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We present a numerical study of the SU(3) Heisenberg model of three-flavor fermions on the triangular and
square lattice by means of the density-matrix renormalization group (DMRG) and infinite projected entangled-
pair states (iPEPS). For the triangular lattice we confirm that the ground state has a three-sublattice order with
a finite ordered moment which is compatible with the result from linear flavor wave theory (LFWT). The same
type of order has recently been predicted also for the square lattice [PRL 105, 265301 (2010)] from LFWT and
exact diagonalization. However, for this case the ordered moment cannot be computed based on LFWT due to
divergent fluctuations. Our numerical study clearly supports this three-sublattice order, with an ordered moment
of m = 0.2− 0.4 in the thermodynamic limit.

PACS numbers: 67.85.-d, 71.10.Fd, 75.10.Jm, 02.70.-c

I. INTRODUCTION

Recent advances in experiments on cold atomic gases have
raised interest in systems consisting of several flavors of inter-
acting fermions, which can be realized for example as differ-
ent hyperfine states of alkali atoms1,2 or nuclear spin states of
ytterbium3 or alkaline-earth atoms.1,4 A model Hamiltonian
to describe such systems is the N -flavor fermionic Hubbard
model given by

H = −t
∑
〈i,j〉

∑
α

c†iαcjα +H.c.+ U
∑
i

∑
α,β

niαniβ , (1)

where α, β run over the different flavors, 〈i, j〉 runs over pairs
of nearest neighbors on the lattice and i runs over all sites of
the lattice.

The two-flavor case corresponds to the spin- 1
2 Hubbard

model. It is generally accepted that for sufficiently large U
and at half filling, i.e. when each lattice site is occupied by
exactly one fermion, the ground state is an antiferromagnetic
Mott insulator. In experiments on cold atoms, the transition
to a Mott insulator has recently been observed;5,6 the obser-
vation of the antiferromagnetic spin order is still open. The
spin- 1

2 Heisenberg model is believed to be a good low-energy
model for the spin degrees of freedom.

For the more general case N > 2, it is expected that, at cer-
tain fillings, Mott insulating states will also emerge.7,8 How-
ever, the spin order (or flavor order) in this case is not under-
stood yet. This has raised interest in generalizations of the
spin- 1

2 Heisenberg model, namely SU(N ) Heisenberg mod-
els. Analogous to the N = 2 case, these are obtained as
second-order expansion of the aboveN -flavor fermionic Hub-
bard model in t/U at a filling such that each site is occupied
by exactly one particle. The Hamiltonian is

H = J
∑
〈i,j〉

∑
α,β

|αiβj〉〈βiαj | (2)

where the first sum runs over pairs of nearest neighbors and
the second sum over flavors. In this paper, we will focus
on the case of the SU(3) Heisenberg model, where α, β ∈
{A,B,C}.

Note that this model is different from the SU(N ) Heisen-
berg models studied in Refs. 9–17 where other irreducible
representations of SU(N ) have been considered, which can
be labelled by different Young tableaus. The corresponding
Young tableau of our model has one single box, i.e. the fun-
damental representation at each site. In Refs. 9 and 10 the
large-N limit with N/2 particles per site has been studied (a
Young tableau with N/2 boxes in one column). In Refs. 16
and 17 the large-N limit with representations withm rows and
nc columns with fixed N/m and nc are considered (nc = 1 in
Ref. 16). Another possibility is to use conjugate representa-
tions on two sublattices,10–15 which is accessible by Quantum
Monte Carlo simulations without a sign problem,13–15 in con-
trast to the SU(3) model considered in this paper.

This SU(3) model is equivalent to the spin-1 bilinear-
biquadratic model,

H =
∑
〈i,j〉

[
cos θ(~Si · ~Sj) + sin θ(~Si · ~Sj)2

]
. (3)

with θ = π/4, thus when bilinear and biquadratic terms are
equal and positive.

In a pioneering work, Papanicolaou18 studied the phase di-
agram of this model on the square lattice as a function of θ by
a semiclassical analysis. Using a site-factorized variational
ansatz (product state) he proposed that the case θ = π/4 cor-
responds to a phase transition from the antiferromagnetically
ordered phase (adiabatically connected to the purely bilinear
case) to a ”semi-ordered phase” with infinitely many degen-
erate ground states, including states with 2- or 3-sublattice or-
der. For recent progress on the nature of the phases in the
”semi-ordered” region and its vicinity, see Ref. 19.

The situation changes for the closely related case of the tri-
angular lattice (equivalent to introducing a coupling on one of
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FIG. 1. Proposed three-sublattice order for the SU(3) Heisenberg
model on the square and triangular lattice. The triangular lattice
is obtained from the square lattice by adding couplings along the
dashed bonds shown above. Blue boxes indicate the sites that are
pinned to a specific flavor in our DMRG simulations in order to ex-
plicitly break SU(3) symmetry.

the diagonals of each plaquette of the square lattice), where
a site-factorized ansatz already predicts a three-sublattice or-
der as depicted in Fig. 1.20,21 This state is stable upon adding
quantum fluctuations at the level of linear flavor wave theory
(LFWT), and is supported by exact diagonalization results.21

In contrast, on a zig-zag chain (the one-dimensional analog
of the triangular lattice) the system undergoes spontaneous
trimerization.22

A recent study based on LFWT indicates that on the square
lattice a similar type of three-sublattice order is selected by
quantum fluctuations.23 This type of order is further supported
by exact diagonalization revealing a tower of states compati-
ble with the continuous symmetry breaking of SU(3).23 The
ordered moment of the symmetry broken state, however, can-
not be computed at the level of LFWT because fluctuations are
divergent. Note that at this point this is an artifact of the linear
spin wave theory, and it is open whether higher order flavor
wave corrections would lead to a finite or absent ordered mo-
ment. The only estimate of the ordered moment so far was
obtained with exact diagonalization from the real-space cor-
relation functions of an 18-site cluster, suggesting an ordered
moment of 60% − 70% of the saturation value, which is ex-
pected to decrease with system size. To further establish the
three-sublattice order on the square lattice it is important to
have an estimate of the ordered moment in the thermodynamic
limit.

While on both lattices three-sublattice order has been sug-
gested, the mechanism how this order is selected is quite dif-
ferent: on the triangular lattice it is already favored at the
classical level, and quantum fluctuations only renormalize the
ordered moment, which is a situation similar to that of the
SU(2) Heisenberg model on bipartite lattices. In the case of
the square lattice, on the other hand, the three-sublattice order
is one among the many degenerate states in the classical limit,
which is selected by quantum fluctuations. Note that thermal
fluctuations may select a different order.23

In the previous semiclassical studies quantum fluctuations
at the level of LFWT have been taken into account, and higher
order terms have been neglected. Thus, it is still an open

question if the three-sublattice order is stable upon including
higher-order quantum fluctuations, or if in this case another
state is selected. An example of such a scenario has recently
been observed in the SU(4) Heisenberg model on the square
lattice,24 where low-order quantum fluctuations select a pla-
quette state, but additional higher-order quantum fluctuations
finally favor a dimerized state. For the SU(3) model, exact re-
sults on small systems suggest that the order is stable,21,23 but
an accurate numerical study for larger systems in two dimen-
sions is so far missing.

In this paper we study the stability of the three-sublattice or-
der of the model (2) on the triangular and square lattice with
state-of-the-art numerical simulations. We present results for
finite 2D systems with open boundaries up to a size 8×8 using
the density matrix renormalization group (DMRG) method,
and infinite 2D systems with infinite projected entangled-pair
states (iPEPS). Both methods belong to the class of tensor net-
work algorithms, enabling to compute ground state properties
with an accuracy which can be systematically controlled by a
refinement parameter, called the bond dimension. Both meth-
ods confirm that the ground state has three-sublattice order
for both type of lattices, and we provide an estimate of the or-
dered moment in the thermodynamic limit. Finally we discuss
an alternative approach based on Schwinger bosons. Unfortu-
nately, this approach turns out to be unable to describe spon-
taneous SU(3) symmetry breaking, and, as a consequence, its
results disagree with those of all other approaches regarding
the type of ordering and the value of the ordered moment.

The outline of this paper is as follows. In Sec. II we give
a short summary of linear flavor wave theory and provide de-
tails on the DMRG and iPEPS simulations. In Sec. III we
first present the results for the triangular lattice, where the
three-sublattice order is expected to be more robust than on
the square lattice, since this order is already favored at the
classical level. We compare and discuss results for the ener-
gies and the ordered moment obtained with DMRG, iPEPS
and LFWT. In Sec. III C we provide a similar study for the
square lattice case, where we find an ordered moment which
is also finite, but stronger suppressed by quantum fluctuations
than on the triangular lattice. Finally, Sec. V summarizes our
results. In Appendix A we report on our attempt to extend the
Schwinger boson mean-field theory to SU(3).

II. METHODS

A. Linear flavor wave theory

The linear flavor wave theory is the extension of the usual
SU(2) spin wave theory to SU(N) models. It has been for-
mulated in Refs. 25 and 18 for the SU(3) case and in Ref. 26
for the SU(4) case. For completeness, here we give some de-
tails for the three–sublattice order on the triangular and square
lattice in the SU(3) Heisenberg model — the cases under
scrutiny in this paper. We note that for the triangular lattice,
an analogous calculation has been presented by Tsunetsugu
and Arikawa.20

We begin by extending the Hamitonian (2) to the case
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where on each site the states belong to the symmetrical ir-
reducible representation of the SU(3) algebra that can be rep-
resented by Young-tableaux drawn with M boxes arranged
horizontally. The SU(3) spin operators in such a symmetrical
irreducible representation can be expressed as

Sαβ (l) = b†β(l)bα(l), (4)

using Schwinger bosons with 3 flavors, where l is the site in-
dex and the number of bosons on each site is∑

α∈{A,B,C}

b†α(l)bα(l) = M, (5)

equal to the number of boxes in the Young tableau. The Sαβ (l)
operators satisfy the SU(3) Lie algebra,[

Sαβ , S
α′

β′

]
= Sα

′

β δ
α
β′ − Sαβ′δα

′

β (6)

where δαβ is the Kronecker δ function. For M = 1 the Sαβ (l)
operators act on the 3-dimensional, fundamental representa-
tion |α〉 (where α = A,B, or C) of the SU(3) algebra as
Sαβ |α〉 = |β〉 and Sαβ |α′〉 = 0 if α′ 6= α, with i being the site
index.

The Hamiltonian now can be written as

H = J
∑
〈i,j〉

Sαβ (i)Sβα(j) , (7)

where the sum is over the nearest neighbor lattice sites, and
over the repeated α and β flavor indices. To draw a parallel to
the SU(2) case, the Hamiltonian (2) in the fundamental irre-
ducible representation corresponds to the spin–1/2 Heisenberg
model, while the Hamiltonian (7) to the Heisenberg model of
spins with length S (actually for the SU(2) case S = M/2).

In the following, we consider an ordered state where the
spins on the sites l, that belong to sublattice Λα, point in the
direction α. Following the analogy with the spin wave theory
that is a 1/S expansion, we take the M → ∞ limit and do a
1/M expansion. Starting from the ordered state we can use
the following expansion for the Sαβ (l) operators in the large–
M limit:

Sαα(l) = M − µα(l), (8)

Sαβ (l) = bα†β (l)
√
M − µα(l) ≈

√
Mbα†β (l), (9)

Sβα(l) =
√
M − µα(l)bαβ(l) ≈

√
Mbαβ(l), (10)

Sβ
′

β (l) = bα†β (l)bαβ′(l), (11)

where we have introduced the shorthand notation

µα(l) =
∑
β 6=α

bα†β (l)bαβ(l). (12)

The bα†β (l) operators with β 6= α now correspond to the
Holstein–Primakoff bosons on sublattice Λα, and the super-
script α keeps track of the sublattice. We replace the expres-
sions above into Hamiltoniam (7). Expanding in 1/M and

keeping the quadratic terms only, for the exchange term be-
tween sites l ∈ Λα and l′ ∈ Λα′ we get∑

β,γ

Sγβ (l)Sβγ (l′) = M
[
bα†α′ (l)bαα′(l) + bα

′†
α (l′)bα

′

α (l′)

+bα†α′ (l)bα
′†
α (l′) + bαα′(l)bα

′

α (l′)
]
.(13)

in leading order in M — note that the bosons with flavor dif-
ferent from the ordered α and α′ flavor are missing from the
bond expression. Assuming a three-sublattice ordered state,
we define the following Fourier transformation:

bαβ,k =

√
3

NΛ

∑
l∈Λα

bαβ(l)eikrl (14)

where the summation is over the NΛ/3 sites of the Λα sub-
lattice (NΛ is the number of lattice sites). The Hamiltonian
between the sublattices Λα and Λβ in k–space reads

Hαβ =
zJM

2

∑
k

[
bβ†α,kb

β
α,k + bα†β,−kb

α
β,−k

+γkb
α†
β,−kb

β†
α,k + γ∗kb

α
β,−kb

β
α,k

]
, (15)

where z is the coordination number of the lattice (z = 4 for
the square and z = 6 for the triangular lattice). The factor γk
reads

γk =
1

3

(
eikx + 2e−ikx/2 cos

√
3ky
2

)
(16)

for the triangular lattice and

γk =
1

2

(
eikx + eiky

)
(17)

for the square lattice, with γ∗k = γ−k.
The full Hamiltonian is H =

∑
α<βHαβ . It can be diago-

nalized via a Bogoljubov transformation:(
b̃β†α,k
b̃αβ,−k

)
=

(
cosh θ(k) sinh θ(k)
sinh θ(k) cosh θ(k)

)(
bβ†α,k
bαβ,−k

)
(18)

with tanh 2θ(k) = γk , leading to

H = −z
2
JMNΛ +M

∑
k∈RBZ

∑
α

∑
β 6=α

ω(k)

[
b̃α†β,kb̃

α
β,k +

1

2

]
.

(19)
The dispersion of the flavor waves is given by

ω(k) =
z

2
J
√

1− |γk|2 (20)

There are 6 degenerate branches in the reduced Brillouin zone,
which is equivalent to 2 branches in the normal Brillouin
zone. The dispersion agrees with the result of Tsunetsugu and
Arikawa20 for the triangular lattice. For the square lattice, it is
given in Ref.23.
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The energy per site due to quantum fluctuations is given by
the expression (

2

〈
ω(k)

2

〉
BZ

− z

2
J

)
M, (21)

where we take into account that there are two modes per lattice
site. The 〈. . . 〉BZ denotes the average over the Brillouin zone.
Quantum fluctuations lower the energy from 0 to−0.630J per
site for the triangular and to −0.727J for the square lattice.
Note that the energy per site of the triangular lattice is higher
than the one of the square lattice despite the larger coordina-
tion number of the former lattice.

The reduction of the ordered moment is calculated as

〈Sαα(l)〉 = M − 〈µα(l)〉 = M −

〈
1√

1− |γk|2
− 1

〉
BZ

.

(22)
In the triangular lattice 〈Sαα(l)〉 = M − 0.516, so that the
on–site moment is reduced from 1 to 0.484. In the square
lattice, the reduced moment diverges due to the zero line in
the spectrum. Thus, LFWT is unable to make a prediction for
the ordered moment. We have tried to use a Schwinger boson
mean-field theory (SBMFT) to restore a gap along this line
and remove the divergence (see Appendix A). Unfortunately,
the SBMFT turned out to be unsatisfactory in several respects,
and its results regarding the ordered moment are not reliable.

B. DMRG for finite two-dimensional systems

1. Setup

For our DMRG simulations, we map the two-dimensional
system to a chain following a ”TV screen” method (sweeping
along the vertical direction). We will generally refer to the
extent in the horizontal direction as length, and in the vertical
direction as width of the system. We use a single-site opti-
mization scheme augmented by the improvement suggested in
Ref. 27. We perform the simulation starting from different ini-
tial states and increase the bond dimension very quickly with
the number of sweeps to avoid getting trapped in local min-
ima. This is particularly important for the case of the square
lattice, where an insufficient bond dimension may lead to un-
physical states. Together with the large number of operators,
this limits the bond dimension that we can reach with our com-
putational resources to about D ∼ 5000 states. Due to the
huge growth of entanglement with the width of the system,
this allows us to obtain sufficient accuracy for systems up to
width 8.

2. Calculation of the order parameter

We expect that, in the thermodynamic limit, the SU(3) sym-
metry is spontaneously broken. If an appropriate basis is cho-
sen (i.e. after an appropriate SU(3) rotation), one flavor be-
comes stronger on each site, i.e.

nα > nβ = nγ α, β, γ ∈ {A,B,C}. (23)

In this case, we can define the local moment

〈m〉 =
3

2

(
max

α=A,B,C
〈nα〉 −

1

3

)
, (24)

which should acquire a finite value in the range 〈m〉 ∈ [0, 1].
On finite systems, the symmetry is never broken sponta-

neously and one would conventionally use the relation

〈nα〉2 = lim
d→∞

(〈nα,inα,i+3d〉 − 〈nα,i〉〈nα,i+3d〉) (25)

to extract information about the moments. This however re-
quires large systems and very accurate estimates for the cor-
relation functions, which are hard to obtain from a DMRG
simulation in two dimensions. We therefore follow the pre-
scription of Refs. 28 and 29 and break SU(3) symmetry ex-
plicitly by introducing fields at the boundaries of the system.
The local moments can then be measured locally, preferably
on sites far away from the pinning fields. The pinning fields
also fix the direction of the symmetry breaking to be along the
basis vectors.

We introduce a column of pinned sites at each end of the
system, as shown in Fig. 1. We choose the system sizes such
that the unpinned sites form a square, i.e. the system size in-
cluding pinned sites is (L + 2) × L. Pinning is done with
a flavor-specific chemical potential of magnitude 1. In addi-
tion, such pinning fields reduce the entanglement in the sys-
tem. Simulations were performed for both open and cylindri-
cal boundary conditions.

3. Boundary conditions

An important question when performing finite-size DMRG
simulations is the appropriate choice of boundary conditions.
From an entanglement point of view, open boundary condi-
tions appear favorable; also, these will have fewer long-range
operators in the mapping to a chain. From a physical point
of view, on the other hand, periodic boundary conditions are
often preferred as they eliminate boundary effects. A compro-
mise suggested e.g. in Ref. 28 is to use cylindrical boundary
conditions, which are favorable from an entanglement point
of view.

Physically, such boundary conditions are compatible with
the approach of pinning two columns, which preserves trans-
lational invariance in the vertical direction. In order not to
frustrate the three-sublattice order, such boundary conditions
should only be chosen for systems whose width is a multiple
of three. For other system sizes, shifted cylindrical boundary
conditions can be used. For example, for a system of width 5,
the bottom site of column i must be connected to the top site
of column i+ 1 to obtain a system without additional frustra-
tion.

We find numerically that cylindrical boundary conditions
favor a state that is a product of periodic length-6 chains
wrapped around the cylinder. A calculation for the same
model on a periodic chain of length 6 shows that the energy
per site is very low in this case, making it favorable for small
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clusters. Such a state shows significantly reduced local mo-
ments. By choosing open boundary conditions in all direc-
tions, we suppress this effect.

Another subtlety occurs for the square lattice system sizes
L = 3n − 1, with n a positive integer number, for which
the pattern of our pinning fields allows two different ordered
states, corresponding to the two different orientation of the di-
agonal stripes.23 For these cases, at a sufficiently large bond
dimension, a superposition of both types of order will occur
and lead to a significant decrease of the local moment (ex-
cept on sites where the two types of order coincide) and a
significant increase of the entropy. In these cases, we pin two
additional sites to uniquely select the order.

4. Extrapolation

The reliable extrapolation of results obtained for a lim-
ited bond dimension to the limit of infinite bond dimension,
where DMRG becomes exact, remains a challenge. While
some reliable results are known for one-dimensional critical
systems,30,31 one has to resort to heuristic techniques in more
general situations, such as two-dimensional systems. Such
techniques include the extrapolation in the truncated weight28

or in the variance. Since we use a single-site optimization
method, the truncated weight cannot be obtained reliably, and
the calculation of the variance is only possible for smaller sys-
tem sizes. We therefore resort to an extrapolation of the mag-
netization in the bond dimension using the values obtained for
the three largest values of D; for bond energies, we use only
the result obtained for the largest value of D. While most
simulations were performed using up to D = 4800 states,
we have confirmed the accuracy of our results with up to
D = 6400 states for some selected systems.

Similarly, an accurate finite-size extrapolation is difficult
given the few system sizes we can access. Also, the de-
pendence of the order parameter and the energy on the sys-
tem size, boundary conditions and aspect ratio is not known.
In fact, previous studies have even observed surprising cases
such as non-monotonic behavior for very small systems.28

C. Infinite projected entangled-pair states (iPEPS)

1. Setup

An iPEPS is a tensor network made of a set of rank-5 ten-
sors periodically repeated on a two-dimensional lattice to effi-
ciently represent ground state wave functions in the thermody-
namic limit.32–37 Each tensor has four auxiliary bonds which
connect to the four nearest-neighbor tensors, and a fifth index
carrying the local Hilbert space of a lattice site. The accuracy
of the ansatz can be controlled by the dimension of the auxil-
iary bonds, called the bond dimension D. As the optimization
scheme for the tensors we perform an imaginary time evolu-
tion with the so-called simple update (see Refs. 38 and 39)
adopted from the time-evolving block decimation method in

one dimension.40,41 For the square lattice we verified the re-
sults up toD = 8 also with the full update (see e.g. 39), which
is optimal but has a higher computational cost. The triangular
lattice simulations are done with the same ansatz as for the
square lattice, but now with an additional next-nearest neigh-
bor interaction along one of the diagonal directions. The up-
date scheme for this case is explained in Ref. 42.

We performed simulations with different rectangular unit
cells of size Lx × Ly in iPEPS.43 To represent the state with
three-sublattice order efficiently, a 3 × 3 cell is used, with
3 different tensors TA, TB , and TC for the three sublattices
respectively. We verified that the same state is obtained by
using a similar cell with 9 different tensors. The 2 × 2 unit
cell is used to enforce a state with two-sublattice order.

To contract the tensor network efficiently, e.g. for the com-
putation of observables, the corner transfer matrix scheme44

adapted to large unit cells42 is used. The accuracy of the
approximate contraction can be controlled by the so-called
boundary dimension χ. For large values of D a χ up to 250 is
used, where quantities of interest are extrapolated in χ, with
an extrapolation error being small compared to symbol sizes.
For a better efficiency we use tensors with Zq symmetry, a
discrete abelian subgroup of SU(3).45–47

2. Calculation of the order parameter

Since iPEPS is an ansatz for the wave function in the ther-
modynamic limit, the SU(3) symmetry may be spontaneously
broken, leading to a finite local moment m defined in Eq. 24.
In order to pin the direction of the moment in SU(3) color
space an initial field is applied, which is taken to zero at a
later stage of the imaginary time evolution. We verified that
we obtain the same results without initial field, and by com-
puting the moment taking all generators of SU(3) into account
(see Eq. (A4) in appendix A).

3. Extrapolation

For highly entangled systems quantities of interest such as
the energy or the local moment are typically not converged
as a function of the bond dimension D at the maximal value
of D used, and thus an extrapolation to the infinite D limit
is desirable. However, in general the dependence of observ-
ables on D is (still) unknown, which limits the accuracy of
such extrapolations. Since the approach is variational the en-
ergy decreases with increasing D, and therefore the energy at
the largest value of D provides an upper bound of the exact
energy. Empirically, the exact value lies between the linear
extrapolated value and the value at the largest D, and thus we
take the middle of these two values as an estimate and the
difference between the two values as an error bar. The same
holds for the local moment, which is typically suppressed with
increasing D, since more quantum fluctuations are taken into
account with increasingD which renormalize the ordered mo-
ment. Typically, the energy converges faster than the local
moment.
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FIG. 2. Comparison of the energy per site (upper panel) and the local
moment (lower panel) of the SU(3) model (2) on the triangular lat-
tice, obtained from LFWT, ED, DMRG and iPEPS. In each plot, the
DMRG results are shown as a function of the inverse system length
1/L (lower x-axis), whereas the iPEPS results are shown as a func-
tion of inverse bond dimension 1/D (upper x-axis). Dotted lines are
only guides to the eye.

III. RESULTS FOR THE TRIANGULAR LATTICE

We first present the results for the energy and the ordered
moment for the model on the triangular lattice, obtained with
LFWT, ED (energies only), DMRG and iPEPS. As mentioned
in the introduction, on the triangular lattice a three sub-lattice
order is already obtained from a simple product state ansatz.
Inclusion of quantum fluctuations via LFWT does not destroy
the order,21 but renormalizes the local moment. In the fol-
lowing we show that this holds even when including further
quantum fluctuations.

A. Energy per site

Figure 2a) shows a comparison of the energy per site ob-
tained with the four methods, where linear flavor-wave the-
ory predicts a value of Es = −0.6295J . Extrapolating
ED energies for symmetric clusters consisting of N = 9,
12, and 21 sites using a standard 1/N3/2 form, we obtain

FIG. 3. Bond energies and local color densities in the triangular
(7+2)×7 lattice obtained from DMRG. The thickness of the bonds
is proportional to the magnitude of the bond energy. An external po-
tential is applied on the first and the last column to pin the sites to a
specific color.

Es ≈ −0.69(1)J .
Since we use open boundary conditions in the DMRG sim-

ulations, the energy per site is not uniform in the system. Fig-
ure 3 shows that the energy per bond close to the boundary
is lower than far away from the boundaries. To obtain an es-
timate of the energy per site in the ”bulk” we average over
the six bond energies around the central site for odd systems
sizes. For even system sizes, we average over the four sites at
the center of the system. This estimate is plotted in Fig. 2a)
for different system sizes. The energy first increases with sys-
tem size, and decreases slightly from L = 7 to L = 8. For the
largest system L = 8 the estimated energy per site in the bulk
is Es = −0.6775J .

Comparing the iPEPS energies obtained with different unit
cell sizes, we find that the 3×3 unit cell yields a considerably
lower variational energy than the 2 × 2 unit cell, which indi-
cates that the symmetry breaking in the ground state is com-
patible with the 3-sublattice order. The energy per site has
not converged yet as a function of bond dimension D. Since
the energy typically converges faster than linearly in 1/D we
(empirically) expect the energy to lie in between the value for
the largest D, ED=10

s = −0.672J , and the energy obtained
from linear extrapolation of the last three data points in 1/D,
Eex
s = −0.708J . Taking the mean of these two values yields

an estimate of Es = −0.69(2), which is compatible with the
DMRG result for the largest system.

B. Local moment

In Fig. 2b) we present the results for the local moment m
obtained with the various approaches, where m = 1 for the
fully polarized case.

As mentioned in Sec. II A, linear flavor-wave theory pre-
dicts a value of m = 0.484.

The DMRG results correspond to the local moment at the
central site of the system for odd system sizes. For even sys-
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tem sizes, the magnitude of the ordered moment is averaged
over the four sites that make up the central plaquette of the
system. Variations depending on the distance to the bound-
aries in x- and y- direction can be observed, as shown in
Fig. 4a). The value is decreasing with increasing distance
from the pinning sites (in x-direction), whereas the value
is seen to increase away from the boundary in y-direction.
As a function of system size the local moment is increas-
ing. As mentioned before, an accurate extrapolation to the
thermodynamic limit is challenging, but a value in the range
m ≈ 0.43− 0.6 seems compatible with the DMRG data.

The local moment obtained with iPEPS decreases with in-
creasing D, an effect which can also be observed e.g. in the
SU(2) Heisenberg model. With increasing D more quantum
fluctuations are taken into account which reduce the magnetic
moment from its value in the classical (product-state) limit,
corresponding toD = 1. For the largest bond dimension used,
D = 12, we find a value m = 0.58, whereas a linear extrap-
olation in 1/D suggests a value of m = 0.52. As discussed
in Sec. II C 3 the exact scaling behavior of m with 1/D is not
known, but empirically, we expect m to lie in between these
two values.

C. Discussion

Even though we cannot determine m up to a high preci-
sion all three methods clearly suggest that the ground state
has three-sublattice order with a large local magnetic moment
in the range m = 0.43 − 0.6. As in the case of the SU(2)
Heisenberg model on the square lattice, linear flavor wave the-
ory (spin wave theory) already gives a good estimate of the
local moment.

IV. RESULTS FOR THE SQUARE LATTICE

We next consider the SU(3) Heisenberg model on the
square lattice. As explained in the introduction a site factor-
ized ansatz leads to an infinite number of degenerate ground
states and quantum fluctuations (with LFWT) selects the
three-sublattice state.23 Thus, quantum fluctuations seem to
play a more dominant role on the square lattice, and it is con-
ceivable that another ground state is selected when further
quantum fluctuations beyond LFWT are taken into account.
However, we show in the following that this is not the case
here, i.e. that the three-sublattice order is stable and that addi-
tional quantum fluctuations only further renormalize the local
moment.

A. Energy per site

In Fig. 5a), the value of the energy per site from linear
flavor-wave theory, Es = −0.725J , has previously been
calculated in Ref. 23, and is low compared to the numeri-
cal results. We note the LFWT energy is not variational, so
that it can be lower than the exact ground state value. We
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FIG. 4. DMRG results with D = 4800 states: Local moments as
defined in Eqn. (24) for the triangular (top panel) and square (bottom
panel) lattice for a system size (7 + 2) × 7. The plateau is very flat
in the case of the square lattice, while corrections from the boundary
are more pronounced for the triangular lattice.

have also included an ED estimate of the energy per site
Es = −0.63185J , which is based on an extrapolation using
square samples with N = 9 and 18 sites.

The DMRG energy per site is Es = −0.625 for the largest
system, and seems to further increase as a function of system
size. As in the triangular lattice case we estimate the bulk en-
ergy by taking the mean value over the bonds adjacent to a
central site for odd system sizes and four sites for even system
sizes. This energy seems higher than the LFWT and iPEPS
result, which could indicate that boundary effects are large so
that we do not get a good estimate for the ”bulk” energy, or it
could be that for larger systems the energy as a function of sys-
tem size decreases again. We further note that an anisotropy
in the bond energies can be observed, with stronger bonds in
y-direction than in x-direction, shown in Fig. 6.

Comparing the energies from different unit cell sizes in



8

0 0.1 0.2 0.3 0.4 0.5

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

E
s [J

]
1/D

 

 

0 0.05 0.1 0.15 0.2 0.25
1/L

iPEPS 2x2 unit cell
iPEPS 3x3 unit cell
DMRG
LFWT
ED extrap.

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

m

1/D

 

 

0 0.05 0.1 0.15 0.2 0.25
1/L

iPEPS 3x3 unit cell
DMRG

FIG. 5. Same plot as in Fig. 2 but for the SU(3) model (2) on the
square lattice.

iPEPS, we observe a similar behavior as on the triangular lat-
tice, namely that the 3×3 unit cell provides a better variational
energy than the 2 × 2 unit cell for all values of D. The esti-
mated energy per site in the limit D →∞ is Es = −0.66(1).

B. Local moment

Figure 5b) summarizes our results for the local moment,
obtained from DMRG and iPEPS. As explained in Ref. 23,
the ordered moment cannot be computed within LFWT.

The finite size effects observed in DMRG are qualitatively
different from the triangular lattice case. The local moment as
a function of distance of x in Fig. 4 reaches a plateau already
after 3 sites away from the border, which could suggest that
finite size effects on the ordered moment are smaller than on
the triangular lattice. In Fig. 5b) the local moment in the mid-
dle of the system first decreases and then increases with sys-
tem size with, however, a smaller slope than in the triangular
lattice case. Thus, the present data is compatible with a non-
vanishing local moment in the thermodynamic limit, which is
smaller than on the triangular lattice. The ordered moment of
the largest system is m = 0.368.

The local moment obtained with iPEPS decreases with in-
creasing bond dimension but is not seen to extrapolate to zero

FIG. 6. Bond energies and local color densities in the square
(7+2)×7 lattice obtained from DMRG. The thickness of the bonds
is proportional to the magnitude of the bond energy. An external po-
tential is applied on the first and the last column to pin the sites to a
specific color.

in the limit D → ∞. The value for the largest bond dimen-
sion, D = 16, is m = 0.3422 which is close to the DMRG re-
sult for the largest system. However, in the limit D → ∞ the
data suggests a lower value of roughly m = 0.25(5), which is
lower than the prediction from DMRG.

C. Discussion

Both the DMRG and iPEPS results are compatible with the
proposed 3-sublattice Néel ordered ground state. From the
present data we can only give a rough estimate of the ordered
moment in the thermodynamic limit of m = 0.2− 0.4, which
is clearly finite, but smaller than on the triangular lattice.

V. SUMMARY

Our study confirms that the ground state of the SU(3)
Heisenberg model exhibits a three-sublattice order on both the
triangular and the square lattice, in accordance with previous
predictions by LFWT and exact diagonalization.20,21,23

The situation on the triangular lattice resembles the one of
the SU(2) Heisenberg model on the square lattice. In both
cases the ground state can already be understood at the clas-
sical level, and quantum fluctuations simply renormalize the
ordered moment. These fluctuations are well captured already
within linear flavor wave theory (i.e. spin wave theory in the
SU(2) case). With iPEPS the ordered moment decreases with
increasing bond dimension D, which can intuitively be un-
derstood because the bond dimension controls the amount of
quantum fluctuations taken into account. All three methods
used in this study yield a finite ordered moment in the range
m = 0.43− 0.6. The uncertainty in this value stems from the
error in the extrapolation to the thermodynamic limit in the
case of DMRG, and from the extrapolation to the infinite D
limit in the case of iPEPS.
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In the case of the square lattice, the order cannot be pre-
dicted at the classical level. Quantum fluctuations hence play
a very different role than in the case of the triangular lat-
tice: instead of renormalizing the mean-field result, they stabi-
lize the three-sublattice order against other competing states.
Quantum effects are therefore more important both qualita-
tively and quantitatively, and an estimate of the ordered mo-
ment in the thermodynamic limit has previously been lacking.
Both DMRG and iPEPS predict a finite value in the range
m = 0.2 − 0.4, i.e. the ordered moment is more strongly
suppressed than on the triangular lattice, but clearly finite.
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Appendix A: Schwinger boson study

The Schwinger boson mean-field theory (SBMFT), intro-
duced by Arovas and Auerbach51 and extended by Read
and Sachdev,52 has been widely used for SU(2) models and
more recently for models with SU(4) symmetry53 and SU(N )
models.54,55 This approach is justified in the context of a large
N expansion, where N is the number of boson flavors. Here,
we stress that N and N are two different numbers and the
mean-field approach is equivalent to taking the limit N to in-
finity with N fixed. After a brief summary of the SBMFT, we
address the following question: Is this theory really adapted
to the study of models with SU(N ) symmetry when N > 2?

We use the Schwinger bosons defined in Sec. II A and im-
pose the constraint on the boson number at each lattice site i:

n̂(i) =
∑
α

b†α(i)bα(i) = κ, (A1)

For the model of Eq.(2), κ = 1, and the Hamiltonian is
the same as Eq. 7. We define the link operator Âijαβ =

(bα(i)bβ(j) − bα(j)bβ(i))/
√

2 such that the permutation op-
erator writes

P̂ij = 1−
∑
α>β

2Â†ijαβÂijαβ . (A2)

The Hamiltonian is thus of degree four in bosonic operators
and is not directly solvable. A mean-field (MF) approximation
lowers the degree to two: the Hamiltonian becomes quadratic
and solvable by a Bogoliubov transformation. One possible
MF parameter is ∆ijαβ = 〈Âijαβ〉. It is the most often used

in SU(2) SBMFT because it is invariant by SU(2) transforma-
tions : Âijαβ is the destruction operator of a SU(2) singlet of
colors α and β. The MF Hamiltonian writes

HMF =
∑
〈ij〉

1− 2
∑
α>β

(∆ijαβÂ
†
ijαβ + h.c.− |∆ijαβ |2)


+
∑
i

λ(i)(κ− n̂(i)), (A3)

where a Lagrange multiplier λ(i) is used to impose the con-
straint of Eq. A1 on average at each site.

The success encountered by this theory for SU(2) mod-
els comes from the fact that two phases are possible for the
ground state of the Hamiltonian of Eq. A3. For κ lower
than a critical value κc, the ground state is invariant by
SU(2) global spin transformations and the elementary exci-
tations are gapped spinons. If the Hamiltonian symmetries
are respected,56,57 this phase is a topological spin liquid. For
κ > κc, one or several spinons become gapless, and to sat-
isfy the constraint, a Bose condensate is required, breaking
the SU(2) symmetry of the ground state: we have a long range
ordered state. Unlike spin-wave expansions, this theory does
not assume any order. The system is free to order or not, and
the pattern is not imposed.

This property comes from the fact that the MF Hamiltonian
(Eq. A3) is expressed in terms of SU(2) invariant link opera-
tors. For N > 2, singlets occupy N sites and can no longer
be destroyed by quadratic operators. This implies that the MF
Hamiltonian is no longer SU(N ) invariant. This can be veri-
fied using the order parameter m obtained using the Casimir
operator on a site

m =

√√√√√ 1

N − 1

N∑
α,β

〈Sβα〉2 − 1

. (A4)

For a product (non entangled) state, m = 1 and for a site in
a SU(N ) singlet, m = 0 . For SU(2), we recover m = |〈S〉|.
For N > 2, the only way to have m = 0 would be to set all
the MF parameters ∆ijαβ to 0. Thus even without any gapless
spinon, the ground state is already long range ordered and we
cannot have a spin liquid. The condensation is then only the
breaking of a remaining freedom of the bosons.

We now come back to the SU(3) model on the square and
triangular lattice. The κ → ∞ limit is the classical limit,
namely the 3 state Potts model. We first calculate the MF pa-
rameters in this limit for the orders considered in this article,
with 2 (or 3) sublattices denoted A, B (and C). These or-
ders still have the degeneracies associated to the global SU(3)
symmetry. Depending on the choice of 3 orthogonal vectors
uX , X = A,B,C, which specify the orientation on the dif-
ferent sublattices, the mean-field parameters ∆ijαβ take dif-
ferent phases and modulus, unlike SU(2) where the only de-
gree of freedom was the gauge choice (the values of ∆ijαβ did
not depend on how SU(2) was broken). We once again note
that a SU(3) spin liquid cannot be described in this formalism.
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lattice state EMF m nc

triangular three sublattices -0.58 0.93 0.86
square two sublattices -0.68 0.50 0.61
square three sublattices -0.62 0.89 0.73

TABLE I. Results obtained by SBMFT. EMF is the energy per site
obtained by Eq. A3 with mean-field parameters verifying the self-
consistency conditions. m is defined in Eq. A4 and nc is the number
of bosons in the gapless modes(s). These quantities are extrapolated
to the thermodynamical limit.

Let us choose

uA =

1
0
0

 ,uB =

0
1
0

 ,uC =

0
0
1

 .

In the κ → ∞ limit, we can replace the bα(i) operators
by their mean values 〈bα(i)〉. If i is on the X sublattice,
〈bα(i)〉 = (uX)α. Thus we obtain the MF parameters
for all the considered orders: ∆ijαβ = (〈bα(i)〉〈bβ(j)〉 −
〈bα(j)〉〈bβ(i)〉)/

√
2.

For finite κ, these parameters are not self-consistent and
have to be adjusted. The chemical potential λ is assumed to
be site independant. We restrict our search for mean-field so-
lutions to states obtained from the classical states by changing
the modulus of the non zero ∆’s. The energy, the order pa-
rameter and the fraction of condensed bosons nc are given in
Tab. A for the states discussed in this article. In all cases, m is
far larger than the order parameter obtained in LFWT, DMRG
and iPEPS, even without any boson condensation. The ener-
gies obtained are not variational since the boson Hilbert space
is larger than the physical one (the ground state is a superpo-
sition of states with different boson numbers on each site).

The three sublattice state on the square lattice has a larger
energy than the two sublattice state, in contrast to the results
obtained with LFWT, ED, DMRG and iPEPS. This result can
be understood qualitatively. The SU(3) two-sublattice and the
SU(2) two-sublattice state (historically treated by Arovas and
Auerbach51) share several properties: same energy and same
condensed fraction. The value of m = 0.5 of the order pa-

rameter for SU(3) is exactly the value for a site in a SU(2)
singlet and corresponds to m = 0 for SU(2). By fixing the
MF parameters, a direction among the three available is for-
bidden to the bosons, that are confined in a SU(2) manifold.
This remaining symmetry can only be broken by a conden-
sate. The SU(3) ground state is thus exactly the same as the
SU(2) one. The only difference stays in the existence of addi-
tional excitations in the third direction for SU(3). They have a
maximal energy cost, the value of the chemical potential, and
form a flat band over all other excitations. Thus, the energy
cannot be lowered by fluctuations in the full SU(3) space. We
see in Tab. A that the magnetization is even larger in the other
states (the three sublattice states on the square and triangular
lattice), with m = 0.89 and 0.93 as compared to m = 0.5.
The fluctuations are even more constrained, which provides a
plausible explanation why the energy of the three-sublattice
state on the square lattice is larger than the energy of the two
sublattice state.

To conclude this appendix, let us put these results in a
broader perspective. For SU(2), the SBMFT is a convenient
way to go beyond linear spin-wave theory (LSWT). This for
instance allows to lift the classical degeneracies that may sur-
vive LFWT. The kagome antiferromagnet offers a good ex-
ample. Within LSWT, coplanar classical ground states remain
degenerated, whereas SBMFT lifts the degeneracy in favor of
the
√

3×
√

3.58 For that model, a classical state with higher lin-
ear spin-wave energy has recently been shown to have an even
lower SBMFT energy.59 In the context of the SU(3) model on
the square lattice, the motivation to use SBMFT was to re-
move the line of soft modes obtained in LFWT for the three-
sublattice order, and at the same time the divergence of the
correction to the magnetization. This is indeed achieved by
the SBMFT, but unfortunately the resulting picture is not sat-
isfactory: For SU(N ) models with N > 2, a spontaneous
breaking of the SU(N ) symmetry is not possible since the
choice of MF parameters already breaks it. No spin liquid
ground state exists for the MF Hamiltonian of Eq. A3 and
the quantum fluctuations taken into account in a long-range
ordered ground-state are limited to some subspace of SU(3).
As a consequence, we cannot use it to compare the MF states
derived from several SU(3) classical orders. Other bosonic
representations of SU(N ) spins could lead to better results.60
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