
Published by the IEEE CS   n   1536-1268/16/$33.00 © 2016 IEEE 	 PERVASIVE computing� 5

Spotlight

M obile devices continue to become 
more capable; over the last 15 

years, we’ve seen both processor and 
network speeds increase one thousand 
fold. However, the batteries upon which 
most mobile devices depend have not 
advanced as quickly. In fact, despite  
significant research into new battery 
chemistries and construction tech-
niques, typical rechargeable battery 
energy density has only doubled in that 
same 15-year period. The designers of 
mobile devices inevitably have to incor-
porate batteries that are larger or heavier 
than they’d like to address the practi-
calities of usage. By way of example, 
the size and weight of a mobile phone 
is constrained by the need for a battery 
with enough capacity to reliably operate 
for a day; conversely, tablets and laptops 
that meet the expectations of today’s 
consumers in terms of form factor and 
weight can rarely operate for a full day.

Increasing battery energy density is 
not the only way to improve battery 
lifetime; a large body of research has 
explored various ways to reduce mobile 
device power consumption as an alter-
native. Many different approaches 
have been taken, from designing more 
power-efficient hardware components 
to developing power-aware software 
applications. One paradigm that we’ve 
been exploring at Microsoft Research 
for many years is the intelligent offload-
ing of computation, communication, 
and storage. By passing responsibility 

for some of these operations away from 
a mobile device’s main processor, it’s 
possible to save power on the mobile 
device. It’s often possible to simultane-
ously increase performance. This arti-
cle presents an overview of three such 
offload techniques that we’ve developed 
and concludes with some reflections on 
the progression of this research.

Offloading to a Low-
Power Processor
Mobile devices, such as laptops, tab-
lets, and smartphones, feature a pow-
erful CPU that’s closely coupled with 

system memory, network interfaces, 
graphics, and other components. This 
set of components might be imple-
mented across several discrete packaged 
components or as a system-on-a-chip 
(SoC). However, even the latter, which 
is designed to be as compact and energy 
efficient as possible, typically only pro-
vides coarse granular control of power 
consumption. As a result, the system 

often ends up consuming more power 
than strictly necessary when running 
relatively lightweight tasks.

The first offloading technique we 
developed as part of our aim to reduce 
the power consumption of mobile devices 
is called Somniloquy.1 We initially devel-
oped it with laptop-class devices in 
mind. Although the power consumption 
of these devices can be controlled using 
techniques such as voltage and frequency 
scaling, at a coarse power-control level, 
there are only a handful of different oper-
ating states, as defined by the advanced 
configuration and power interface (ACPI) 
specification (see Table 1).

Somniloquy is designed to let a 
range of tasks with basic computation, 
memory, and peripheral requirements 
execute while the rest of the device is 
in one of the four ACPI G1 states—
typically S3 or S4 (see Table 1). This 
is achieved by adding a low-power sec-
ondary processor that can be operated 
independently of the main CPU, such 
that it can continue to execute light-
weight tasks when the CPU and asso-
ciated subsystems are in a G1 state. In 
some cases, the secondary processor 
can include its own RAM and flash 
memory, a network interface, and 
other peripherals such as sensors—all 
operating in a separate power domain 
from the main CPU and its associated 
system components.

The secondary processor is 
designed to run lightweight appli-
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cations autonomously on behalf 
of the main CPU. It can often do 
this for long periods of time, but if 
resources only available to the CPU 
are required, then the secondary pro-
cessor can wake the CPU, moving it 
into the G0 ACPI state. Eventually, 
when the CPU-bound operations are 
complete, the main system can return 
to a G1 state, and the secondary pro-
cessor resumes operation. Figure 1 
shows the two main operating modes 
of a Somniloquy-enabled device.

Applications simply requiring the 
main CPU to be woken from G1 on 

a network event—for example, an 
incoming WhatsApp message—can be 
implemented using “wakeup filters” 
on the secondary processor. These 
simply monitor incoming network 
traffic for certain types of packets—
for example, based on the TCP/IP 
port number—and wake up the main 
CPU when a match is detected. That 
packet can then be passed up to the 
main CPU’s networking stack to be 
processed transparently to the remote 
host that initiated the communication. 
This is similar to wake-on-network 
functionality, but the additional level 

of control afforded by wakeup filters 
results in a much more useful system. 
Figure 2 illustrates the level of power 
saving possible.

More sophisticated tasks can be 
offloaded from the main CPU to the 
secondary processor with the intro-
duction of “application stubs.” These 
implement a simplified subset of the 
full functionality of an application. For 
example, an instant messenger (IM) 
application stub running on the sec-
ondary processor would periodically 
indicate presence to the IM server, even 
when the main CPU is in a G1 sleep 
state. Should an incoming IM message 
be received, the application stub run-
ning on the secondary processor would 
wake the main CPU thereby handing 
over control. Figure 3 shows the Som-
niloquy architecture.

Offloading to a Nearby 
Device
While Somniloquy requires additional 
hardware to support computational 
offloading, another approach we’ve 
explored is WearDrive.2 Here, we 
reduce the power consumption of a 
mobile device that needs to periodi-
cally store data (such as a wearable 
fitness tracker) by offloading storage 
operations to a nearby, less resource-
constrained device. In particular, 
WearDrive can improve the battery 

Table 1 
The advanced configuration and power interface (ACPI) power states.

Category Subcategory Power state

G0, Working S0 The system is under normal operation, although the monitor might be pow-
ered down if the user is “away.”

G1, Sleeping S1, Power on suspend The CPU has been suspended and the caches flushed, but power is maintained; 
some peripherals might be powered down, but RAM and CPU are powered.

S2, CPU off The state here is the same as with S1, but the CPU has powered down.

S3, Standby/
sleep/suspend-to-RAM

Most components have powered down, but not the RAM.

S4, Hibernate/suspend-to-disk The system has powered down but can resume without a reboot.

G2, Soft off S5 Various components, such as USB peripherals, the clock, and the network 
interface, run in a very low-power mode and are able to wake the system, 
which must undergo a full reboot.

G3, Mechanical off S6 There is absolutely no power to any component, apart from a battery-backed 
real-time clock.

Figure 1. Somniloquy has two main operating states—in one, the main CPU is active; 
in the second, control resides with the secondary processor while the main CPU 
sleeps. The transitions between them are initiated by the events shown in the figure.
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lifetime by offloading storage from a 
wearable device to a nearby phone.

The key insight behind WearDrive 
is that the battery-powered RAM in a 
mobile device can be considered per-
sistent as long as the battery capacity 
is monitored to ensure that the RAM 
remains reliably powered. In essence, 
this “battery-backed” RAM (BB-
RAM) obviates the need to write to 
truly persistent storage, such as flash 
memory—which is a slow and thus 
relatively power-hungry operation. 
WearDrive guarantees data integrity 
by tracking the amount of BB-RAM 
in use, which might span noncontigu-
ous physical memory pages. When 
the battery level reaches a threshold 
that indicates that power is running 
out, WearDrive stops using BB-RAM 
and treats all RAM as volatile. At this 
point, data is written to local flash 
memory to ensure durability. Remov-
ing the battery while the system is run-
ning would of course lead to data loss, 
but most wearables’ batteries aren’t 
removable.

Many of today’s wearable applica-
tions span both the wearable and a 
companion phone app, often leverag-
ing the phone’s large display, cellular 
connectivity, or data-processing capa-
bilities to complement the capabilities 
of the wearable itself. We leverage this 
symbiotic relationship to provide fur-
ther energy savings for the wearable 
(see Figure 4). The power required 
by the wearable to perform wire-
less transfer data is less than would 
be required to store the data in flash 
memory. Essentially, WearDrive 
exploits the battery in a nearby phone 
to provide durability for the data in 
the wearable’s BB-RAM storage. 
Data is asynchronously transmitted 
to the phone, which ultimately per-
forms the energy-intensive operations 
of encrypting and storing that data 
within its local flash, or uploading it 
to the cloud.

Connectivity between the wearable 
and the phone can be provided using 

Bluetooth low energy (BLE) or Wi-Fi. 
In WearDrive, we use the former for 
signaling and for short, infrequent 
data transfers. However, BLE isn’t 
particularly energy efficient for large 
data transfers, so we complement its 
use with Wi-Fi direct; in this case, data 

transmission is initiated over BLE, 
with both devices switching over to 
Wi-Fi. 

To further improve energy efficiency, 
WearDrive uses the BB-RAM approach 
on the phone as well as the wearable. 
Data in the wearable’s BB-RAM is 

Figure 2. Power consumption of a Lenovo X60 using Somniloquy. Somniloquy 
provides increased functionality of filtering network packets that is not possible 
in the S3 sleep state, even when wake-on-network is available. The power 
saving compared with supporting the same functionality on the main CPU is 
significant.
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Figure 3. New components, shown in blue, must be added to a mobile device to 
implement Somniloquy. In addition to the low-power secondary processor and 
associated embedded operating system, wakeup filters and application stubs interact 
with the main processor via a Somniloquy daemon.
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periodically migrated to the phone’s 
BB-RAM and flushed when the wear-
able needs to shut down or the battery 

is depleted. Likewise, the phone uses 
its flash memory as the secondary stor-
age for its data in BB-RAM.

Our experiments with WearDrive 
show that the BB-RAM approach—
where writing to flash memory is 
delayed until battery capacity falls to 
a certain threshold—is 1.2–1.6 times 
more energy efficient than existing 
solutions that write to flash memory 
independent of battery capacity. When 
used in conjunction with off﻿loading to 
a nearby phone, WearDrive has even 
greater benefits, reducing energy con-
sumption of the wearable by a factor 
of up to 15, with minimal impact on 
power consumption on the phone for 
realistic workloads. Figure 5 highlights 
the energy savings for one specific sce-
nario where the wearable device is con-
tinuously capturing sensor data which 
needs to be securely stored in persis-
tent memory. WearDrive also lets the 
wearable be designed with less RAM 
and slower and smaller flash memory, 
thereby reducing its cost.

Offloading to a Cloud or 
Cloudlet
A third approach we’ve explored to 
improve the battery life of mobile 
devices is to opportunistically offload 
computation, either to a nearby device 
or to the cloud. We built a Mobile Assis-
tance Using Infrastructure (MAUI)3 
system based on two key insights. First, 
executing a task on a more powerful 
device takes less time, thereby con-
suming less energy. Second, the mobile 
device can go to a low power state 
while the task is being executed at a 
remote server. Both of these result in a 
lower-latency user experience and an 
improved battery life. 

However, it might not always be 
energy efficient to offload computa-
tion to the cloud. For example, when 
connectivity is poor, it might consume 
more energy to offload an operation 
with its associated data. To deter-
mine when it’s more energy efficient to 
offload versus compute locally, MAUI 
profiles the code contained in functions 
that are used by the application and the 
corresponding data requirements using 

Figure 6. The MAUI (Mobile Assistance Using Infrastructure) architecture. The 
runtime on the phone dynamically determines if it is more power efficient to offload 
a function call to the server. The server could be a nearby device or in the cloud.
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Figure 4. The WearDrive architecture. Essentially, WearDrive exploits the battery in 
a nearby phone to provide durability for the data in the wearable’s “battery-backed” 
RAM (BB-RAM) storage.
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Figure 5. Energy used when storing to local flash memory vs. using WearDrive, based 
on between 1 and 16 sensors generating data continuously at 1 Hz for 24 hours. A 
typical smartwatch battery stores between 3000—6000 Joules of energy.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Local flash Weardrive

En
er

gy
 (J

ou
le

s)

1 Sensor 2 Sensors 4 Sensors 8 Sensors 16 Sensors



october–december 2016	 PERVASIVE computing� 9

Spotlight

a component called the MAUI Profiler. 
The Profiler also monitors the network 
conditions and feeds this information 
to a Solver, which dynamically deter-
mines if a particular function should be 
run locally or remotely based on current 
conditions. Finally, the MAUI Proxy 
serializes function calls as necessary 
so that they can run at the appropriate 
location. The system architecture of 
MAUI is shown in Figure 6.

A key question addressed by MAUI 
concerns managing this computa-
tional offload in such a way that it is 
lightweight enough for the application 
developer to manage while remaining 
seamless to the user. To address this, 
we let a developer tag a function as 
“remote-able.” This ensures that func-
tions that access local peripherals, 
such as a GPS, cannot be run remotely. 
Then the Solver in the MAUI run-
time dynamically decides if it’s more 
energy efficient to offload a method to 
a remote server.

A key benefit of the MAUI approach 
is that it adapts to the operating envi-
ronment. For example, if the user is 
playing a game and has a good network 
connection, then the intensive computa-
tion to determine the opponent’s move 
might be offloaded to a remote server 
to minimize overall latency and power 
consumption and provide the best gam-
ing experience. However, if the user 
has a slow network connection, then 
the computation might run locally at 
the expense of power and less effective 
gameplay. 

Increasingly, techniques such as the 
ones we’ve discussed here are being 

used in commercial solutions. For 
example, many modern smartphone 
SoCs have a low-power core4 that can 
act as a secondary “sensor” proces-
sor that wakes the main CPU from a 
sleep state only when necessary, in a 
manner analogous to that of Somnil-
oquy. This enables a variety of appli-
cations ranging from activity moni-

toring to spoken keyword detection 
without significantly compromising 
battery life. Various forms of offload-
ing computation to cloud processing 
services are also emerging, and we 
expect the use of cloud processing to 
become more dynamic, as envisaged 
in the MAUI system. Techniques 
such as WearDrive, which offload 
storage to a local device to improve 
battery life, are still predominately in 
the research stage.

A challenge that we hope to address 
in future work is the creation and 
adoption of easy-to-use primitives 
and APIs that let developers leverage 
the benefits of these systems reliably 
and seamlessly. Also challenging is 
the fact that power consumption in 
the network is still significant. For a 
fixed, wired network infrastructure, 
this is less of an issue, because power 
is more readily available. For wire-
less communications powered by the 
mobile device, we’re looking forward 
to the roll-out of the impending 5G 
standard (see www.3gpp.org), which 
promises to offer a low-latency, high-
bandwidth, and power-efficient last-
mile link to the base station. This will 
make it extremely attractive to offload 
computation, storage, and potentially 
other tasks to the cellular base station 
and the cloud and is likely to make the 
offloading technologies increasingly 
relevant for improving the battery life 
of mobile devices. 
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