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The control of access to memory is a major problem in the design of protection mechanisms, especially
for systems which allow files to be mapped into addressable memory. We use an abstract model of
memory addressing to explain the space of possible organizations and examine their implications for
protection. Analysis of the access paths to data allows some conclusions to be drawn about the amount
of redundancy in a memory addressing schema, and the possible consequences of an error for the

-integrity of the protection system,

1. Introduction

The topic of this paper Is memory protection, that is, the
intersection of memory architecture and protection.
Since each of these subjects is both large and strongly
connected, the intersection operation leaves quite a few
foose ends. We will try to tie them up as best we can,
and to point out places where the surgery appears to be
fatal. :

It is well to bear in mind that memory protection was born
in the realm of the engineers, and has generally remained
there. This history has a great effect on the way we
think about the subject, one which this paper tries to
counteract by an emphasis on abstract structure and on
the unity of the whole subject of protection.

We will start with a brief survey of the parent subjects.

Both depend on the concept of a protection context or
domain. By this term we mean an environment within
which a program can be executed, and which defines the
actions that program Is allowed to perform {[4].
Unfortunately, this detinition is not extraordinarily precise.
We could sharpen it by saying that a domaln /s the
actions which it authorizes, but at the cost of changing
the meaning. We want a domain to be able to acquire and
give up power while still maintaining its Identity, just as a
company can buy and sell property, or even change Its
line of business, and still be the same company.

in any particular system, of course, It is possible to point
to entities whose existence iIs supported by that system,
and identify them as domains. Thus we can define the
term quite precisely for that system, but in a way which
does not help us toward an abstract definition. Attempts
to give a precise definition of the term "process" run into
similar difficultles, and are usually resolved In the same
way: by accepting the concept as a primitive one and
explaining its meaning In terms of the operations In which
it participates.

2. A mmodel for protection

Since a domain Is by detinition the basic unit of
protection, we can confine ourselves to the co: ect
handling of interactions between domains, which we will
describe In terms of messages sent by one domain and
recelved by another. There are two issues:

. communication - how do messages get from one domaln
to another without being intercepted or altered;

. -authentication -~ how does a demain know when to
belleve. a message. :

Communication has to stop somewhere If any work is to
get done, so we must also equip each domain with chaltels
which it owns and can access directly. If a domain wants
to affect anything which is not one of its chattels, it will
have to persuade the owner to go along. Sharing of
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it forces us to describe a memory fetch from a shared
object as an exchange of (at least two) messages, but It
saves a lot of trouble by providing a single, consistent
framework within which to talk about protection. Any
form of communication can be clearly described as a
sequence of messages, and this viewpoint exposes the
logical structure of the communication, without saying
anything about the cost. Specialized kinds of message
exchange (such as a memory reference) can be
Implemented very cheaply using well-known techniques,
and it Is even possible to do this without sacrificing
generality, If the speclalized Implementation allows for a
trap to a more general environment when things get
complicated.

2.1 Why protection?
A few words an the purpose of protection In general may

also be helpful, since we will later be considering the
purpose of memory protection in particular. Protection is

a defense against some class of dangers or threals. The

nature of a threat wlil depend to a great extent on its
cause, which may be accident or malice. A threat may

. expose data (l.e. improperly allow it to be read);

. damage data (i.e. improperly allow it to be modified).

An accident may be a hardware failure, a program bug, or
a mistake made by a user. We fear damage from an
acclident; exposure is possible as well, but Is not likely to
do any harm unless malice Is also present. Protection
agalnst accidents tries to

. limit the damage, so that as much work as possible may
proceed unaffected;

. detect it quickly, so that the cause of the accident
can be better localized and hence more quickly found.

Malice is purposeful, and hence must be expected to
seek out weakness. Furthermore, we fear cxposure
(esplonage) more than damage (sabotage), and
unobtrusive modification more than outright destruction.
Unfortunately, the threats which we fear more are also
more dif ficult to delect after the fact. For two reasons,
then, defense against malice places more demands on the
protection system than does defense against accident.

These observations suggest that it may be profitable to
distinguish between absolute and defensive protection. An
absolute system purports to guarantee that no matter
what program is running inside a domaln, It will be unable
to break the protection barriers iImposed by that domain.

This guarantece will depend on the correct operation of

which the program can Interact. In additlon, of course,

the guarantee Is only as good as the definition of the

domain; If a mistake was made In setting it up, the

Intended result will not be obtained. Absolute systems

are seductive, because of the warm feeling of

confidence and security which they engender In thelr
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of the world, and It Is therefora dangerous to take them
too serilously. On the other hand, if the goal is to protect
against a malicious, competent and determined intruder, an
absolute approach Is necassary In spite of Its difficuitles.

A defensive system, by contrast, tries to make It uniikely,
rather than Impossible, that bad things will happen (where
the use of the word “unlikely" implies that it Is primarlly
accldent, rather than malice, that we are defending
against). For example, many systems (including several
which the author helped to design) provide debugging
facilities which are protected from the programs being
debugged, but do not have any way of preventing an
undebugged program from deleting all its user's flles.
Such systems have defensive rather than absolute
protection against bugs In a user's own programs. These
bugs, of course, are accidental threats, but a library
routine, compiler or utility program might well present a
maliclous threat of the same kind [6]. The point of all
this Is that absolute protection Is very hard to come by,
and In many case the defensive kind is more appropriate.

3. A model for memory referencing

A memory architecture has three parts, which we list in
order of distance from the executing program:

. addressing - what Is the form of a memory address,
and how can a program make one;

. protection - when is a given operation on a given
address legal;
. mapping - how Is the address made by a progran

converted Into a reference to some physical storage
medium. In general, of course, this Is a muiti-step
process.

In this section we develop a way of talking about the
wide varlety of memory protection schemes which have
been described and, in some cases, even implemented.
Since our interest is in protection, we have Iignored
distinctions which may be very Important for the efficient
encoding of programs or the implementation of mapping.

The most basic function of a memory protection system Is
the lisolation of domains which are represented on
hardware in such a way that they share the physical
access' paths to memory., If each domain had its own
processor and memory, and the domains were
Interconnected by wires carrying messages, memory
protection would not be essential (which Is not to say
that we might not want it anyway, since we might choose
to simulate a memory-sharing system on such hardware).
A protection system which simply simulates complete
memory Isolation is not very Interesting from our point of
view, however, even though it may be extremely robust,
and even though it may be the best approach.

To maintain consistency with our view of protection In
general, we will describe the interaction of a domain D
with its memory in terms of messages passing between D
and another domaln MD which is responsible for the
memory. Messages from D to MD have the form
fetch(address) or store(address, value), and messages in
the other direction are values returned in response to
fetches. Both addresses and values have a rigidly
defined format. MD may also accept other configuration
messages, either from D or from other domalins, which will
affect its subsequent handliing of fetch and store
messages.

We define the memory environment of D as a reentrant
tree with arcs labeled by strings or Integers. An address
has the form (item, link), where an item specifies a node
in the tree, and a link Is & string or Integer which is
usually the name of an arc (see figure 1a). If item | has
an arc labeled b, we write IL.b for the node at the other
end of b. To process the messasge fetch(l,-a), for
- example, MD takes Lfetch as a function which Is applled

to (i, a). This schema allows different functions to be -

implemented on the same data, as in figure 1b. It can
also handie situations In which a memory reference is
converted into an arbitrary procedure call, as can happen
in Multics, for example [10].

Every domain owns a single tree node called Its access
point. An item Is specified by a link which is interpreted
as the name of an arc leaving the access point. Thus In
Multics the access point Is the descriptor segment, and
Items are specified by integers called segment numbers.
In the Plessey 250 system [2], on the other hand, an item
Is one-of the eight capabliity registers.

There are a number of reasons for adopting such a
stylized form of communication:

. efficient hardware impiementation is possible for aimost
all messages;

. standard conventions for accessing data are necessary
in any practical programming system;

. MD can implement facllities which allow several domains
D1, D2, ... to share access to common data. Although the
same effect can In principle be achieved by Interchanging
messages among the Di, this Is often inconvenlent in
practice. Conslder, for example, the global variables of
Algol 60 or the polinters of most system programming
languages; ’
. generality need not be lost, sihce MD can perform
arbitrary computations (via traps to software), and can
call on other domains to Interpret the fetch and store
messages for certain addresses.

4, Power, convenience, and precision

The Items which a domain D can specify determine the
elements of its environment which it can access direclly,
l.e. with a single fetch or store. We will call these
elements the direct scope of D; In general it wilt vary

.during execution as changes occur in tha set of items

which D can specify with a memory address. In
particular, if some of the elements D can fetch are

themselves items, the direct scope can change. The
union of all possibie direct scopes we will call the scope
of D. The power of a domain, i.e. the things it can do It
It trles hard, Is determined by Its scope.

It we take an absolute view of protection, there Is no
reason to distingulsh elements of the scope by the
access path which must be followed to reach them, since
D can get any element of the scope Into the direct scope
at any time by simply executing a few Instructions. In
fact, we might as well simply number the items In the
scope 1,2,...NS, and specify an address as (n, link) where
n Is an integer between O and NS. Even from this point of
view, the environment tree is still a “seful description of

seg3
fetch data
t1 seg3d
1 1000

14 25

(a) a 1000-word segment

seyd seg3a

fetch data data fetch

(b) a segment with two
accass functions

Figure 1: A simple memory environment



the structure of D's memory, which is important for
actually writing programs and for concise description of
how parts of the memory can be shared with other
domains. And of course a defensive protection system
would attach value to the fact that certain elements can
be accessed directly, while others cannot be referenced
except by the execution of a carefully chosen sequence
of instructions.

4.1 Continuity of plolec!lori

Unfortunately, things are not really as simple as the
preceding discussion suggests, since our model allows
arbitrary changes in the behavior of MD, and therefore In
the environment, to occur as a result of Interactions
between D and other domains. If the definitions we have
given are taken literally, any element which could appear
in the environment as a result of such changes Is In the
scope. This view Is logically consistent, but It is
disastrous for our attempt to separate the treatment of
memory protection from the general topic of protection.
The example of systems like Multics, which allow a domain
to obtain access to a file as a result of arbitrarily
complex interactions with other domains, and then to
access the file as a segment, show that this difficulty Is
a real one.

There are really two aspects to this problem. First, we
observe that In Multics, for example, it is the path name
of a file and not the segment number that must be used
as the item speclifier. Second, the contents of the scope
cannot be defined In any simple way, since It may change
as a result of arbitrary computations performed by other
domains which are not part of the memory system. We
are forced to the conclusion that In a system which
allows the memory environment to be changed as freely
as Multics or Tenex [8], it Is not possible to usefully
separate the memory protection from the rest of the
protection system. This fact Imposes a strong
requirement on the memory system: it must be able to
support the facilities provided by the overall system. For
example, If It is possible to take away access rights to a
tfile, and the flle happens to be mapped Into memory, then
the memory protection system must be able to find out
about the file's change in status and adjust the memory
access accordingly.

4.2 Efticient communication

uside from these giobal issues, memory protection may
also have an Important role to play In communication
between two domains. |f the messages which implament
this communication contain only data values, then memory
protection does not enter In, since tha data can be
stored In strictly local memory in both domains. |If,
however, they contain pointers instead, then It is the
memory protection system which will have to determine
the wvalidity of those pointers. The advantages of
communicating pointers are well known: results can be
returned by modifying a data structure, and copying of
large quantities of data can be avoided. The
disadvantages are also famillar: it is difficult to control
the use ot pointers precisely, and to ensure that they are
erased when they are no longer needed.

The special contributlon which a memory protection
system can make, then, is to

. allow the pointers which are communicated between
domains to specify exactly the kind of access actually
required (e.g. access to a single word, record or array,
rather than to an entire page or file);

. ensure that these pointers are elther destroyed or
Invalidated at the right time;

. make all this cheap. since otherwise It will be better to
communicate by value.

in the next two schons we shall examlne some attempls‘

. to achleve these goals.

4 3 Au!henllcallon

A memory protectlon system can also contribute to a
solution of the authentication problem. The basic concept
needed to deal with this problem Is the (rademark

Introduced by Norrls [7]. The purpose of a trademark Is
to authenticate the contents of an object; its usefulness
depends on restricting the abllity to affix it, or, to put it
another way, on preventing forgery of trademarks. The
manlputation of trademarked data can be alded by making
it possible to tag a data record so that it can be copled
and read, but not modified. The authentication of a
trademark requires another kind of tag which can only be
affixed by a system-provided registrer.

In terms of the memory addressing model, both kinds of
tag correspond to speclal nodes through which access to
the tagged data Is constrained to pass, and which have
suitably defined fetch and store sons. Unfortunately, no
existing system provides anything at all close to this.

6. Kinds of memory protection

We are now in a position to fiesh out the model with
some examples which wiil serve to iliustrate the range of
possibllities, and perhaps to motivate some of the
characteristics of the model.

The simplest memory protection system Is one which
enforces total isolation. The virtual machine systems are
typical examples, of which the BBN PDP-1 system [1] Is
the earliest, and-CP/67 [8] the most famous. In these
systems the environment contains a single non-terminal
item which we may call the memory, and its branches are
named by the integers. At the end of each branch is a
single word of the memory.

This description’ls actually an oversimplification of CP/67,
which in its later versions allows the virtual machine
construction to be Iterated. There are two ways of
describing this Iteratlon,. illustrated by figures 2a and 2b.

In one case the hierarchical structure is traversed at
each access; in the other, which corresponds closely to

level2
fetch data
level2-f  level2d
segl/ .. \segn

segidef segndef

levell

fetch ata

levell-f leveli-d

seg/ \egm

segldef segmdef

(a) Full hierarchy

level2 levell
fetch data data fetch
f level2d levelid f

" (b) Flattened hierarchy

Figure 2: A two-level memory hierarchy



the actual Iimplementation, the environment describes a
flattened version of the hierarchy, which must be
reconstructed whenever changes are made at the lower
levels.

The memory of an Algol program can be described by the
model In an obvious way. Since Algol has no pointers and
no facliities for manipulating variable bindings except on
procedure calls, the scope of a domaln Is fixed.
Whenever a procedure is called, of course, a new domaln
is created and its environment must be constructed
according to familiar rules. Algo! thus lilustrates static
sharing of memory.

For sound examples of dynamic snaring we must turn tq
operating systems again. Multics [10], Tenex [8] and
other systems which allow named flles to be mapped into
the addressable memory of a domaln lllustrate what might
be called slow sharing. The unit of sharing Is quite large,
and the mechanism for changing the environment is quite
slow and clumsy, so that domains must ba rather large.
The memory protection is quite general, and whatever
fundamental deficiencles It has are simply those of the
overall protection system. Because of the clumsiness,
however, It s of limited usefulness for frequent
communication between domains.

In our addressing model, systems of this kind make heavy
use of the reentrancy of the environment tree. A flle or
segment (or sometimes a page) is the smallest subdivision
of memory from the polnt of view of the protection
system, and the data of each flle appears as a leaf in
the tree. One access path to such a leaf Is through the
directory hierarchy, In which the arcs are labeled by
strings and the access functions do fairly elaborate
checking to ensure that the domain attempting the access
Is in fact entitled to It. This path cannot, of course, even
be specified, much less followed directly by a memory
reference. .

There may, however, be additional access paths for files
which are mapped into memory. Usually each domain has
a unique access point (called a descriptor segment in
Multics, a page table in Tenex). The arcs leaving the
access point are labelad by integers (usually called
segment numbers), and there Is no access checking
beyond that which Is built into the tree. In other words, If
an arc with a given label exists, access along that arc is
automatically aliowed.

. \

There has been conslderable Interest recently in systems
which realize the ideas of section 4.2, by allowing
environments to be modified so conveniently that the
decomposition of a computation into domains need not be
constrained by the cost of transmitting arguments and
switching protection contexts. The Cambridge Capabllity
System [9] and Schroeder's proposal for dynamic
validation of addresses (11] are two quite different
solutions to this problem; both allow fast sharing. The
Plessey 250 [2] s a commerclal system which
demonstrates still another approach.

All of these designs allow a domain to add structure to
the environment tree without invoking any system
software, angl to pass an Item (i.e. a node in the tree) as
a message to another domaln. They differ greatly In the

form of the new structure, however, and consequently in
their robustness.

6. Redundancy

Simple kinds of memory protection which enforce isolation
between domains, and leave sharing to be handled by
message communication, allow little room for mistakes In
setting up the environment, and can use brute-force
techniques for checking. Fabry [3] shows how capability
and access-key Implementations of protection - can be
. cascaded In this case to obtaln a very high degree of
.. redundancy. oL s h

In more complicated situations It is hard to see how to
obtain two independent descriptions of the protection
rules, both of which are complete. Two techniques do
exist, however, for obtaining partial redundancy: stalic
checking and hints.

The design of the Multics system allows a static
consistency check to be performed which verifies that
the descriptor segments and page tables which define the
memory environment are consistent with the file system
information from which that environment Is supposed to
be constructed. In fact, the system permits any part of
the environment to be Invalldated and automatically
reconstructed (if appropriate) from the flle system, and
this capability Is In fact used, although the static check
Is never performed.

The BCC 500 [4] uses two-part pointers to specify the
environment, One part of the pointer, called the hint,
contains the physical address where the Information is
supposed to reside. The other part, called the un/que
name, contains a bit pattern which uniquely Identifies the
item and which must match a fabel stored with the Item.
The correspondence between unique name and label is
checked whenever the hardware map Is I[oaded and
whenever a reference to secondary storage Is made.
This Implementation lllustrates & general technique for
Increasing robustness by adding redundancy, which can be
applied whenever pointers are used. Alternatively, It can
be viewed as a varlation on access-key protection.

A "pure" capability system such as tha Plessey 260 [2]
has no redundancy except what is provided in the storage
of the capabilities themselves (which happens to be a
good deal). If any mistake Iis made In setting up a
capability or in deciding where it should be put, there is
no way of detecting the error during execution. It Is not
even possible to perform a static check tor correctness
of the environment defined by the capabilities, since
every capability Is as good as every other, regardless of
how it was created or where it happens to be sitting.
This approach allows a great deal of flexibllity, but at
some cost in robustness because of tha lack of
redundancy and consequent impossibility of doing any
cross-checking. ’

An entirely different approach is taken by the Cambridge
system [8]. It uses a hierarchy of descriptor segments,
which is traced through whenever the hardware map must
be loaded (see figure 2a). This structure provides
multiple levels o©f compartmentation which are never
collapsed into a single level. An error made in describing
the environment which level / presents to level /+1 cannot
possibly affect any levels below /.

Somewhat similar in its underlying Idea, although entirely
dif ferent In flavor, is Schroeder's scheme for providing
capabilities In the Multics environment {11]. He observes
that if a hierarchical protection structure is carried to its
logical limit, there is no need to treat any of the
Information which describes the environment as sacred to
the basic protection system. Each level can be
responsible for setting up the data structures which
define the environment for the next higher level, and the
memory protection system simply Iinterprets these
structures. Since anything level { says will be Interpreted
In the environment provided by level /-1, there Is no need
to constrain what level / can say In any way.
Furthermore, the idea that a capabliity is a protected
address Is misleading. All the addresses generated by a
domain are unprotected (l.e. integers or strings) In any

system, and the protection is provided by the environment
which interprets them.
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7. Conclusion

We have tried to show how memory protection fits into
the larger scheme of things. A good beginning Is the
observation that any kind of memory protection which
does more than strictly isolate domains is Introduced
solely for efficiency, and not because it can provide any
fundamentally new facllity. From this viewpoint, we can

think of capabilities, descriptor segments or whatever as
clever encodings for certaln speclalized kinds of
communication between domains. These encodings can be
evaluated on the basis of the performance improvement
they provide, the extent to which they make it possible to
write cleaner programs (which in the end is a
consequence of performance Improvement), and thelr
robustness In the face of hardware errors or misuse.
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