-recursive function
definitions in the formlet f x; ... X, = M, and we allow function application M; ... M, as
expressions. We consider such a function application agjlzeshorthand for the expressiehx; =
M1 in ...let X, = Mp in M, where the bound variables, ..., X, do not occur free irMy, ...,

6 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

M,. We allow expressions to be used in place of values, viatinseof suitable let-expressions.
For example,(M1,M;) stands forlet x; = My in let x; = Mz in (xg,%2), andM; ® M, stands for

let x; = M1 in let X, = Mz in X3 ® X2, when eithefMy or M, or both is not a value. Ld¥li; M,
stand forlet x = M; in My wherex ¢ fv(M,). The notationt =t; *- - - xt, for tuple types means
the following: whenn =0, t = unit; whenn=1,t =t;; and whem > 1,t =t3 * (ta*--- xty). In
listings, we rely on syntactic abbreviations available #) such as layout conventions (to suppress
in keywords) and writing tuples ad,, ..., M, without enclosing parentheses.

Let atyping environmentl”, be a list of the forme, xq : t1,..., X%y : th; we sayl is well-formed
and writel" - ¢ to mean that the variableg are pairwise distinct. Let dofi) = {xq,...,X} if
N=¢&,X:t1,..., % : th. We sometimes use the notatient for ' = €,X1 : t1,..., Xy : th where
X=Xy,...,X, andt =tq,... t,.

Typing Rules for Fun Expressions:I' - M : t

(FUN VAR) (Fun Consyy (FUNFPAIR) (FUN OPERATOR
NFo (x:t)erl Meo F=Vitty ® by, by — b
| TFVait, TEViihy THV,:b
FEx:t M-c:ty(c) M (VeVa) <oty F V@V, bs

(FUuN PrOJL) (FuN PrROZ) (FUNIF)
MEVitixt, TEVitgxt, THEV:bool TEMp:t THEMy:t

Mr=v.al:y r=v.a:t I =if V then M; elseMs : t

(FUN LET) (FUN RANDOM)
MN=Mjp:tg D:(xg:bps*--xxy:by) —b
Xt FMoits FEV:(byx---xby)

MEletx=Mzin My:t, I Frandom (D(V)) : b

(FUN OBSERVE)
r=v:b

I - observeV : unit

Lemma2.1. If I x:t,"=M:t'andl =V :tthenl,[" = M{V/} : t’.

Proof. By induction on the derivation df,x:t,[" =M : t’.]
Lemma2.2. If T =M :tthenl o.

Proof. By induction on the derivation df-M : T.]
Lemma 2.3(Unique Types) If T =M :tandl = M : t' then t=t'.

Proof. By induction on the structure &fl. The proof needs that the result types of the signatures of
overloaded binary operators and of distributions are detexd by the argument types. []

2.3. Formal Semantics for Bernoulli Fun. Let Bernoulli Fun be the fragment of our calculus
where everyandom expression takes the forrandom (Bernoulli(c)) for some reat € (0, 1), that

is, a weighted Boolean choice returnitige with probability ¢, andfalsewith probability 1—c. We
show that a closed well-typed expressirinduces conditional probabilitiegHvalue =V | valid],
the probability that the value of a valid run bFisV.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 7

For this calculus, we inductively define an operational sging, M —P M’, meaning that
expressiorM takes a step tW’ with probability p.

Reduction Relation: M —P M’ where p € (0,1]

Vi ®Vs —1 ®(c1,C2)

(V1,V2).1 =1vp

(V1,V2).2 —)1 V2

if true then M; elseM, —1 My
if false then M elseM, —1 M,
letx=Vin M =1 M{V/}

R[M] =P R[M'] if M —P M’ for reduction contex® given by
Riu=]|letx=RinM

random (Bernoulli(c)) —¢ true
random (Bernoulli(c)) —1¢ false
observeV —1 ()

Since there is no recursion or unbounded iteration in Bdlineun, there are no non-terminating
reduction sequenced; —P .. .M, —Pn ...,
Moreover, we can prove standard preservation and proggessads.

Lemma 2.4(Preservation)If T =M :t and M—P M’ thenll - M’ : t.

Proof. By induction on the derivation dl —P M’. []
Lemma 2.5(Progress)If e = M :t and M is not a value then there are p and 8fich that M—P M.
Proof. By induction on the structure dfl.]
Lemma 2.6(Determinism) If M —P M’ and M—P M’ then p=p'.

Proof. By induction on the structure dfl. L]
Lemma 2.7 (Probability) If € =M :t thenZ, nym—enyP=1.

Proof. By induction on the structure &f.]

We consider a fixed expressidmsuch thate - M : t.

Let the spac€ be the set of all runs d¥l, where arun is a sequences = (M, ..., My1) for
n>0andpy, ...,pnsuch thaM =M; =P ... P M, ; =V; we define the functionglue(w) =
V andprob(w) = 1p; ... pn, and we define the predicatelid(w) to hold if and only if whenever
M; = R[observeV] thenV = 0, for some zero elemen0SinceM is well-typed, is normalizing,
and samples only from Bernoulli distributior@,is finite.

Leta, C Q range overventsand let probability R [0] = 5 ,,cq Prob(w). Below, we write
P[] for Py [] whenM is clear from the context.

Proposition 2.8. The functionP [a] forms aprobability distribution that is, (1) we hav@[a] > 0
forall a, (2)P[Q] =1, and 3)P[auB]=Pla]+P[B]ifanp =2.

Proof. Item (1) follows from the fact thagd > 0 wheneveM —, N. Item (2) follows from Lemma.7,
Lemmaz2.4, and termination. Item (3) is immediate from the definition. []

8 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

To give the semantics of our expressidnwe first define the following probabilities and events.
Given a value/, value =V is the eventalue (V) = {w | value(w) = V}. Hence, Rvalue = V] is
theprior probability that a run oM terminates with/. We let the eventalid = {w € Q | valid(w) };
hence, Bvalid] is the probability that a run is valid.

If P[B] # O, theconditional probability ofa givenf is

Planp]
Pla|B] & —=——
o | B] PIp
The semantics of a prograi is given by the conditional probability distribution
Pw [(value (V) Nvalid]
Pw [valid] '

the conditional probability that a run & returnsV given a valid run, also known as tip@sterior
probability.

The conditional probability |2 [value =V | valid] is only defined when [[valid] is not zero.
For pathological choices d¥l such asobserve falseor let x = 3 in observex there are no valid
runs, so Rvalid] = 0, and Hvalue =V | valid] is undefined. (This is an occasional problem in
practice; Bayesian inference engines such as Infer.NEinftiis situation with a zero-probability
exception.)

Pwm [value =V | valid] =

2.4. An Example in Bernoulli Fun. The expression below encodes the questith: of a popu-
lation have a disease. 80% of subjects with the disease ¢sgiye, and 9.6% without the disease
also test positive. If a subject is positive, what are thesatheéy have the diseas¢®4]

Epidemiology: Odds of Disease Given Positive Test

let has_disease = random (Bernoulli(0.01))
let positive_result = if has_disease
then random (Bernoulli(0.8))
else random(Bernoulli(0.096))
observepositive_result
has_disease

For this expression, we hate= {w, w+, wrt, wr f } Where each runx, ¢, corresponds to the choice
has_disease = ¢; andpositive_result = C,. The probability of each run is:

e prob(wy) = 0.01x 0.8 = 0.008 (true positive)

e prob(aw) = 0.01x 0.2 =0.002 (false negative)

e prob(wst) = 0.99x 0.096= 0.09504 (false positive)
prob(wss) = 0.99x 0.904= 0.89496 (true negative)

The semantics Ralue = true | valid] here is the conditional probability of having the diseaseery
that the test is positive.

Here Plvalid] = prob(ws) + prob(c) and Plvalue = true Nvalid] = prob(w), S0 we have
P[value = true | valid] = 0.008/(0.008+ 0.09504 = 0.07764. So the likelihood of disease given a
positive test is just 7.8%, less than one might think.

This example illustrates inference on an explicit enunienadf the runs inQ. The size ofQ
is exponential in the number eindom expressions, so although illustrative, this style of iafee
does not scale up. As we explain in Sectihnour implementation strategy is to translate Fun

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 9

expressions to the input language of an existing inferengae based on factor graphs, permitting
efficient approximate inference.

3. SEMANTICS AS MEASURE TRANSFORMERS

We cannot generalize the operational semantics of thequg\gection to continuous distributions,
such agandom (Gaussian(1,1)), since the probability of any particular sample is zero. Atfer
difficulty is the need to observe events with probabilityaqzexr common situation in machine learn-
ing. For example, consider the naive Bayesian classifiegnanmon, simple probabilistic model.
In the training phase, it is given objects together withrtleksses and the values of their pertinent
features. Below, we show the training for a single featune:weight of the object. The zero prob-
ability events are weight measurements, assumed to be hpisiributed around the class mean.
The outcome of the training is the posterior weight distiiims for the different classes.

Naive Bayesian Classifier, Single Feature Training:

let wPrior() = random (Gaussian(0.5,1.0))

let Glass,Watch,Plate = wPrior(),wPrior(),wPrior()

let weight objClass objWeight = observe(objweight—(random (Gaussian(objClass,1.0))))
weight Glass .18; weight Glass .21

weight Watch .11; weight Watch .073

weight Plate .23; weight Plate .45

Watch,Glass,Plate

Above, the call toweight Glass .18 modifies the distribution of the variabtdass. The example
usesnbserve(x—y) to denote that the difference between the weiglatsdy is 0. The reason for not
instead writingk=y is that conditioning on events of zero probability withopésifying the random
variable they are drawn from is not in general well-definddBorel's paradox 21]. To avoid this
issue, we instead observe the random variable of typereal, at the value 0. (Our compiler does
permit the expressioabserve(x=y), as sugar foobserve(x—y)).

To give a formal semantics to such observations, as well asixtures of continuous and
discrete distributions, we turn to measure theory, follgyvstandard source$,[48]. Two basic
concepts are measurable spaces and measures. A measpaabless set of values equipped with a
collection ofmeasurablesubsets; these measurable sets generalize the eventsrefeljzrobability.

A measurds a function that assigns a positive size to each measusahlfinite measureswhich
assign a finite size to each measurable set, generalizehilibdistributions.

We work in the usual mathematical metalanguage of sets &mduactions. To machine-check
our theory, one might build on a recent formalization of neagheory and Lebesgue integration
in higher-order logic 35].

3.1. Types as Measurable Spacedn the remainder of the paper, we I8t range over sets of
possible outcomes; in our semantfewill range overB = {true,false}, Z, R, and finite Cartesian
products of these sets. &-algebraoverQ is a setM C P(Q) which (1) containsz andQ, and
(2) is closed under complement and countable union andsetgon. Ameasurable spads a pair
(Q,M) whereM is ao-algebra ovef); the elements aM are calledmeasurable setdNVe use the
notationog (S), whenSC P(Q), for the smallest-algebra ovef that is a superset & we may
omit Q when it is clear from context. Given two measurable spd€asM;) and (Qz,M>), we

10 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

can compute their product &1, M) x (Q2,Mz) = (Q1 x Qp, 0q,x0,{AX B| A€ My,B € My})
If (Q,M) and(Q’,M’) are measurable spaces, then the funcfio2? — Q' is measurabldf and
only if for all A€ M, f~1(A) € M, where theinverse image ! : P(Q’) — P(Q) is given by
f-1(A) £ {we Q| f(w) € A}. We write f ~1(x) for f~1({x}) whenx € Q'.

We give each first-order typean interpretation as a measurable spafd = (Vi, M;) below.
We identify closed values of typgewith elements oW, and write () for &, the unit value.

Semantics of Types as Measurable Spaces:

J[unit] = (O}, {{O},2}) T[[bool]] = (B, P(B))

Tllint] = (Z,P(Z)) T[lreal] = (R,or({[a,b] | a,b € R}))
T+ u] = 7] > Tu] |
The setor({[a,b] | a,b € R}) in the definition ofT[real]] is the Borelo-algebra on the real line,
which is the smallestr-algebra containing all closed (and open) intervals. Beloawrite f :t — u
to denote thaf : V; — V, is measurable, that is, that*(B) € M for all B € M.

3.2. Finite Measures. A measureu on a measurable spa¢@, M) is a functionM — R U {eo}
that is countably additive, that ig,(@) = 0 and if the set#\, Aq,... € M are pairwise disjoint, then
U(UA) = 5 L(A). We write|u| £ p(Q). A finite measureu is a measurg satisfying| | # o; a
o-finite measurqu is a measure such th&t= AgUA; U... with t(A)) # . All the measures we
consider in this paper am-finite.

LetMt be the set of finite measures on the measurable sfageAdditionally, a finite measure
K on (Q, M) is aprobability measurevhen|u| = 1. We do not restrictl t to just probability mea-
sures, although one can obtain a probability measure froomazaro finite measure by normalizing
with 1/|u|. We make use of the following constructions on measures.

e Given a functionf : t — u and a measurg@ € Mt, there is a measurgf~—! € M u given by
(Hf~H)(B) = pu(f71(B)).

e Given a finite measurg and a measurable sBf we letu|g(A) = (AN B) be the restriction of
U to B.

e We can add two measures on the same sgias () (A) = g (A) + o (A).

e We can multiply a measure by a positive constantragt)(A) = r - u(A).

e The (independent) produgt{ x o) of two (o-finite) measures is also definab& Sec. 18], and
satisfie(ty x t2)(Ax B) = 1 (A) - Uz(B).

e If i is a measure oty for i € {1,2}, we let the disjoint sunu; @ > be the measure dn+t;
defined as\ W A — [Jl(Al) + [.12(A2).

e Given a measurg on the measurable spatét], a measurable séte M; and a functionf : t —
real, we write [, fdu or equivalently [, f(x)du(x) for standard (Lebesgue) integration. This
integration is always well-defined jf is finite andf is non-negative and bounded from above.

e Givent, we letA; be the “standard” measure Gifit]] built from independent products and disjoint
sums of the Lebesgue measurereal and the counting measure on discrbieWe often omit
t when it is clear from the context. (We also usenotation for functions, but we trust any
ambiguity is easily resolved.)

e Given a measurg on a measurable spa@ét] we call a functionu : t — real adensityfor p iff
H(A) = [, dA forall Ae M.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 11

Standard Distributions.Given a closed well-typed Fun expressiamdom (D(V)) of base typéb,
we define a corresponding finite measprg,, on measurable spadgb], via its densityD(V) =
Up(v)- In the discrete case, we first define the probability masstiom, writtenD(V) ¢, and then
define the measungp(v) as a summation.

MassesD(V) c and Measurespipy) for Discrete Probability Distributions:

Bernoulli(p) true = p if 0 < p< 1,0 otherwise
Bernoulli(p) false£ 1—p if 0 < p< 1, 0 otherwise
Binomial(n, p) i £ (}) p'/n! if 0 < p< 1,0 otherwise
DiscreteUniform(m) i £ 1/m if 0 <i < m, 0 otherwise
Poisson(l) n2 e '1"/nl if I,n> 0, 0 otherwise

Hpw)(A) £ 3 D(V) ¢ if A=J;{c} for pairwise disjointc;

In the continuous case, we first define the probability dgrsitction D(V) r and then define the
measuretpy) as an integral. Below, we writ& for the standard Gamma function, which on
naturalsn satisfiesG(n) = (n— 1)L

DensitiesD(V) r and Measurestip v for Continuous Probability Distributions:

Gaussian(m,v) r £ e~ =M%/, /ony if v> 0, 0 otherwise

Gamma(s, p) r = rsle P'ps/G(s) if r,;s,p> 0, 0 otherwise

Beta(a,b) r £ r31(1—-r)P-1G(a+b)/(G(a)G(b)) if a,b>0and 0<r <1, 0 otherwise
Hpv)(A) = [AD(V)dA whereA is the Lebesgue measure Bn

The Diracd measure is defined on the measurable sgdbé for each base typle, and is given by
&(A) = 1if c€ A 0 otherwise.

Conditional density.The notion of density can be generalized as follows, yigl@in unnormalized
counterpart to conditional probability. Given a measuwahbinctionp : t — u, we consider two
families of events on. Firstly, eventsE; = {x € V; | p(x) = ¢} wherec ranges ove¥,. Secondly,
rectangleRy = {x € V; | x < d} whered ranges oveW; and< is the coordinate-wise partial order
(that on pair types satisfigs, b) < (c,d) iff a < candb < d, that onint andreal is the standard
ordering, and that only relates equal booleans).

Given a finite measurg on J[t] andc € V,, we letF; :t — R be defined by the limit below
(following [13])

Fe(d) £ fim p(Ry 1 p*(B))/Au(B) (3.1)

if the limit exists and is the same for all sequen¢Bg} of closed sets converging regularlydoOn
pointsd where no unique limit exists, we let

F.(d) 2 inf{Fo(d') | d < d' Ad # d’ AF(d') defined

where we let infz £ . If F; is bounded, we defin®u[-||p = c] € R (the u-density atE;) as the
finite measure off t]] with (unnormalized) cumulative distribution functiég, that is,Du[Rg||p =
c] = Fe(d). (If Rz is not bounded, it is not the distribution function of a finiteasure.)

As examples of this definition, whemis discrete we have th&@u[A||p = c] = u(AN{x|
p(x) = c}), so discrete density amounts to filtering. In the continucasse, ifV; = R x RX, p =

12 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

A(x,y).(x—c) andu has a continuous densifythen
H(Rabn NP '(B))

F(ab) = lim

i—00 Ar(Bi)
— im f(R<a‘b)ﬂp*1(Bi))p(xa y) dAt (X7 y)
e)\]R(Bi)

= / p(c,y)dAgk(y) whena= c by continuity.
ley)eR@p)

Whena = c the limit may not be unique, in which case we have
Fe(c,b) = inf{R(d')|(c,b) <d'}

= / H(ay)dAgzk(y) by monotonicity ofFc and continuity.
V(@y)eRap }

We then get

DulAllp=¢ = /{y(cy)eg(c,y)d/\w(y)- (3.2)

One case when conditional density may not be defined is whendhditioning event is at a dis-
continuity of the density function: ldét= real xreal, p(x,y) = x, andu(x,y) =1if 0 < xy <1,
otherwise 0. Theifr(x,y) = 0 if X< 1 ory < 0, and otherwise the limit3(1) is not unique. Thus
F1(1,0) = o, soF; is not bounded an@®u|[-||p = 1] is undefined. For more examples, see Sec-
tion 3.5

There exists a more declarative approactio. For A € My, we letva(B) = u(Anp=1(B));
this measure is said to labsolutely continuougnrt. A,) if va(B) = 0 whenevei;(B) =0. If u is
outer regular i.e. u(A) =inf{u(G) | AC G,G oper for all A, andv, is absolutely continuous, the
defining limit (3.1) existsalmost everywhergl3], that is, there is a s& with u(C) = 0 such that
c € Cif Fe(d) is undefined. ThenDu[A||p = ¢] is a version of the Radon-Nikodym derivative of
va(B) (wrt. Ay). For allB € My, conditional density thus satisfies the equation

H(AN P X(B)) = [DHIAIP =X dAu(X). (3.3)

The existence of a family of finite measur®g:|- ||p = c| on Tt] satisfying equation3.3) above

is guaranteed in certain situations, e.g., whgat! has densityl atc we may takeDu as a version
of the regular conditional probability[- | p = c] (see for instance6] Theorem 33.3]) scaled by
d. However, ifu(p~(c)) = 0 the value ofDu[A||p = c| may not be uniquely defined, since two
versions of Du[-||p = -] may differ on a null set. In order to avoid this ambiguity wedgiven
an explicit construction that works for many useful cases.

3.3. Measure Transformers. We will now recast some standard theorems of measure theay a
library of combinators, that we will later use to give seni@to probabilistic languages. Aeasure
transformeris a partial function from finite measures to finite measuviés.lett ~» u be the set of
partial functionsMt — M u. We use the combinators on measure transformers listetvbelthe
formal semantics of our languages. The definitions of thesebinators occupy the remainder of
this section. We recall that denotes a measure aAdh measurable set, of appropriate types.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 13

Measure Transformer Combinators:
I 1

pure € (t »>u) — (t~u)

> € (tr~ b)) = (o~ t3) — (t~ t3)

choose € (t — bool) — (t ~ u) = (t~u) — (t~u)
extend € (t > MU) — (t~ (txu))

observe € (t - b) — (t~1)

Lifting a Function to a Measure Transformefo lift a pure measurable function to a measure trans-
former, we use the combinatpure € (t — u) — (t~»u). Givenf :t — u, we letpure f © A=
uf=1(A), whereu is a measure ofi[t] andA is a measurable set frofij[u] (cf. [6, Eqn 13.7]).

Sequential Composition of Measure Transformels.sequentially compose two measure trans-
formers we use standard function composition, definisg € (t; ~ tz) — (to~t3) — (1~ t3) as
T>>U2UoT.

Conditional Choice between two Measure Transformdise combinatoehoose € (t — bool) —
(t~u) = (t~ u) — (t ~ u) makes a choice between two measure transformers, pararoetri
a predicatep. Intuitively, choose p Ty T u first splits V; into two sets depending on whether or
not p is true. For each equivalence class, we then run the comdspp measure transformer on
U restricted to the class. Finally, the resulting finite measware added together, yielding a finite
measure. lfo~*(true) = Bwe letchoose p Ty Tr 4 A= Tr([g)(A) + Tr (v \8) (A).

Extending Domain of a Measur&.he combinatoextend € (t —Mu) — (t ~ (txu)) extends the
domain of a measure using a function yielding measures.rénigniscent of creating a dependent
pair, since the distribution of the second component dependhe value of the first. Fetktend m

to be defined, we require that for evekye My, the functionfa = Ax.m(x)(A) is measurable, non-
negative and bounded from above. In particular, this haddsafi A if mis measurable anh(x)
always is a (sub-)probability distribution, which is alvgathe case in our semantics for Fun. We
letextend mu AB= [, m(x)({y| (x,y) € AB})du(x), where we integrate over the first component
(call it x) with respect to the measuye and the integrand is the measure unagx) of the set
{y| (x,y) € AB} for eachx (cf. [6, Ex. 18.20]).

Observation as a Measure Transformé@ihe combinatobbserve € (t — b) — (t ~t) conditions
a measure oveF([t] on the event that an indicator function of types b is zero. Here observa-
tion is unnormalizedconditioning of a measure on an event. If defined, wetaterve p u A £
DulAl|p=0p]. As an example, ip:t — bool is a (measurable) predicate on values of typse
haveobserve p u A= u(AN{x| p(x) = true}). Notice thatobserve p 1 A can be greater than
HU(A) whenp:t — real (cf. the naive Bayesian classifier on pe@efor which reason we cannot
restrict ourselves to (sub-)probability measures. Fomgplas, see Equatior3(2) and SectiorB.5.

14 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

3.4. Measure Transformer Semantics of Fun.In order to give a compositional denotational se-
mantics of Fun programs, we give a semantics to open progtatasto be placed in some closing
context. Since observations change the distributions ajnam variables, we may draw a parallel
to while programs. There, a program can be given a denotasanfunction from variable valua-
tions to a return value and a variable valuation. Similaslg, give semantics to an open Fun term
by mapping a measure over assignments to the term’s freablesito a joint measure of the term’s
return value and assignments to its free variables. Thigehs a generalization of the (discrete)
semantics of pWILE [4]. This contrasts with Ramsey and Pfeffd6], where the semantics of an
open program takes a variable valuation and returns a (nmoachputation yielding a) distribution
of return values.

First, we define a data structure for an evaluation envirarinassigning values to variable
names, and corresponding operations. Given an environimernt:ti, ..., Xy:ty, we lets(I") be the
set of states, or finite mapgs= {x; — C1,..., X — Cy} such thatforali =1,...,n, ty(c) =t. We
let T[S(r)] £ T[unit xty * - -- xt,] be the measurable space of states(ii). We define dorfs) =
{X1,...,%}. We define the following operators.

Auxiliary Operations on States and Pairs:

add X (s,¢) = sU{x+> c} if ty (c) =t andx ¢ dom(s), s otherwise.
lookup X S= S(X) if x € dom(s), () otherwise.
drop X s£ {(x+c) €s|x¢ X} fst((xy)) £x snd((xy)) =y

We write s|x for drop (dom(s) \ X) s. We apply these combinators to give a semantics to Fun
programs as measure transformers. We assume that all bauadlgs in a program are different
from the free variables and each other. Bel®\{y]| s gives the valuation 0¥ in states, andA[M]]
gives the measure transformer denotedvhy

Measure Transformer Semantics of Fun:

V[x] s= 1ookup XS

[
[c] s=
[

V]
V]

(V1,Vz)]] = (V[Va] s, VI[V2])

AV] £ pure As(s V[V] 9)

AV ®Ve] £ pure As. (s, @(V[Vi] s, V[V2])

A[V.1] £ pure As.(s, £st(V[V] s))

A[V.2] £ pure As.(s,snd(V[V] s))

A[lif V thenM eIseN]] £ choose (ASV[V] s) A[M] A[N]

Alrandom (D (V))]] = extend AS.Upy)v])

AlobserveV] = (observe ASV[V]'s) = pure As.(s, Q)
Al

let x= M in N] £ A[M]] >3> pure (add X) >3 A[N] > pure A(s,y).((drop {x} 9),Y)

A value expressiolv returns the valuation of in the current state, which is left unchanged. Simi-
larly, binary operations and projections have a determiiniseaning given the current state. An

V expression runs the measure transformer given bthérebranch on the states wherYesvaluates
true, and the transformer given by teklsebranch on all other states, using the combinatarose.

A primitive distributionrandom (D(V)) extends the state measure with a value drawn from the dis-
tribution D, with parameter¥ depending on the current state. An observatibeerveV modifies

the current measure by restricting it to states wiéig zero. It is implemented with thebserve

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 15

combinator, and it always returns the unit value. The exgioeset x = M in N intuitively first runs
M and binds its return value tousingadd. After runningN, the binding is discarded usirgop.

Lemma3.1. If s: S(I') andl -V : t thenV[V] s€ V;.
Lemma3.2. If T F M :tthenA[M] € S(I') ~ (S(I") *t).

The measure transformer semantics of Fun is hard to uselgieept in the case of Bernoulli
Fun where they can be directly implemented: a naive impleatiem ofM(S(I")) is as a map assign-
ing a probability to each possible variable valuation. HrihareN variables, each sampled from a
Bernoulli distribution, in the worst case there afegaths to be explored in the computation, each
of which corresponds to a variable valuation. Our directlengentation of the measure transformer
semantics, described in the technical report version opaper B], explicitly constructs the valu-
ation. It works fine for small examples but would blow up omg&adatasets. In this simple case, the
measure transformer semantics of closed programs alsoideswith the sampling semantics.

Theorem 3.3. Suppose - M : t for some M in Bernoulli Fun. It = A[M]| 6y ande -V : t then
Pu [value =V | valid] = p({(O.V)})/I.

Proof. We add a construct to give a semantics to open Bernoulli Fpreggions. Leinit (M, 1)
stand forM starting in an initial probability measupeons("). Letinit (M, u) —Ps M {V1/y, -+ -Vo/y }
whens= {x Vi |i =1..n} € S(I') andps = U({S | S'ltv(m) = Slv(m) })- In particular, ifM is closed,
theninit (M, 5y) —1M, soinit (M, d(y) has the same tracesldsbut for an additional (valid) initial
step.

By induction on the derivation df - M : t, we prove that if F M :tandek-V :tandu €
M(S(I")), thenv(S(I') x {V}) = Py|validNvalue =V] and v(S(I') x V;) = Py [valid], wherev =
A[M] g andN =init (M, u).

Then, for closedV we get Ry [value =V | valid] = Py [valid Nvalue = V] /Py [valid] =
v{(O VNV O} x W) 0

3.5. Discussion of the Semanticsin this section we discuss some small examples that ar&dhus
tive of the semantics of thebserveprimitive. The first example highlights the difference beem
discrete observations and observations on continuous.type

The subsequent examples contrast our definitionbskervewith some alternative definitions.
The second example deals with the definition of discreterehtiens, that is shown to coincide with
the filtering semantics of Bernoulli Fun, unlike two altetima semantics. In the third example, we
treat continuous observations, showing that distribuéingobservation into both branches of an if
statement yields the same result, in contrast to an alteersgmantics of observations as computing
(normalized) conditional probability distributions.

In the fourth example, we show an example of model compatisahdepends on the unnor-
malized nature of observations. In the fifth example, we shomell-typed Fun program with an
observation (of a derived random variable) that failed tovb#-defined in the original semantics of
observation.

Discrete versus continuous observatioss an example to highlight the difference between contin-
uous and discrete observations, we first consider the foilpywrogram, which observes that a nor-
mally distributed random variable is zero. The resultingtritiution of the return value is a point
mass at 0.0, as expected. The measuf®@f} in this distribution isGaussian(0.0,1.0) 0.0 ~ 0.4.

16 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

Continuous Observation:
let x = random (Gaussian(0.0, 1.0))in let _ = observex in x

The second program instead observes that a Boolean vaisatolee. This has zero probability of
occurring, and since the Boolean type is discrete, thetirguheasure is the zero measure.
Discrete Observation:

' let x = random (Gaussian(0.0, 1.0))in let b = (x==0.0)in let _ = observeb in x

These examples show the need for observationsalttype, as well as at typbool. (This also
clearly distinguishesbservefrom assume in assertional programming.)

Discrete Observations amount to filteriné. consequence of TheoreBa3is that our measure trans-

former semantics is a generalization of the sampling sdaosaftr discrete probabilities. For this

theorem to hold, it is critical thabbservedenotes unnormalized conditioning (filtering). Other-
wise programs that perform observations inside the brancheonditional expressions would have
undesired semantics. As the following example shows, tleepregram fragmentebserve(x=y

) andif x then observe(y=true) else observdy=false) would have different measure transformer
semantics although they have the same sampling semantics.

Simple Conditional Expression: Mt

' let x = random (Bernoulli(0.5))
let y = random (Bernoulli(0.1))
if x then observe(y=true) else observdy=false)

y

In the sampling semantics, the two valid runs are whandy are bothtrue (with probability 0.05),
and bothfalse (with probability 0.45), so we have[Rue | valid] = 0.1 and Hfalse | valid] = 0.9.

If, instead of the unnormalized definitiembserve p u A= u(AN{x| p(x)}), we had either of
the normalizing definitions

HAN{X]| p(¥)}) HAN{X]| p(¥)})
observe puU A= or u
H({x [P0)) M i e
thenA[Mi] d¢y {true} = A[Mi] &y {false}, which would invalidate the theorem.
Let M’ = M;; with observe(x = y) substituted for the conditional expression. With the datua

either of the flawed definitions efbserve we haveA[M'] &y {true} = (A[M']] 6., {false})/9.

Continuous Observations are not normalizindys in the discrete case, continuous observations do
not renormalize the resulting measure. In the program helmwariables andy are independent:
observingx at a given value amounts to scaling the measurelyf some fixed amount.
Simple Continuous Observation:Mgps
' let x = random (Gaussian(0.0, 1.0))

let y = random (Gaussian(0.0, 1.0))

observe(x—1.0)

y

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 17

The resulting distributioq, of y is the normal distribution, scaled by a fac@sussian(0.0,1.0) 10~
0.24. In particularuy({y e R:y > —1})/|uy| =~ 0.16. Below, we let be the joint distribution ok
andy before the observation.

If we replace the observation by an if statement that perdotine same observation in each
branch, the resulting distribution is unchanged. Mét= Mgps With the conditional expression
N :=if x+y>0then observe(x—1.0) else observégx—1.0) substituted foobserve(x—1.0). Let
A={(x,y) € R?:x+y>0} andB = R?\ A. We haveA[[N]v = choose pT TV =T (v|a) +T(v|p)
wherep=Ax,y.(x+y > 0) andT = observe AX,_.(x—1). Since the definition afbserve AX, _.(X—
Lp = Du[-||x= 1] is linear inu (where defined) and = v|s+ v|g, we haveA[Mgpd = A[M’].

However, if observations always yielded probability disitions, andf statements reweighted
the result of each branch by the probability that that bramak taken, the above equality would
not hold. InM’, the branch conditior+y>0 is true with probability 0.5 a priori. This reweighting
semantics would after the observationxeflL give the same probability to $3+0 (the left branch
being taken) and <0 (the right branch being taken). In contrast, the origimabpamMpsyields
P[1+y<0] ~ 0.16.

Medical trial. As another example, let us consider a simple Bayesian di@iuaf a medical
trial [37]. We assume a trial group ofTrial persons, of whiclcTrial were healthy at the end of
the trial, and a control group afControl persons, of whickcControl were healthy at the end of
the trial. Below,Beta(1.0,1.0) is the uniform distribution on the interjal0,1.0]. We return the
posterior distributions of the likelihood that a member o trial group Trial) and a member of
the control groupgControl) is healthy at the end of the trial.

Medical Trial:

I let medicalTrial nTrial nControl cTrial cControl =
let pTrial = random(Beta(1.0,1.0))
observe(cTrial == random (Binomial(nTrial,pTrial)));
let pControl = random(Beta(1.0,1.0))
observe(cControl == random (Binomial(nControl,pControl)));
pTrial, pControl

We can then compare this model to one where the treatmengfiedtive, that is, where the
members of the trial group and the control group have the sawteability of becoming healthy.
Also here we give a uniform prior to the probability that theatment is effective; the posterior
distribution of this variable will depend on the Bayesiaidewnce for the different models, that is,
the ratio between the probabilities of the observed outcomike two models. This way of per-
forming model comparison critically depends on the unndized nature of discrete observations
as filtering.

Model Selection:

' let modelSelection nTrial nControl cTrial cControl =
let pEffective = random(Beta(1.0,1.0))
if random (Bernoulli(pEffective)) then
medicalTrial nTrial nControl cTrial cControl

0

18 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

else
let pAll = random(Beta(1.0,1.0))
observe(cTrial == random (Binomial(nTrial,pAll)))
observe(cControl == random (Binomial(nControl,pAll)))
pEffective

Observation of Derived VariableThe following example, due to Chung-Chieh Shan, highlighte
regularity problems with our original definition of obsetiza [8].
Observation of Derived Variable:

' let x = random (Beta(1.0, 1.0))in let y = x — 0.5in observey: x.

Intuitively, this program should yield a point massxat0.5, y=0. In our semantics, ifi is the
measure before the observation (when starting fdgm we have

Fo(x,y) = 1lifx>0.5andy>0
Fo(x,y) = 0ifx<050ry<0

Otherwise, we havBy(x,y) = inf{Fo(X,y) [X >XxAY >y} =1s0oDulAlly=0] = 1iff (0.5,0) €A
and otherwise 0; in particular we ha®u[x = 0.5||y = 0] = 1.

The original definition of observation simply applied theili of Equation 8.1) to anyA (not
only to rectangle®y). Then the density of any null set would be 0, and in particula would have
Dulx = 0.5|ly = 0] = 0. This would contradict countable additivity, sing®@u[-|ly = 0]| = 1 but
Dulxy < [x—0.5 < xo|ly = 0] =0 when 0< X1 < Xp.

4. SEMANTICS BY COMPILATION TO CSOFT

A naive implementation of the measure transformer sensofithe previous section would work
directly with measures of states, whose size even in theadescase could be exponential in the
number of variables in scope. For large models, this becantesctable. In this section, we
instead give a semantics to Fun programs by translatioretsithple imperative language Imp. We
consider Imp to be a sublanguage of Csoft; the Csoft progsathein evaluated by Infer.NET by
constructing a suitable factor grap2g], whose size will be linear in the size of the program. The
implementation advantage of translating F# to Csoft, owaply generating factor graphs directly
[32], is that the translation preserves the structure of thatimpodel (including array processing
in our full language), which can be exploited by the varionfelience algorithms supported by
Infer.NET.

4.1. Imp: An Imperative Core Calculus. Imp is an imperative language, based on the static
single assignment (SSA) intermediate form. It is a sublagguof Csoft, the input language of
Infer.NET [37]. A composite statemeii is a sequence of statements, each of which either stores
the result of a primitive operation in a location, obsentes ¢ontents of a location to be zero, or
branches on the value of a location. Imp shares the base liypitls Fun, but has no tuples.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 19

Syntax of Imp:
K

~

location (variable) in global store

E.Fi=c|l|(I®]) expression
| = statement

|+ E assignment

| < D(lg,...,In) random assignment

observe, | observation

if | thenC; elseC, conditional

locall :bin C local declaration (scope b¢fis C)
C:=nil|l|(CC) composite statement

When making an observatiabserve,, we make explicit the typb of the observed location. In a
local declarationlocal | : bin C, the locationl is bound, with scop€. Next, we derive an extended
form of local, which introduces a sequence of local variables.

Extended Form oflocal:

1
localZinC£locally:byin ...locally:byinC whereX =g,ly:by,....In: by

The typing rules for Imp are standard. We consider Imp tygingronments. to be a special
case of Fun environments, where variables (locations) always map to base type& =fe. |1 :
by,...,In: b, we sayZ is well-formedand writeZ - ¢ to mean that the locatiorls are pairwise
distinct. The judgmenk + E : b means that the expressi@nhas typeb in the environmenk. The
judgmentZ + C : £’ means that the composite statem@nis well-typed in the initial environment
%, yielding additional binding&’.

Judgments of the Imp Type System:

' ko environment is well-formed
>HE:b in Z, expressiork has typeb
>HC: Y givenZ, statemen€ assigns t&’

Typing Rules for Imp Expressions and Commands:

(Imp ConsT) (IMP LoC) (Imp OP)
ko ZFo (lb)eX ZFIli:by ZFla:by ®:bg,bp— bs
Zkc:ty(c) >HI:b 2HI®Ily:bs

(IMmP RANDOM)
D:(x1:b1,...,% :bn) = b | ¢ dom(X)

SH1<&D(lg,...,1n) 1 (g,1:b)
(ImP OBSERVE) (ImP SEQ) (IMP NIL)
>H1:b SHCp: Y S YEC Y ko
> observel : ¢ SHCy;C: Y Y Sknil ;e

(ImP IF) (Imp LocCAL)
SHl:bool ZHCp:Y ZHCp: ¥ IEC:Y (I:b)e¥

S Hif I thenCy elseC;: ¥/ Zhlocall :binC: (Z'\{l:b})

(ImP AsSIGN)
>HE:b | ¢ dom(X)
1+ E:(gl:b)

20 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

To treat sequences of local variables, we usesthéfle produck; + 2, of two environments,
defined below.

Typing Rule for Extended Form of local:

(ImP LocALS)
(SH EMP) (SH LEFT) (SH RIGHT) srC:3,

€31+ ZX:bko 2e3142p ZX:bko S e 43
1
ece+e (Ex:ib)e(Z,x:b)+Zx (Z,x:b) € X1+ (Z2,X:b) > local 5, in C: 3/
Lemma 4.1.
(1) If £,¥'+ o thendomZ) ndom(Y') = @
(2) If Z+E:bthenXt ¢ andfv(E) C dom(%).
(3) If S+C: % thenZ, s + o.

4.2. Measure Transformer Semantics of Imp. A compound stateme@ in Imp has a semantics
as a measure transform&fC]] generated from the set of combinators defined in Se@ion
Imp program does not return a value, but is solely a measamsformer on states>) ~» S(Z, %)
(whereX is a special case of).

Interpretation of Statements: J[[C],J[I] : S(Z) ~ S(Z,)

nil] £ pure id
I[C1;C2]) £ T[Ca] > T[Co]

c] = pure As.add | (s,c)

= pure As.add | (s,1ookupl’s)

+—11®1,] £ pure As.add | (s,®(lookupl; S, 1ookup I, S)))

< D(Ilv >|)]] = extend (A S-Up(1ookup I3 s,...,1ookup Iy S)) > pure (add I)
observg,] = observe As.lookup | s

if | thenCy eIseCz]] < choose (As.lookup | S) IJ[C4] T[C2]

local | : bin CJ] £ J[[C]| >>> pure (drop {I})

Lemma4.2. If 2+ C: ¥’ thenA[M] € S(Z) ~» S(Z,%').

Semantics of Extended Form ofocal:

"Jlocal T in C] £ I[C] s> pure (drop (dom(Z))) |

I
[
I+
I <1
M

M

I
I
I

4.3. Translating from Fun to Imp. The translation from Fun to Imp is a mostly routine compi-
lation of functional code to imperative code. The main pahinterest is that Imp locations only
hold values of base type, while Fun variables may hold tupésrely onpatterns pandlayoutsp

to track the Imp locations corresponding to Fun environment

Notations for the Translation from Fun to Imp:

pr=1{()](p,p) pattern: group of Imp locations to represent Fun value
p = (X > py)'etn layout: finite map from Fun variables to patterns
2kp:t in environmen®, patternp represents Fun value of type

Fp:T in environment, layoutp represents environmenht

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 21

p-FM=Cp givenp, expressiorM translates t&€ and pattermp

Typing Rules for Patterns> + p:t and LayoutsZ - p: T

(LAYOUT)
(AT (parumim) (PATPAR) - locs(p) = dom(s)
I:yes —ZFo Zl—pl:tl ZFo dom(p) = dom()
g.ves - P2-T TEp(X):t V(x:t)erl
. ZF () :unit ;
SHI:t ZH(p1, p2) i trxtp Skp:r

The rule(PAT LOC) represents values of base type by a single location. The (ke UNIT) and
(PaT PAIR) represent products by a pattern for their correspondingpoments. The rul@_AyouT)
asks that each entry inis assigned a pattern of suitable type by layout

The translation rules below depend on some additionalinogatWe sayp € X if every location
in pisinX. Letlocgp) = U{fv(p(x)) | x € dom(p)}, and let loc§C) be the environment listing
the set of locations assigned by a comme@nd

Rules for Translation: p~ p andp<« p andp-M=C,p

0~0 I~ P1~ PLA P2~ P5 = (P1, P2) ~ (Py, P2)
0« 0= nil (P1, P2) < (P, Pp) = P1 < Pps P2 ¢ Pa
(TRANS VAR) (TRANS CONST) (TRANS UNIT)

c#() | ¢locs(p)
pEx=nil,p(x) pkc=(l<+c),l pkE()=nil,(
(TRANS OPERATOR
pFV1=Cli pEVo=Cyla
| ¢ locs(p) UlocsCq) UlocsCy) locs(C1) NlocsCy) = @
pPFVI®RVo = (Cl;C2;| — |1®|2),|
(TRANS PAIR)
pFEVi=Ci,p1 pFVo=Cyp2 locsCi)NlocyCy) =2

pt (V1,V2) = (C1;Co), (p1, P2)

(TRANS PrROJ) (TRANS PROR)
prV=C,(p,p2) pPEV=C (pP1,P2)
pFV.1=C p; pHV.2=C p2

(TRANSIF)

pFVi=Cyi,l (locsp)UlocsCy) UlocsCy) UlocsCs)) Nfv(p) = &
pFMa=Cyp Cj,=local locs(Cy)in (Co;p< p2) P2~ p
pFMsz=Cs,ps Cj=local locs(Cs)in (Cg;p<« p3) Pz~ P
p F (if Vi then My elseM3) = (Cy;if | then C, elseC}), p
(TRANS OBSERVE) (TRANS RANDOM)
pEV =C,| bisthe type oV pEV=C,p |¢locsp)UlocsC)

p - observeV = (C;observg 1),() pFrandom (D(V))=-(C;l < D(p)),l

22 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

(TRANS LET)
pEM1=Cy,p1 Xx¢domp) p{x= pi}-Mx=Cp
p - letx= My in Mz = (local (locs(Cy) \ fv(p1)) in C1);Co, p2

In general, a Fun terrvl translates under a layoptto a series of commandsand a patterp. The
command€ mutate the global store so that the locationp gorrespond to the value thislt returns.
The simplest example of this is {TRANS CONST): the constant expressiartranslates to an Imp
program that writeg into a fresh location. The pattern that represents this return valueitself.
The (TRANS VAR) and(TRANS UNIT) rules are similar. In both rules, no commands are run. For
variables, we look up the pattern in the laygutor unit, we return the unit location. Translation of
pairs(TRANS PAIR) builds each of the constituent values and constructs a pHerp.

More interesting are the projection operators. Congi@ienNs ProJL); the second projection
is translated similarly byTRANS PROZ). To findV.1, we run the commands to generstewhich
we know must return a pair pattefp,, p2). To extract the first element of this pair, we simply need
to returnp;. Not only would it not be easy to isolate and run only the comdsato generate the
values that go irpy, it would be incorrect to do so. For example, the Fun expoassconstructing
the second element &f may observe values, and hence have non-local effects.

The translation for conditional§TRANS IF) is somewhat subtle. First, we run the translated
branch condition. The return value of the translated bresé reassigned to a pattgorof fresh
locations: using a shared output pattern allows us to al@igpthodes common in SSA compilers.
We use the Imp derived form where the local variables oftlttem and elsebranches of the con-
ditional are restricted. Instead, both branches write teeghf shared target, in order to preserve
well-typedness (Propositioh 3).

The rule(TRANS OBSERVE) translate®bserveby running the commands to generate the value
for V and then observing the pattern. (This pattecan only be a location, and not of the form ()
or (p1, p2), as observations are only possible on values of base type.)

The rule(TRANS RANDOM) translates random sampling in much the same wayDBy), we
mean the flattening gb into a list of locations and passing it to the distributiomsuctorD.

Finally, the rule(TRANS LET) translatedet statements by running both expressions in se-
guence. We translaté,, the body of the let, with an extended layout, so tiaknows where to
find the values written b@,, in the pattermp;. Here the local variables of the let-bound expression
are restricted usintpcal.

Proposition 4.3. Supposé FM :tandZt p:T.

(1) There are C and p such that- M = C, p.
(2) Whenevep M = C, p, there is¥’ such thatz - C: ¥’ andZ,2'+ p:t.

Proof. By induction on the typing oM (AppendixA.1).]

We define operationsift andrestrict to translate between Fun variablesI{()) and Imp

locations §(X)).

1ift p = Asflatten{p(x) — V[x] s| x € dom(p)}

restrict p 2 As. {x— V[p(x)] s|x € dom(p)}
We let flatten take a mapping from patterns to values to a mapijpom locations to base values.
Given these notations, we state that the compilation of Bump preserves the measure transformer
semantics, modulo a pattepthat indicates the locations of the various parts of thernetalue in
the typing environment; an environment mappmgvhich does the same translation for the initial
typing environment; and superfluous variables, removeddaytrict.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 23

Theorem 4.4.1fT'-M:tandXFp: T andp+-M = C, p then:
A[M] = pure (1ift p) >>> J[C]| >>> pure (As. (restrict p s, V[p] 5)).

Proof. By induction on the typing oM (AppendixA.2). []

5. ADDING ARRAYS AND COMPREHENSIONS

To be useful for machine learning, our language must supgae datasets. To this end, we extend
Fun and Imp with arrays and comprehensions. We offer thramples, after which we present the
formal semantics, which is based on unrolling.

5.1. Comprehension Examples in Fun.Earlier, we tried to estimate the skill levels of three com-
petitors in head-to-head games. Using comprehensionsawenodel skill levels for an arbitrary
number of players and games:

TrueSKkill:

let trueskill (players:int[]) (results:(bool«int«int)[]) =
let skills = [for p in players —random (Gaussian(10.0,20.0))]
for (w,p1,p2) in results do

let perfl = random (Gaussian(skills.[p1], 1.0))

let perf2 = random (Gaussian(skills.[p2], 1.0))

if w//win?

then observe(perfl > perf2) // first player won

else observdperfl = perf2) // draw

skills
First, we create a prior distribution for each player: weuass that skills are normally distributed
around 10.0, with variance 20.0. Then we look at each of thelte—this is the comprehension.
The result of the head-to-head matches is an array of trigld8oolean and two indexes. If the
Boolean is true, then the first index represents the winneitlam second represents the loser. If the
Boolean is false, then the match was a draw between the twerglaThe probabilistic program
walks over the results, and observes that either the firgeptaperformance—normally distributed
around their skill level—was greater than the second’squernce, or that the two players’ per-
formances were equal. Returnirgills after these observations allows us to inspect the posterior
distributions. Our original example can be modelled willyers = [0;1;2 (IDs for Alice, Bob,
and Cyd, respectively) andsults = [(true,0,1); (true, 1,2); (true,0,2)].
As another example, we can generalize the simple Bayesaanifier of Sectiord to arrays of

categories and measurements, as follows:

Bayesian Inference Over Arrays:
1

let trainF (catlds:int[]) (trainData:(int«real)[]) fMean fVariance =
let priors = [for cid in catlds — random (Gaussian(fMean,fVariance))]
for (cid,m) in trainData do observe(m — random (Gaussian(priors.[cid],1.0)))
priors

let catlds:int[] = (x ... %)

let trainingData:(intxreal)[] = (x ... *)

24 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

The functiontrainF is a probabilistic program for training a naive Bayesiarssifier on a single
feature. Each category of objects—modelled by the acealgs—is given a normally distributed
prior on the weight of objects in that category; we store e¢hiesthepriors array. Then, for each
measuremenin of some object of categorygid in the trainingData array, we observe that is
normally distributed according to the prior for that catggof object. We then return the posterior
distributions, which have been appropriately modified yydbserved weights. We can train using
this model by issuing a command suchtaF catlds trainingData 20.0 5.0, which runs inference
to compute for each category its posterior distributiontlfiis feature.

As a third example, consider the adPredictor componenteoBthg search engine, which esti-
mates the click-through rates for particular users on didesnents 17]. We describe a probabilistic
program that models (a small part of) adPredictor. Withoss lof generality, we use only two fea-
tures to make our prediction: the advertiser’s listing dmelghrase used for searching. In the real
system, many more (undisclosed) features are used forctiedi

adPredictor in F#:

let read_lines filename count line = (x ... %)
[<RegisterArray>]
letimps = (... %)
[<ReflectedDefinition>]
let probit b x =
let y = random (Gaussian(x,1.0))
observe(b == (y > 0.0))
[<ReflectedDefinition>]
let ad_predictor (listings:int[]) (phrases:int[]) impressions =
let Iws = [for I'in listings —random (Gaussian(0.0,0.33))]
let pws = [for p in phrases —random (Gaussian(0.0,0.33))]
for (clicked,lid,pid) in Array.toList impressions do
probit clicked (lws.[lid] + pws.[pid])
Iws,pws
Theread_lines function loads data from a file on disk. The data are formaitedewline-separated
records of comma-separated values. There are three impoghues in each record: a field that
is 1 if the given impression lead to a click, and a 0 otherwedield that is the database ID of
the listing shown; a field that is the part of the search phtlageled to the selection of the listing.
We preprocess the data in three ways, which are elided indtle above. First, we convert the
1/0-valued Boolean to aue/false-valued Boolean. Second, we normalize the listing IDs sb tha
they begin at 0, that is, so that we can use them as array ind&kérd, we collect unique phrases
and assign them fresh, O-based IDs. We deffims—a list of advertising impressions (a listing
ID and a phrase ID) and whether or not the ad was clicked—imdef this processed data. The
[<RegisterArray>] attribute on the definition amps instructs the compiler to simply evaluate this
F# expression, yielding a deterministic constant. Finaltiypredictor defines the model. We use
the [<ReflectedDefinition>] attribute onad_predictor to mark it as a probabilistic program, which
should be compiled and sent to Infer.NET. Suppose we havedsthe collated listing and phrase
IDs in s andps, respectively; we can train on the impressions by calidgredictor Is ps imps.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 25

5.2. Formalizing Arrays and Comprehensions in Fun. We introduce syntax for arrays in Fun,
and give interpretations of this extended syntax in termf@icore languages, essentially by treat-
ing arrays as tuples and by unfolding iterations. We workhwibn-empty zero-indexed arrays of
statically known size (representing, for example, stéjidanown experimental data).

There are three array operations: array literals, indexand array comprehension. First, Jet
be a set ofanges t Ranges allow us to differentiate arrays of different siadsreover, limitations
in the implementation of Infer.NET disallow nested itevas on the same range. Here we disallow
nested iterations altogether—they are not needed for campbes and they would significantly
complicate the formalization. We assign sizes to rangesgusie function|-| : R — Z*. In the
metalanguage, arrays over rarmgeorrespond to tuples of length.

Extended Syntax of Fun:

ti=--|t]r] type
M,N:= .| expression
Vi;...; V) array literal
V. Vol indexing
[for xin; V — M| comprehension

First, we add arrays as a typéx| is an array of elements of typ@ver the range. In the array type
t[r], we require that the typecontains no array typé[r'], that is, we do not consider nested arrays.
Indexing,Vi.[Vy];, extracts elements out of an array, where the ingeg computed modulo the size
|r| of the arrayv;. A comprehensiofffor xin, V — M| maps over an array, producing a new array
where each element is determined by evaluatingith the corresponding element of artdypound

to x. To simplify the formalization, we here require that the pddl of the comprehension contains
neither array literals nor comprehensions. We attach thger#o indexing and comprehensions so
that the measure transformer semantics can be given sitimglyange can be inferred easily, and
need not be written by the programmer. We elide the rangericade examples.

We here do not distinguish comprehensions that produceesahllike the one that produces
skills—and those that do not—like the one that observes playeoipeainces according tesults.

For the sake of efficiency, our implementation does disistgthese two uses. In some of the code
examples, we writéor x in V do M to mean(for xin, V — M]. We do so only whei has type
unit and we intend to ignore the result of the expression.

We encode arrays as tuples. Forralb 0, we defineri,(M,N) with M : t" andN : int and if
N%n =i we expectit,((Vo, .- .,Vh-1),N) = V.
Derived Types and Expressions for Arrays in Fun:
I

m(M,N):=M
(M, N) = if N%n==0thenM.1elser,_1(M.2,N—1) forn>1
t[r] :=tI"l wheret! :=t andt™?! :=t «t"
[Vo; ---;Vn—l] = (Vo,. .. 7Vn_]_)
ViV i= 18 (V1, V2)
for xinfV—M:=
let yo = (let x= m1;/(V,0) in M) in

letyy—1 = (let x= 11 (V,[r| = 1) in M) in
(Yoi---3Yr|-1) Wwhereys, ...,y are fresh foM andV.

26 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

Our derived forms for arrays yield programs whose size gtimesrly with the data over which they
compute—we implement [i], with O(|r|) projections. To avoid this problem, our implementation
takes advantage of support for arrays in the Infer.NET fegitaph library (see Sectidn3).

The static semantics of these new constructs is straigbefol, we give the derived rules for
(FUN ARRAY), (FUN INDEX), and(FUN FOR). By adding these as derived forms in Fun, we do not
need to extend Imp at all. On the other hand, our formalinatioes not reflect that our implemen-
tation preserves the structure of array comprehensions gbiag to Infer.NET.

Extended Typing Rules for Fun Expressionsl’ - M : t

(FUN ARRAY) (FUN INDEX) (FuN FOR)
FrEVict vieOn—1TEViitr] TEVeriint TEV:tr] Tx:tEM:t/
I EMos...;Vho1] 1 t[rn) M=V it I+ [for xing V — M] : t/[r]

The rule(FUN ARRAY) uses the notation, for the concrete rangef sizen; we assume there
is a unique such range for eaalt> 0. This rule can be derived using repeated applications of
(FuN PAIR). The rule(FuN INDEX) checks that the array; is non-empty array and the ind¥ is
an integer; the actual index is the valueefmodulo the size of the array, as in the meta-language.
We can derive this rule for a givanby induction om, using repeated applications ((fuN |F); we
use(FuN Prodl) in thethen case andFuN PrRoX) in theelsecase. The ruléFuN FOR) requires
that the source expressivhis an array, and that the bodl¥ is well-typed assuming a suitable type
for x. We can derivdFUN FOR) using repeated applications (FuN LET), with (FUN PAIR) to
type the final result.

5.3. Arrays in Imp. We now sketch our structure-preserving implementaticategy. \We work in

a version of Imp with arrays and iteration over ranges, anéxtend both the assignment form and
expressions to permit array indexing. Inside the body oft@miion over a range, the name of the
range can be used as an index.

Extended Syntax of Imp:

I
Ex=...[1[']|1]r] expression
[i= -] statement
I[r] + E assignment to array item
for r doC iteration over ranges

We require that every occurrence of an indeis inside an iteratiorfor r do C. Inside such an
iteration, every assignment to an array variable must badsxir. We also extend patterns to
include range indexed locations, and wiitg, p2)[r] for (pa[r], p2[r]).

Our compiler translates comprehensions over variablesraf dype as an iteration over the
translation of the body of the comprehension. We add toe fact that the comprehension variable
corresponds to the array variable indexed by the range. Wairm fresh array result patteph and
assign the result of the translated bodytw]. Finally, we hide the local variables of the translation
of the body of the comprehension, in order to avoid clashélsdrunrolling semantics of the loop.
This compilation corresponds to the rlERANS FOR) below. In particular, the sizes of ranges are
never needed in our compiler, so compilation is not data radxe.

Compilation of comprehensions:
1

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 27

(TRANS FOR)
pix=p@r}FM=Cp prf~p (locs(p)Ulocs(C)) Nfv(p) =2
p F [for xin; z— M] = for r do local locs(C) in (C; p'[r] < p), P/

6. IMPLEMENTATION EXPERIENCE

We implemented a compiler from Fun to Imp in F#. We wrote twoleads for Imp: an exact infer-
ence algorithm based on a direct implementation of measamsformers for discrete measures, and
an approximating inference algorithm for continuous messwsing Infer.NET37]. The transla-
tion of Sectiord formalizes our translation of Fun to Imp. Translating Imprtfer.NET is relatively
straightforward, and amounts to a syntax-directed sefiealls to Infer.NET’s object-oriented API.

The frontend of our compiler takes (a subset of) actual F# @xdits input. To do so, we make
use of F#'sreflected definitionswhich allow programmatic access to ASTs. This impleméortat
strategy is advantageous in several ways. First, therengead to design new syntax, or even write
a parser. Second, all inputs to our compiler are typed ASTseliftyped F# programs. Third, a
single file can contain both ordinary F# code as well as reftedefinitions. This allows a single
module to both read and process data, and to specify a ptistiabinodel for inference from the
data.

Functions computing array values containing determinidtta are tagged with an attribute
RegisterArray, to signal to the compiler that they do not need to be intégdras Fun programs.
Reflected definitions later in the same file are typed witheesio these registered definitions and
then run in Infer.NET with the pre-processed data; we furthgcuss this idea below.

Below follows some statistics on a few of the examples we hay#emented. The number
of lines of code includes F# code that loads and processesfiiem disk before loading it into
Infer.NET. The times are based on an average of three runisof Alhe runs are on a four-core
machine with 4GB of RAM. The Naive Bayes program is the naiagdsian classifier of the earlier
examples. The Mixture model is another clustering/classifin model. TrueSkill and adPredictor
were described earlier. TrueSkill spends the majority ®tihe (64%) in Infer.NET, performing
inference. AdPredictor spends most of the time in pre-siog (58%), and only 40% in inference.
The time spent in our compiler is negligible, never more thAdew hundred milliseconds.

Summary of our Basic Test Suite:
| LOC | Observationg Variables| Time

Naive Bayes 28 9 3 <1s
Mixture 33 3 3 <1s
TrueSkill 68 15,664 84 6s

adPredictor| 78 300,752 299,594 | 3m30s

In summary, our implementation strategy allowed us to baildeffective prototype quickly and
easily: the entire compiler is only 2079 lines of F#; the iM&ET backend is 600 lines; the discrete
backend is 252 lines. Our implementation, however, is ontyadotype, and has limitations. Our
discrete backend is limited to small models using only finiigasures. Infer.NET supports only a
limited set of operations on specific combinations of prdlsiz and deterministic arguments. It
would be useful in the future to have an enhanced type systdent@a detect errors arising from
illegal combinations of operators in Infer.NET. The refegttefinition facility is somewhat limited
in F#. In the adPredictor example on p&lyk a call toArray.toList is required because F# does not

28 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

reflect definitions that contain comprehensions over arraydy lists. (The F# to Fun compiler
discards this extra call as a no-op, so there is no runtimeheeae.)

7. RELATED WORK

Formal Semantics of Probabilistic LanguageBhere is a long history of formal semantics for prob-
abilistic languages with sampling primitives, often corda with recursive computation. One of
the first semantics is for Probabilistic LC&9], which augments the core functional language LCF
with weighted binary choice, for discrete distributiong\pért from its inclusion of observations,
Bernoulli Fun is a first-order terminating form of Proba&tiic LCF.) Kozen 27] develops a proba-
bilistic semantics for while-programs augmented with @mdassignment. He develops two prov-
ably equivalent semantics; one more operational, and tiex et denotational semantics using par-
tially ordered Banach spaces. Imp is simpler than Kozemguage, as Imp has no unbounded
while-statements, so the semantics of Imp need not dealneithtermination. On the other hand,
observations are not present in Kozen'’s language, althdiggiiete observations can be encoded
using possibly non-terminating while loops.

Jones and Plotkir2P] investigate the probability monad, and apply it to langesgith discrete
probabilistic choice. Ramsey and Pfeffdf] give a stochastid -calculus with a measure-theoretic
semantics in the probability monad, and provide an embeddithin Haskell; they do not consider
observations. We can generalize the semantiobsérveto the stochastia -calculus as filtering in
the probability monad (yielding what we may call a sub-pholiy monad), as long as the events
that are being observed are discrete. In their notation,ameacgment their language with a failure
construct defined b(fail | o = po where we defingiy(A) = 0 for all measurable sefs Then, we
can defineobservev = (if v = true then () else fail. However, as discussed in Secti®®, zero-
probability observations of real variables do not tramskeadsily to the probability monad, as the
following example shows. L&\l be an expression denoting a continuous distribution, farmgte,
random (Gaussian(0.0,1.0)), and letx = observex. Suppose there is a semantics [fox]]{x — r}
for realr in the probability monad. The probability monad semantitshe programlet x = N
in f x of the stochasti@ -calculus is[N] >= Ay.[f x]{x — y}, which yields the measurg(A) =
Jr (M x]{x — y}])(A) dM[N](y). Here the probability M [[f x]{x — y}])(A) is zero except
wheny = 0, where it is some real number. Since Nweneasure oy = 0 is zero, the whole integral
is zero for allA (in particularu(R) = 0), whereas the intended semantics is thiatconstrained to
be zero with probability 1 (so in particular(R) = 1).

The probabilistic concurrent constraint programming leage Probabilistic cc of Gupta, Ja-
gadeesan, and Panangad&#f] fis also intended for describing probability distributionsing in-
dependent sampling and constraints. Our use of obsersaliimsely corresponds to constraints
on random variables in Probabilistic cc. In the finite cag®bRBbilistic cc also relies on a sam-
pling semantics with observation (constraints) denotiltgring. To admit continuous distributions,
Probabilistic cc adds general fixpoints and defines the siécsasf a program as the limit of finite
unrollings of its fixpoints, if defined. This can lead to susprg results, such as that the distribution
resulting from observing that two apparently uniform dizitions are equal may not itself be uni-
form. In contrast, we work directly with standard distrilous and have a less syntactic semantics
of observation that appears to be easier to anticipate.

Mclver and Morgan 33] develop a theory of abstraction and refinement for prokslgilwhile
programs, based on weakest preconditions. They rejectdassubution transformer semantics in
order to admit demonic nondeterminism in the language.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 29

We conjecture that Fun and Imp could in principle be confesemantics within a probabilis-
tic language supporting general recursion, by encodingrelis observations by placing the whole
program within a conditional sampling loop, and by encodBwussian and other continuous dis-
tributions as repeated sampling using recursive functi@iil, dealing with recursion would be a
non-trivial development, and would raise issues of conplitya. Ackerman, Freer, and Roy2[
show the uncomputability of conditional distributions iargral, establishing limitations on con-
structive foundations of probabilistic programming. Wesh when formulating the semantics of
Fun and Imp to include some distributions as primitive, amasxclude recursion; compared to
encodings within probabilistic languages with recursittis choice has the advantage of compo-
sitionality (rather than relying on a global sampling lo@w)d of admitting a direct (if sometimes
approximate) implementation (via message-passing #hgosi on factor graphs, with efficient im-
plementations of primitive distributions).

Recent work on semantics of probabilistic programs witlmteriactive theorem provers in-
cludes the mechanization of measure the@§] and Lebesgue integratior8%] in HOL, and a
framework for proofs of randomized algorithms in C@&jj\vhich also allows for discrete observa-
tions.

Probabilistic Languages for Machine Learningfoller et al. [26] proposed representing a proba-
bility distribution using first-order functional programasth discrete random choice, and proposed
an inference algorithm for Bayesian networks and stoohastitext-free grammars. Observations
happen outside their language, by returning the distobstP/A A B], P[AA —B],P[—A] which can
be used to compute B | A]. Their work was subsequently developed by Pfeffer into #imgliage
IBAL [43], which has observations and uses a factor graph semalntiicenly works with discrete
datatypes.

Park et al. 41] proposeA., the first probabilistic language with formal semantics legapto
actual machine learning problems involving continuousrithistions. The formal basis is sampling
functions, which uniformly supports both discrete and sardus probability distributions, and
inference is by Monte Carlo importance sampling methodse ddiculusA, enables conditional
sampling via fixpoints and rejection, and its implementattiows discrete observations only.

HANSEI [24, 23] is an embedding of a probabilistic language as a programrimary in
OCaml, based on explicit manipulation of discrete proligbdistributions as lists, and sampling
algorithms based on coroutines. HANSEI uses an exflicitl statement, which is equivalent to
observe falseand so cannot be used for conditioning on zero probabilignes: Infer.NET B7] is a
software library that implements the approximate deteistimalgorithms expectation propagation
[38] and variational message passiag|| as well as Gibbs sampling, a nondeterministic algorithm.
Infer.NET models are written in a probabilistic subset of, €#own as Csoft§2]. Csoft allows
observeon zero probability events, but does not have a continuommsaustcs other than as factor
graphs and is currently only implemented as an internaldagg of Infer.NET. This paper gives a
higher-level semantics of Csoft (or Imp) programs as diigtion transformers.

Although there are many Bayesian modelling languages,tGsaf IBAL are the only pre-
vious languages implemented by a compilation to factor lggapProbabilistic Schemel)) is a
probabilistic form of the untyped functional language Sukelimited to discrete distributions, and
with a construct for reifying the distribution induced byrauik as a value. Churci9] is another
probabilistic form of Scheme, equipped with conditionaingéing and a mechanism of stochastic
memoization. In MIT-Church, queries are implemented usitagkov chain Monte Carlo methods.
WIinBUGS [39] is a popular implementation of the BUGS languadd] [for explicitly describing
distributions suitable for MCMC analysis.

30 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

FACTORIE [32] is a Scala library for explicitly constructing factor gtep Blaise 7] is a
software library for building MCMC samplers in Java, thapgarts compositional construction
of sophisticated probabilistic models, and decouples tiwce of inference algorithm from the
specification of the distribution.

A recent paper]6] based on Fun describes a model-learner pattern which resptommon
probabilistic programming patterns in machine learningluding various sorts of mixture models.

Other Uses of Probabilistic LanguagePBrobabilistic languages with formal semantics find appli-
cation in many areas apart from machine learning, includiagbases9], model checking 29,
differential privacy B4, 47], information flow [30], and cryptographyd]. A recent monograph on
semantics for labelled Markov processé§][focuses on bisimulation-based equational reasoning.
The syntax and semantics of Imp is modelled on the prob#bilisnguage pWhile4] without
observations.

Erwig and Kollmansbergerp] describe a library for probabilistic functional progranmgp in
Haskell. The library is based on the probability monad, asebua finite representation suitable for
small discrete distributions; the library would not suffiogorovide a semantics for Fun or Imp with
their continuous and hybrid distributions. Their libragstsimilar functionality to that provided by
our combinators for discrete distributions listed in theht@cal report.

8. CONCLUSION

We advocate probabilistic functional programming withetations and comprehensions as a mod-
elling language for Bayesian reasoning. We developed &msybased on the idea, invented new
formal semantics to establish correctness, and evalulaéeslystem on a series of typical inference
problems.

Our direct contribution is a rigorous semantics for a prdlsle programming language with
zero-probability observations on continuous variables.hAve shown that probabilistic functional
programs with iteration over arrays, but without the comipiles of general recursion, are a concise
representation for complex probability distributionssargy in machine learning. An implication of
our work for the machine learning community is that prokiatd programs can be written directly
within an existing declarative language (Fun—a subset §f liftked by comprehensions to large
datasets, and compiled down to lower level Bayesian infteremgines.

For the programming language community, our new semaniggests some novel directions
for research. What other primitives are possible—non-gdive models, inspection of distribu-
tions, on-line inference on data streams? Can we verifyrtresstormations performed by machine
learning compilers such as Infer.NET compiler for Csoft?ath the role of type systems for such
probabilistic languages? Avoiding (discrete) zero prdiiglexceptions, and ensuring that we only
generate Csoft programs suitable for our back-end, are tgsilplities, but we expect there are
more.

AcknowledgementsiNe gratefully acknowledge discussions with and commermms fRalf Her-
brich, Oleg Kiselyov, Tom Minka, Aditya Nori, Robert SimmmnNikhil Swamy, Dimitrios Vy-
tiniotis and John Winn. Chung-Chieh Shan highlighted andswith our original definition of
observation. The comments by the anonymous reviewers wesehelpful, in particular regarding
the definition of conditional density.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 31

APPENDIXA. DETAILED PROOFS

Our proofs are structured as follows.

e AppendixA.1 gives a proof of Propositiod.3.
e AppendixA.2 gives a proof of Theorem.4.

A.1. Proof of Proposition 4.3, We begin with a series of lemmas.
Lemma A.1 (Pattern agreement weakening)Z - p:tandZ,2’ ¢, thenZ, 2’ p:t.
Proof. By induction ont.]

Lemma A.2 (Expression and statement heap weakening)
(1) fZFE:bandz,¥' o,thenZ, -FE:b

2 fzZF1:¥andZ,,3" o, thenZ, 2" -1 : %

(3) fz+C:%¥ andz,¥, 2" F o, thenz, 2" - C: Y.

Proof. By induction onE, I, andC, respectively. []
Lemma A.3 (Pattern agreement uniquenesi)z - p:t and%’ - p’ : t then p~ p'.
Proof. By induction ont. []

Lemma A.4 (Pattern creation)If Z I p:t then there exist&’ such thatz,>' - o andX’' p’ :t and

dom(z) = fv(p).

Proof. By induction ont, and the assumption that there always exist new, globalhfiocations.
L]

Lemma A.5 (Pattern assignment)f Z+ p:tandZ' - p' :tandZ,2' o, thenZ - p + p: %,
where” C ¥'.

Proof. By induction ont.

e (t=unit) Trivial: p + p=nil,soY" =g C¥.

e (t=bool) Z+1:boolandZ’ -1’ : bool, sol : bool € Z andl’ : bool € ¥’. Sol : boolF 1"+ 1:
(I":bool) C &',

(t =int) Similar.

(t =real) Similar.

(t=tixtp) T+ p1, p2:taxtp andX’ - pl, p, : ta xto. BothZ andZ’ factor into contexts that type
p1 and py (resp. pj andp5) individually; call themZ; andX, (resp.Xj andX}). By the IHs, we
haveXi F pj < p1: 2] C ¥ andX - p, < p2: 25 C 2. We can then seEF pj < p1; p) <
pp:2f,25 C 2,2]
The purpose of this subsection is to prove the following.

Restatement of Propositiord.3 Supposd -M:tandzZtkp:T.

(1) There are C and p such that- M = C, p.
(2) Whenevep M =-C, p, there is¥’ such that - C: ¥' andZ, %' - p:t.

Proof. By induction on the typing oM, leavingZ andp general.

(FUN VAR) I Fx:t. For (1), we haveC = nil andp = p(x). For @), let¥' = €. By assumption,
2 Y p(x) :tandZ F nil : ¥ immediately.

32 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

(Fun ConsT) T - c:ty(c). For (1), we have:

| ¢ locs(p)
ty(c) = b for some base type b

pFc=1+c|l

For (2), letY =1:ty(c). We havex, 2’ F1 : ty(c) andZ 1 «c: Z'.
(FUN OPERATOR I F V1 ® V> : bz, where® has typeb; x by — bs. By inversion and the IH:

M=Vy: b]_
p|—V1:>C1,|1 (lHl)
32 (IH2)
2,21 F l1:b1
Z|—C1 X
M=Vs: b2
p FV, :>C2,|2 (|H2)
35, (IHy)
Z, 2o = |2 . b2
Z|—C2 D)
We have for 1), by (TRANS OPERATOR): p =V1 @V, = Cq;Co;l < 11 ® 15,1, LetY =%, 3,,1 :
bs - o. By weakening we find ford): Z,2' -1 : bz andZ t Cy;Cy;l < 1 ®15: 2.
(FUN PAIR) T = (M1, M) : t xt. By inversion and the IH:

M- \Y Il
pHEMi=Cyw,p1 (IH1)
E)) (IH>)
Z,le— p1:t1
ZFCMllzl
([Myt
pEMz=Cw,,p2 (IHy1)
E) (IH>)
Z,ZQF p2:to
S+ Cuw, 52

We have for {): p - (M1,Mz) = C,;Cw,, (P1, P2). LetZ' = 23,5, - o. By weakening we find
for (2): Z,2'F (p1, p2) i trxtp andZ + Cy,;Cw, : 2.
(FUN PrROJL) T - M.1:t;. By inversion and the IH:

r=m i xto

pFM=Cu,p (IH1)

35/ (IH>)
.2 pitrxty
>-M:S

By inversion,p = (p1, p2), such tha®,>' - p; : t; andZ, 2’ + p, : t,. We now havep H M.1=
Cw, p1 for (1). We useX’ to showZ, ' - p; :t; andZ - Cy : ¥’ for (2).
(FUN PRO2) T - M.2 :t,. Analogous to the previous case.

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 33

(FUN IF) T = if M1 then M, elseM3 :t. We have:

"= M; : bool
pI—M1:>CM1,p1 (lHl)
32 (IH2)
2,31 F p1:bool
Zl—CMl 121
Mr=Msy:t
p{x— p}+Mz=Cwm,,p2 (IH1)
3%, (IH2)
2.3k p2:t
2FCw,: 22
M=Ms:t
p{x— pr} =Mz =Cu,,ps (IH1)
353 (IH,)
2,23 ps3:t
ZFCMS 123

By inversion,p; =1 andZ,2; | : bool. By pattern agreement uniqueness (Lenmi), p, ~
ps. LetXy F p':t, for domZy) = fv(p) (by LemmaA.4). We have(locs(p) UlocsCy) U
locs(Cy) Ulocs(Cs)) N fv(p) = @. We also havegy ~ p2 andp’ ~ ps. We now have forJ):

p = if My then M5 elseM3 =
Cuwy;if | then local locs(Cy) in Cu,; [P < p2]] else locallocs(Cs) in Cywg,; [P < ps]], P

Finally, letZf = 2, N23NXZy F o andX = X1,3¢ - o. By pattern assignment, we can see
2t B[P < p2]] andZ; - [[p + ps]]- By weakening (LemmaA.1, andA.2) we have what we
need for R):
YR p it
2+ Cyy;if I then...else...: ¥
(FUN LET) T Fletx=Mjin My : to. We have:

M+ M]_ 1
pMi=Cuy,p1 (IH1)
425 (IH2)
24 Epity
> CMl . Zl
F,X:T1I—M2:t2
Next, note thak,>; - p{x+ p1} : I',x: T1. We can now apply the IH tdl,’s typing derivation

to see:
p{x— p1} - M2=Cy,,p2 (IH1)

3%, (IH2)
2,2Fp:it;
Sk Cy,: 52

First, we have:p I let x = M in Mz = (local (locs(Cw,) \ fv(p1)) in Cw,);Cwm,, p2 for (1).
For (), let 2] = 2|y (p,) and2’ = 3,5, - o. By weakening, we fin&,>' - pp itz andZ -
(local (locs(Cw,) \ fv(p1)) in Cy,);Cwm, : Z'.

(FuN OBSERVE) I - observg E : unit. By the IH, withY’ = & from IH>.

34

J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

(Fun RanDOM) I = random(D(V)) : bp, 1. We have:

D:(xg:bp*...xX,:bp) — by
FEV:(byx...xby)

We have, by the IH:

pEV=C,p (IHy)

35 (IHp)
Y Fp:t (%)
IHC: Y

Sop Frandom(D(V)) = C;I < D(p),l, for (1). We find @) by (¥) and by (Imp Seq), (Imp
Random), and the IL+C;l : /.1, whereX',| -1 : b, 1.]

A.2. Proof of Theorem4.4. We use the following lemma.

Lemma A.6 (Value equivalence)lf =V :tandZ+ p: T andp -V = C, p thenJ[C] = pure f,
where f is either id or a series of (independent) callada :

f =As addli(addly(...(add Ix(s,cn))...,C2),C1)

where each of the are distinct, and

A[V] = pure (1ift p) >>> J[C] = pure (As. restrict p s,V[p] S)

Proof. By induction on the derivation df -V :t.
(FUN VAR) T x:t,sox:t el andZ p(x) :t. We havep - x = nil,p(x), sof =id.

AlX]
= pure (As. (s,V[X] 9))
= pure (AS. (S,lookup X 9))
= pure (As (restrict p(lift p),V[p] (1ift ps)))
= 1lift p >> (As (restrict ps,V[p]s))
= 1lift p >> pureid > (As. (restrict ps,V[p]s))
= 1lift p >> A[X] > (As. (restrict ps,V[p] 9))

(FuN ConsT) T Fc:ty(c). We havep-c= 1 «—c,l, sof =As. add| (s,c).

Alc]

pure (AS. s,C)

pure (AS. restrict p(l1ift p s),V[l] (add | (1ift p s,C)))

pure (1ift p) >>> pure (AS restrict p s V[l]] (add| (s,C)))

pure (1ift p) >>> pure (AS. add| (S,C)) >>> pure (AS. restrict p S, V[I] 9)
pure (1ift p) > J[l <— ¢]] > pure (AS. restrict p s, V[I] 9)

(FUN PAIR) T (V1,V,) @ ty #to. We havep Vi, Vo = C1;Cy, (p1, p2). By the IH,J[C1]] = pure f1
andJ[[Cy]] = pure fz, wheref; and f, are eithelid or add s. We also have:

A[VI]
= pure (As. s V[Vi] s)
pure (1ift p) > J[[C] > pure (AS restrict p s, V[pi] 9)
pure (1ift p) > pure fj > pure (AS. restrict p s,V[pi] 9)
(
(

pure (As. restrict p(fi(1ift p 9)),V[p] (fi (1ift p9)))
= pure (As. s, V[p] (fi (1ift p9)))

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 35

SoV|Vi] s=V[p] (fi(Lift p s)). Let f = f1; fo. We derive:

AV, Vo]
= pure (As s (V[V1] s, V[V2]| 5))
= pure (As. s (V[pi] (f1 (1ift ps)),V[p2] (f2 (1ift ps))) by weakening/independence
= pure (As. s, (V[pu] ((f1; f2)(1ift p's)), V[p2]] ((f1; f2)(1ife p s)))

pure (AS. restrict p (f1; f2(1ift p 9)),
(V[pa] ((f2; f2) (115t p 9)), V][pe] ((fa: f2) (1ift p'8)))
pure (1ift p) > pure (f1; f2) > pure (As restrict p s, (V[pi] s, V[p2] 9))
pure (1ift p) = J[Cq]] > I[Cyf| >>> pure (As. restrict p s, V[(p1,p2)] S)
pure (1ift p) > J[Cy;Cyf] >3 pure (As. restrict p s, V[(p1,p2)] S) O]

Restatement of Theoremd.4 T HM:tandZk-p:landp+ M = C, p then:
A[M] = pure (1ift p) >>> J[C]| >3 pure (As. (restrict p s, V[p] 9))
Proof. By induction onl - M : t.

(FUN VAR) By the value lemma.

(FUN CoNsT) By the value lemma.

(FUN PaIR) By the value lemma.

(FUN OPERATOR I Vi1 ® Vo :bzandp HVi @ Vo = (C;Co;l +— 11 ®13),1. We haveA Vi @ Vs] =
pure (As. s,®(V[V4] s, V[V2] 5)). By the value lemma (Lemm&.6):

AM]

= pure (As. s V[Vi]s)

= pure (1ift p) > J[C] > pure (As. restrict p s, V[li] S)

= pure (1ift p) >>> pure fj > pure (As. restrict p s, V[li] 9)

= pure (As. restrict p (fi (1ift p 9)),V[li] (fi 1ift p9)))

= pure (As. s V[li] (fi(1ift p9)))

= pure (As. sV[li] ((f1; f2)(1ift p s)) by weakening/independence

SoV[Vi]| s=V[li] ((f1; f2)(1ift p s)). We derive:
AM @V,]
pure (As. s, V[Vi] s® V[V2] s)
pure (As. s, ®@(V[l1] ((f1; f2)(1ift p 5)), V[l2] ((f1; f2)(1ift p 9))))
pure (1ift p) > pure (f1; f2) > pure (As. restrict p S ®(V[l1] s, V[l2] 9))))
pure (1ift p) > J[Cq]] == J[Cy]] > pure (AS. restrict p s,®(V[l1] s, V[l2] 9))))
pure (1ift p) > I[Cq]] = I[Cy]] == I[l < 11 ®I2]] >> pure (As. restrict pSs,V[l]s)))
pure (1ift p) > J[Cy;Cy;l < 11 ® 1] >>> pure (As. restrict p s,V[l] s)))

(FUN PROJL) M EV.1:tg andl FV :tg xty. We havep -V = C, (p1, p2) andp - V.1=C, p;. By
the value lemma as before, we can conclWe]| s= V[(p1, p2)]] (f (1ift p s)). Therefore:
AV
pure (As. s, fst V[V] s)
pure (As s fst (V[(py, p2)] (f (1ift ps)))
(
(

pure (As 8 V[pi] (F (1i£t p)
pure (1ift p) >>> pure f > pure (AS restrict p S,V[pi] S
pure (1ift p) > J[C] >>> pure (AS. restrict p S, V[p1] 9)

(FUN PrROXZ) Symmetric to Projl.

36 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

(FUN IF) T - if V, then M, elseM3 : t. We have:
pt...=Cy;if 11 then local locs(Cy) in Cy; p < 2 else locallocs(C3) in Cs; p < p3, p

Our IHs are:A[[M;]| = pure (1ift p) > J[Cj]] >>> pure (AS. restrict p s, V[pi]). By the
value lemma we havgV;] = pure f; for somef; such thatV[Vi]] s= V[l1] (f1(1ift p 9)).
We now calculate (at length):

A[if V1 then M elseMs]|
= choose (As. V[V4] s) A[M] A[Mgs]

= choose (As. V[I1] (f1 (1ift p 9)))
(pure (1ift p) > J[Cy]] >>> pure (AS. restrict p S,V[[p2] S))
(pure (1ift p) > J[Cg]] >>> pure (AS. restrict p S, V[ps] S))

= pure (1ift p) > choose (ASV[l1] (f1 S))
(J[Co] =>> pure (As. restrict p S, V[pz2] S))
(J[Cg]] >>> pure (As. restrict p s, V[ps] s))

= pure (1ift p) >>> choose (ASV[l1] (f1 9))
(I[Cs]] == I[[p < p2]] >=>> pure (As. restrict p s,V[p] 9))
(I[Cs]] == I[[p < ps3]| >=>> pure (As. restrict p s,V[p] 9))

= pure (1ift p) >>> choose (ASV[l1] (f1 9))
(J[Co] == I[[p + pz] =>> pure (drop locsCy)) > pure (AS. restrict p s, V[p] 9))
(A[Cs]] == A[p + pa]] >>> pure (drop locs(C3)) >>> pure (AS. restrict p s, V[p] 9))

= pure (1ift p) >>> (choose (ASV[l1] (f1 9))
(A[Co]] == A[p + p2] == pure (drop locs(Cy)))
(A[Cs] == A[p < p3] >=>> pure (drop locs(Cg)))) >>>
pure (As restrict p s, V[p] s)

= pure (1ift p) >> A[Cy]] = (choose (ASV[l1] S)
(A[Cg; p <= pz]] == pure (drop locs(Cy)))
(A[Cs; p <= pa]] == pure (drop locs(Cy)))) >>>
pure (AS. restrict p S, V[p] s
= pure (1ift p) >> A[Cy]] = (choose (ASV[l1] S)
(A[llocal locs(Cy) in Cy; p < p2])
(A[llocal locs(C3) in Cg3; p + p3])) >>>
pure (As. restrict p S V[p] s

(FUN LET) I Fletx= My in My : tp; by inversion,l’ = My :t; andlm, Xty = My : to.
Letp’ = p{x+ p1} andZ; = (locs(C1) \ fv(p1)). We have:
pEMy=Cyq,p1

p'=M2=Co, 2
p Fletx=Mjin Mz = (local Z; in C;);Cy, p2

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 37

As our IHs:
A[M1] = pure (1ift p) > A[Cy]] > pure (As restrict p s, V[pi] 9)
A[Mz] = pure (1ift p) >> A[C;]] > pure (As. restrict p's,V[pz] S)
We derive:

Alllet x= Mz in M]]

A[[M1]] >>> pure (add x) >>> A[[Mz]] >>> pure (AS,y. drop X SY)

pure (1ift p) > A[Cyq] >>> pure (AS. restrict p S, V[pi] S) >>> pure (add x) >>>
A[Mz] > pure (Asy. dropX sy)

pure (1ift p) > A[[C1] >>> pure (AS restrict p s V[p1]) >>
pure (add X) >>> pure (1ift p') >
A[Cy] = pure (As. restrict p's,V[pz] S) >>> pure (AS,y. drop X SY)
pure (1ift p) > A[Cy] > pure (drop (dom(Xy))) >>>
A[Cy] = pure (As. restrict p's,V[pz] S) >>> pure (AS,y. drop X SY)
pure (1ift p) > A[Cq] > pure (drop (dom(Xy))) >>>
]

A[Cy] =>> pure (As. restrict p s, V[p2] 9)
pure (1ift p) > A[[(local Z; in C1);Cy]| >>> pure (AS restrict p s, V[p2] 9)

(FuN RaNDOM) T +random(D(V)) : b, whereD : (by,...,by) — bni1,T EV i (bg,...,b). We
havep -V = C,pandp + D(V) = C;l «- D(p),l. By the value lemmaA[C]] = pure f and
VIV]s="V[p] (f (1ift ps)). We derive:

Alrandom(D(V))]]

extend (AS. Hp(vv] s))

extend (AS. Up(p(f(1izt p s)))

pure (1ift p) > extend (AS. Up(p(fs))) > pure (ASV. restrict p SV)

pure (1ift p) > pure f > extend (AS. Up(y[p|s)) > pure (AS,V. restrict p SV)
pure (1ift p) > A[C]] >> extend (AS. Up(y[ps)) > pure (AS V. restrict p SV)
pure (1ift p) > A[C]] > extend (AS. Up(y[p]) >

pure (add |) >>> pure (As restrict p s,V[I] s)

pure (1ift p) > A[C;l < D(p)]] >>> pure (As restrict p s V[I] s)

o~~~ ~

(FUN OBSERVE) I - observeV : unit andl” -V : b for some base type. We havep -V = C,I.
By the value lemmaA|[C] = pure f andV[V] s="V[I] (f (1ift p s)).

AlobserveV]

observe (As. V[V] s) > pure (As. (s,())

observe (As. I(f(1ift p S))) > pure (As. S,())

pure (1ift p) > observe (As V[I] (f s)) >>> pure (As restrict ps()9)

pure (1ift p) > pure f > observe (As. V[l]| S) >>> pure (AS. restrict ps () 9)
pure (1ift p) > A[C]] >3 observe (As. V[l] S) >>> pure (AS. restrict ps,() 9)
pure (1ift p) > A[C;observe ||| >>> pure (AS restrict ps,() 9) O]

38 J. BORGSTRM, A. D. GORDON, M. GREENBERG, J. MARGETSON, AND J. VAN GAEL

REFERENCES

[1] M. Abadi and P. Rogaway. Reconciling two views of cryptmghy (the computational soundness of formal encryp-
tion). J. Cryptology 15(2):103-127, 2002.

[2] N. L. Ackerman, C. E. Freer, and D. M. Roy. Noncomputaldaditional distributions. InLICS, pages 107-116,
2011.

[3] P. Audebaud and C. Paulin-Mohring. Proofs of randomialggbrithms in CoqScience of Computer Programming
74(8):568-589, 2009.

[4] G. Barthe, B. Grégoire, and S. Z. Béguelin. Formal ifieetion of code-based cryptographic proofs.ROPL,
pages 90-101. ACM, 2009.

[5] S. Bhat, A. Agarwal, R. W. Vuduc, and A. G. Gray. A type theéor probability density functions. In J. Field and
M. Hicks, editors POPL, pages 545-556. ACM, 2012.

[6] P. Billingsley.Probability and MeasureWiley, 3rd edition, 1995.

[7] K. A. Bonawitz. Composable Probabilistic Inference with BlaigehD thesis, MIT, 2008. Available as Technical
Report MIT-CSAIL-TR-2008-044.

[8] J. Borgstrom, A. D. Gordon, M. Greenberg, J. Margetsamg J. Van Gael. Measure transformer semantics for
Bayesian machine learning. European Symposium on Programming (ESOP’{bjume 6602 ofLNCS pages
77-96. Springer, 2011. Extended version available as MaftdResearch Technical Report MSR-TR-2011-18.
Software download available Bttp://research.microsoft.com/fun.

[9] N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic datatmsdgiamonds in the dirCommun. ACM52(7):86—-94, 2009.

[10] H. Daumé llI.HBC: Hierarchical Bayes Compile2008. Available ahttp://www.cs.utah.edu/~hal/HBC/.

[11] P. Domingos, S. Kok, D. Lowd, H. Poon, M. Richardson, &&ingla. Markov logic. In L. De Raedt, P. Frasconi,
K. Kersting, and S. Muggleton, editoBrobabilistic inductive logic programmingages 92-117. Springer-Verlag,
Berlin, Heidelberg, 2008.

[12] M. Erwig and S. Kollmansberger. Functional pearls: Bdalistic functional programming in Haskell. Funct.
Program, 16(1):21-34, 2006.

[13] D. A. S. Fraser, P. McDunnough, A. Naderi, and A. Pla@te the definition of probability densities and sufficiency
of the likelihood mapJ. Probability and Mathematical Statistic$5:301-310, 1995.

[14] W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A largriand program for complex Bayesian modellifige
Statistician 43:169-178, 1994.

[15] N. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, ahd3. Tenenbaum. Church: a language for generative
models. InUncertainty in Artificial Intelligence (UAI'08)pages 220—229. AUAI Press, 2008.

[16] A. D. Gordon, M. Aizatulin, J. Borgstrom, G. Claret, Graepel, A. Nori, S. Rajamani, and C. Russo. A model-
learner pattern for Bayesian reasoningPl@PL, pages 403-416, 2013.

[17] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbriteb-scale Bayesian click-through rate prediction for
sponsored search advertising in Microsoft's Bing seargfinen Ininternational Conference on Machine Learnjng
pages 13-20, 2010.

[18] V. Gupta, R. Jagadeesan, and P. Panangaden. Stoghamtésses as concurrent constraint program&QiL,
pages 189-202, 1999.

[19] R. Herbrich, T. Minka, and T. Graepel. Truesih: A Bayesian skill rating system. lAdvances in Neural Infor-
mation Processing Systems (NIPSQ@gges 569-576, 2006.

[20] J. Hurd.Formal verification of probabilistic algorithmdPhD thesis, University of Cambridge, 2001. Available as
University of Cambridge Computer Laboratory Technical & p) CAM-CL-TR-566, May 2003.

[21] E. T. JaynesProbability Theory: The Logic of Sciencehapter 15.7 The Borel-Kolmogorov paradox, pages 467—
470. CUP, 2003.

[22] C. Jones and G. D. Plotkin. A probabilistic powerdomairevaluations. IrnLogic in Computer Science (LICS’89)
pages 186-195. IEEE Computer Society, 1989.

[23] O. Kiselyov and C. Shan. Embedded probabilistic prograng. InDomain-Specific Languagepages 360—-384,
20009.

[24] O. Kiselyov and C. Shan. Monolingual probabilistic gramming using generalized coroutinesUncertainty in
Artificial Intelligence (UAI'09) 2009.

[25] D. Koller and N. FriedmarProbabilistic Graphical ModelsThe MIT Press, 2009.

[26] D. Koller, D. A. McAllester, and A. Pfeffer. Effective &/esian inference for stochastic programsARAI/IAAI,
pages 740-747, 1997.

[27] D. Kozen. Semantics of probabilistic progrardsurnal of Computer and System Scien@2{3):328-350, 1981.

http://research.microsoft.com/fun
http://www.cs.utah.edu/~hal/HBC/

MEASURE TRANSFORMER SEMANTICS FOR BAYESIAN MACHINE LEARNNG 39

[28] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Fagt@aphs and the sum-product algorithBEE Transactions
on Information Theory47(2):498-519, 2001.

[29] M. Z. Kwiatkowska, G. Norman, and D. Parker. Quantitatanalysis with the probabilistic model checker PRISM.
In Quantitative Aspects of Programming Languages (QAPL 20@Byime 153(2) oENTCS pages 5-31, 2006.

[30] G. Lowe. Quantifying information flow. ICSFW pages 18—-31. IEEE Computer Society, 2002.

[31] D.J. C. MacKaylnformation Theory, Inference, and Learning Algorithr@&JP, 2003.

[32] A.McCallum, K. Schultz, and S. Singh. Factorie: Probatic programming via imperatively defined factor graphs
In Advances in Neural Information Processing Systems (NBSages 1249-1257, 2009.

[33] A. Mclver and C. MorganAbstraction, refinement and proof for probabilistic sysseMonographs in computer
science. Springer, 2005.

[34] F. McSherry. Privacy integrated queries: an exteesdatform for privacy-preserving data analysis. SIGMOD
Conferencepages 19-30. ACM, 2009.

[35] T. Mhamdi, O. Hasan, and S. Tahar. On the formalizaticthe Lebesgue integration theory in HOL. linteractive
Theorem Proving (ITP 20102010.

[36] B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L. OngdA. Kolobov. Blog: Probabilistic models with unknown
objects. In L. P. Kaelbling and A. Saffiotti, editotdCAI, pages 1352—-1359. Professional Book Center, 2005.

[37] T. Minka, J. Winn, J. Guiver, and A. Kannan. Infer.NET32.Nov. 2009. Software available from
http://research.microsoft.com/infernet.

[38] T. P. Minka. Expectation Propagation for approximatgy8sian inference. lbncertainty in Artificial Intelligence
(UAI'01), pages 362-369. Morgan Kaufmann, 2001.

[39] I. Ntzoufras.Bayesian Modeling Using WinBUG®/iley, 2009.

[40] P. Panangadehabelled Markov processebnperial College Press, 2009.

[41] S. Park, F. Pfenning, and S. Thrun. A probabilistic laage based upon sampling functionsPI@PL, pages 171—
182. ACM, 2005.

[42] A. Pfeffer. IBAL: A probabilistic rational programmgnlanguage. In B. Nebel, editdnternational Joint Confer-
ence on Atrtificial Intelligence (IJCAI'01pages 733-740. Morgan Kaufmann, 2001.

[43] A. Pfeffer. The design and implementation of IBAL: A geal-purpose probabilistic language. In L. Getoor and
B. Taskar, editordntroduction to Statistical Relational LearninlIT Press, 2007.

[44] A. Pfeffer. Practical probabilistic programming. InfRPasconi and F. A. Lisi, editorénductive Logic Programming
(ILP 2010) volume 6489 ot ecture Notes in Computer Scienpages 2—3. Springer, 2010.

[45] A. Radul. Report on the probabilistic language schemé2roceedings of the 2007 symposium on Dynamic lan-
guages (DLS'07)pages 2—10. ACM, 2007.

[46] N. Ramsey and A. Pfeffer. Stochastic lambda calculus monads of probability distributions. IROPL, pages
154-165, 2002.

[47] J. Reed and B. C. Pierce. Distance makes the types growgsr: A calculus for differential privacy. IFCFP,
pages 157-168, 2010.

[48] J. S. Rosenthal First Look at Rigorous Probability Thearyorld Scientific, 2nd edition, 2006.

[49] N. Saheb-Djahromi. Probabilistic LCF. Mathematical Foundations of Computer Science (ME@8ume 64 of
LNCS pages 442-451. Springer, 1978.

[50] J. Schumann, T. Pressburger, E. Denney, W. Buntine Bariéischer. AutoBayes program synthesis system users
manual. Technical Report NASA/TM—2008-215366, NASA Amesé&arch Center, 2008.

[51] D. Syme, A. Granicz, and A. CisterninBxpert F# Apress, 2007.

[52] J. Winn and T. Minka. Probabilistic programming witfénNET. Machine Learning Summer School lecture notes,
available ahttp://research.microsoft.com/~minka/papers/mlss2009/, 2009.

[53] J. M. Winn and C. M. Bishop. Variational message passiogrnal of Machine Learning Research:661-694,
2005.

[54] E. S. Yudkowsky. An intuitive explanation of Bayesianeasoning, 2003. Available at
http://yudkowsky.net/rational/bayes.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

http://research.microsoft.com/infernet
http://research.microsoft.com/~minka/papers/mlss2009/
http://yudkowsky.net/rational/bayes

	1. Introduction
	2. Bayesian Models as Probabilistic Expressions
	2.1. Syntax, Informal Semantics, and Bayesian Reading
	2.2. Syntactic Conventions and Monomorphic Typing Rules
	2.3. Formal Semantics for Bernoulli Fun
	2.4. An Example in Bernoulli Fun

	3. Semantics as Measure Transformers
	3.1. Types as Measurable Spaces
	3.2. Finite Measures
	3.3. Measure Transformers
	3.4. Measure Transformer Semantics of Fun
	3.5. Discussion of the Semantics

	4. Semantics by compilation to Csoft
	4.1. Imp: An Imperative Core Calculus
	4.2. Measure Transformer Semantics of Imp
	4.3. Translating from Fun to Imp

	5. Adding Arrays and Comprehensions
	5.1. Comprehension Examples in Fun
	5.2. Formalizing Arrays and Comprehensions in Fun
	5.3. Arrays in Imp

	6. Implementation Experience
	7. Related Work
	8. Conclusion
	Appendix A. Detailed Proofs
	A.1. Proof of Proposition 4.3
	A.2. Proof of Theorem 4.4

	References

