
Published by the IEEE CS n 1536-1268/16/$33.00 © 2016 IEEE 	 PERVASIVE computing� 5

Spotlight

M obile devices continue to become
more capable; over the last 15

years, we’ve seen both processor and
network speeds increase one thousand
fold. However, the batteries upon which
most mobile devices depend have not
advanced as quickly. In fact, despite
significant research into new battery
chemistries and construction tech-
niques, typical rechargeable battery
energy density has only doubled in that
same 15-year period. The designers of
mobile devices inevitably have to incor-
porate batteries that are larger or heavier
than they’d like to address the practi-
calities of usage. By way of example,
the size and weight of a mobile phone
is constrained by the need for a battery
with enough capacity to reliably operate
for a day; conversely, tablets and laptops
that meet the expectations of today’s
consumers in terms of form factor and
weight can rarely operate for a full day.

Increasing battery energy density is
not the only way to improve battery
lifetime; a large body of research has
explored various ways to reduce mobile
device power consumption as an alter-
native. Many different approaches
have been taken, from designing more
power-efficient hardware components
to developing power-aware software
applications. One paradigm that we’ve
been exploring at Microsoft Research
for many years is the intelligent offload-
ing of computation, communication,
and storage. By passing responsibility

for some of these operations away from
a mobile device’s main processor, it’s
possible to save power on the mobile
device. It’s often possible to simultane-
ously increase performance. This arti-
cle presents an overview of three such
offload techniques that we’ve developed
and concludes with some reflections on
the progression of this research.

Offloading to a Low-
Power Processor
Mobile devices, such as laptops, tab-
lets, and smartphones, feature a pow-
erful CPU that’s closely coupled with

system memory, network interfaces,
graphics, and other components. This
set of components might be imple-
mented across several discrete packaged
components or as a system-on-a-chip
(SoC). However, even the latter, which
is designed to be as compact and energy
efficient as possible, typically only pro-
vides coarse granular control of power
consumption. As a result, the system

often ends up consuming more power
than strictly necessary when running
relatively lightweight tasks.

The first offloading technique we
developed as part of our aim to reduce
the power consumption of mobile devices
is called Somniloquy.1 We initially devel-
oped it with laptop-class devices in
mind. Although the power consumption
of these devices can be controlled using
techniques such as voltage and frequency
scaling, at a coarse power-control level,
there are only a handful of different oper-
ating states, as defined by the advanced
configuration and power interface (ACPI)
specification (see Table 1).

Somniloquy is designed to let a
range of tasks with basic computation,
memory, and peripheral requirements
execute while the rest of the device is
in one of the four ACPI G1 states—
typically S3 or S4 (see Table 1). This
is achieved by adding a low-power sec-
ondary processor that can be operated
independently of the main CPU, such
that it can continue to execute light-
weight tasks when the CPU and asso-
ciated subsystems are in a G1 state. In
some cases, the secondary processor
can include its own RAM and flash
memory, a network interface, and
other peripherals such as sensors—all
operating in a separate power domain
from the main CPU and its associated
system components.

The secondary processor is
designed to run lightweight appli-

Offloading to Improve
the Battery Life of Mobile
Devices
Ranveer Chandra, Steve Hodges, and Anirudh Badam, Microsoft Research
Jian Huang, Georgia Tech

Increasing battery energy
density is not the only way

to improve battery lifetime...
[reducing] mobile device

power consumption [is] an
alternative.

6	 PERVASIVE computing� www.computer.org/pervasive

Spotlight

Spotlight

cations autonomously on behalf
of the main CPU. It can often do
this for long periods of time, but if
resources only available to the CPU
are required, then the secondary pro-
cessor can wake the CPU, moving it
into the G0 ACPI state. Eventually,
when the CPU-bound operations are
complete, the main system can return
to a G1 state, and the secondary pro-
cessor resumes operation. Figure 1
shows the two main operating modes
of a Somniloquy-enabled device.

Applications simply requiring the
main CPU to be woken from G1 on

a network event—for example, an
incoming WhatsApp message—can be
implemented using “wakeup filters”
on the secondary processor. These
simply monitor incoming network
traffic for certain types of packets—
for example, based on the TCP/IP
port number—and wake up the main
CPU when a match is detected. That
packet can then be passed up to the
main CPU’s networking stack to be
processed transparently to the remote
host that initiated the communication.
This is similar to wake-on-network
functionality, but the additional level

of control afforded by wakeup filters
results in a much more useful system.
Figure 2 illustrates the level of power
saving possible.

More sophisticated tasks can be
offloaded from the main CPU to the
secondary processor with the intro-
duction of “application stubs.” These
implement a simplified subset of the
full functionality of an application. For
example, an instant messenger (IM)
application stub running on the sec-
ondary processor would periodically
indicate presence to the IM server, even
when the main CPU is in a G1 sleep
state. Should an incoming IM message
be received, the application stub run-
ning on the secondary processor would
wake the main CPU thereby handing
over control. Figure 3 shows the Som-
niloquy architecture.

Offloading to a Nearby
Device
While Somniloquy requires additional
hardware to support computational
offloading, another approach we’ve
explored is WearDrive.2 Here, we
reduce the power consumption of a
mobile device that needs to periodi-
cally store data (such as a wearable
fitness tracker) by offloading storage
operations to a nearby, less resource-
constrained device. In particular,
WearDrive can improve the battery

Table 1
The advanced configuration and power interface (ACPI) power states.

Category Subcategory Power state

G0, Working S0 The system is under normal operation, although the monitor might be pow-
ered down if the user is “away.”

G1, Sleeping S1, Power on suspend The CPU has been suspended and the caches flushed, but power is maintained;
some peripherals might be powered down, but RAM and CPU are powered.

S2, CPU off The state here is the same as with S1, but the CPU has powered down.

S3, Standby/
sleep/suspend-to-RAM

Most components have powered down, but not the RAM.

S4, Hibernate/suspend-to-disk The system has powered down but can resume without a reboot.

G2, Soft off S5 Various components, such as USB peripherals, the clock, and the network
interface, run in a very low-power mode and are able to wake the system,
which must undergo a full reboot.

G3, Mechanical off S6 There is absolutely no power to any component, apart from a battery-backed
real-time clock.

Figure 1. Somniloquy has two main operating states—in one, the main CPU is active;
in the second, control resides with the secondary processor while the main CPU
sleeps. The transitions between them are initiated by the events shown in the figure.

Computer
active, using

network

Secondary
subsystem not
using network

Timer-based or user-
initiated sleep

Wake up on incoming network event, timer-
based or user-initiated action

Computer
asleep, not

using network

Secondary
processor

enabled, using
network

october–december 2016	 PERVASIVE computing� 7

Spotlight

lifetime by offloading storage from a
wearable device to a nearby phone.

The key insight behind WearDrive
is that the battery-powered RAM in a
mobile device can be considered per-
sistent as long as the battery capacity
is monitored to ensure that the RAM
remains reliably powered. In essence,
this “battery-backed” RAM (BB-
RAM) obviates the need to write to
truly persistent storage, such as flash
memory—which is a slow and thus
relatively power-hungry operation.
WearDrive guarantees data integrity
by tracking the amount of BB-RAM
in use, which might span noncontigu-
ous physical memory pages. When
the battery level reaches a threshold
that indicates that power is running
out, WearDrive stops using BB-RAM
and treats all RAM as volatile. At this
point, data is written to local flash
memory to ensure durability. Remov-
ing the battery while the system is run-
ning would of course lead to data loss,
but most wearables’ batteries aren’t
removable.

Many of today’s wearable applica-
tions span both the wearable and a
companion phone app, often leverag-
ing the phone’s large display, cellular
connectivity, or data-processing capa-
bilities to complement the capabilities
of the wearable itself. We leverage this
symbiotic relationship to provide fur-
ther energy savings for the wearable
(see Figure 4). The power required
by the wearable to perform wire-
less transfer data is less than would
be required to store the data in flash
memory. Essentially, WearDrive
exploits the battery in a nearby phone
to provide durability for the data in
the wearable’s BB-RAM storage.
Data is asynchronously transmitted
to the phone, which ultimately per-
forms the energy-intensive operations
of encrypting and storing that data
within its local flash, or uploading it
to the cloud.

Connectivity between the wearable
and the phone can be provided using

Bluetooth low energy (BLE) or Wi-Fi.
In WearDrive, we use the former for
signaling and for short, infrequent
data transfers. However, BLE isn’t
particularly energy efficient for large
data transfers, so we complement its
use with Wi-Fi direct; in this case, data

transmission is initiated over BLE,
with both devices switching over to
Wi-Fi.

To further improve energy efficiency,
WearDrive uses the BB-RAM approach
on the phone as well as the wearable.
Data in the wearable’s BB-RAM is

Figure 2. Power consumption of a Lenovo X60 using Somniloquy. Somniloquy
provides increased functionality of filtering network packets that is not possible
in the S3 sleep state, even when wake-on-network is available. The power
saving compared with supporting the same functionality on the main CPU is
significant.

0

2

4

6

8

10

12

14

16

18

Sleep (S3) Somniloquy Normal

Po
w

er
 c

on
su

m
pt

io
n

(W
at

ts
)

Figure 3. New components, shown in blue, must be added to a mobile device to
implement Somniloquy. In addition to the low-power secondary processor and
associated embedded operating system, wakeup filters and application stubs interact
with the main processor via a Somniloquy daemon.

Somniloquy
daemon

Host processor,
RAM, peripherals, etc.

Operating
system, including
networking stack

Apps

Network interface
hardware

Secondary processor

Embedded
CPU, RAM, flash

Embedded
OS, including

networking stack

Wakeup
filters

Appln.
stubs

Host PC

8	 PERVASIVE computing� www.computer.org/pervasive

Spotlight

Spotlight

periodically migrated to the phone’s
BB-RAM and flushed when the wear-
able needs to shut down or the battery

is depleted. Likewise, the phone uses
its flash memory as the secondary stor-
age for its data in BB-RAM.

Our experiments with WearDrive
show that the BB-RAM approach—
where writing to flash memory is
delayed until battery capacity falls to
a certain threshold—is 1.2–1.6 times
more energy efficient than existing
solutions that write to flash memory
independent of battery capacity. When
used in conjunction with off﻿loading to
a nearby phone, WearDrive has even
greater benefits, reducing energy con-
sumption of the wearable by a factor
of up to 15, with minimal impact on
power consumption on the phone for
realistic workloads. Figure 5 highlights
the energy savings for one specific sce-
nario where the wearable device is con-
tinuously capturing sensor data which
needs to be securely stored in persis-
tent memory. WearDrive also lets the
wearable be designed with less RAM
and slower and smaller flash memory,
thereby reducing its cost.

Offloading to a Cloud or
Cloudlet
A third approach we’ve explored to
improve the battery life of mobile
devices is to opportunistically offload
computation, either to a nearby device
or to the cloud. We built a Mobile Assis-
tance Using Infrastructure (MAUI)3
system based on two key insights. First,
executing a task on a more powerful
device takes less time, thereby con-
suming less energy. Second, the mobile
device can go to a low power state
while the task is being executed at a
remote server. Both of these result in a
lower-latency user experience and an
improved battery life.

However, it might not always be
energy efficient to offload computa-
tion to the cloud. For example, when
connectivity is poor, it might consume
more energy to offload an operation
with its associated data. To deter-
mine when it’s more energy efficient to
offload versus compute locally, MAUI
profiles the code contained in functions
that are used by the application and the
corresponding data requirements using

Figure 6. The MAUI (Mobile Assistance Using Infrastructure) architecture. The
runtime on the phone dynamically determines if it is more power efficient to offload
a function call to the server. The server could be a nearby device or in the cloud.

MAUI serverMobile device

Application

Client proxy

Profiler

Solver

MAUI runtime

Server
proxy

Profiler

Solver

MAUI runtime

Application

RPC

RPC

MAUI controller

Figure 4. The WearDrive architecture. Essentially, WearDrive exploits the battery in
a nearby phone to provide durability for the data in the wearable’s “battery-backed”
RAM (BB-RAM) storage.

Application

Wearable Phone

Flash
Efficient
wireless
network

Storage

BB-RAM

BB-RAM

Storage

+

Figure 5. Energy used when storing to local flash memory vs. using WearDrive, based
on between 1 and 16 sensors generating data continuously at 1 Hz for 24 hours. A
typical smartwatch battery stores between 3000—6000 Joules of energy.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Local flash Weardrive

En
er

gy
 (J

ou
le

s)

1 Sensor 2 Sensors 4 Sensors 8 Sensors 16 Sensors

october–december 2016	 PERVASIVE computing� 9

Spotlight

a component called the MAUI Profiler.
The Profiler also monitors the network
conditions and feeds this information
to a Solver, which dynamically deter-
mines if a particular function should be
run locally or remotely based on current
conditions. Finally, the MAUI Proxy
serializes function calls as necessary
so that they can run at the appropriate
location. The system architecture of
MAUI is shown in Figure 6.

A key question addressed by MAUI
concerns managing this computa-
tional offload in such a way that it is
lightweight enough for the application
developer to manage while remaining
seamless to the user. To address this,
we let a developer tag a function as
“remote-able.” This ensures that func-
tions that access local peripherals,
such as a GPS, cannot be run remotely.
Then the Solver in the MAUI run-
time dynamically decides if it’s more
energy efficient to offload a method to
a remote server.

A key benefit of the MAUI approach
is that it adapts to the operating envi-
ronment. For example, if the user is
playing a game and has a good network
connection, then the intensive computa-
tion to determine the opponent’s move
might be offloaded to a remote server
to minimize overall latency and power
consumption and provide the best gam-
ing experience. However, if the user
has a slow network connection, then
the computation might run locally at
the expense of power and less effective
gameplay.

Increasingly, techniques such as the
ones we’ve discussed here are being

used in commercial solutions. For
example, many modern smartphone
SoCs have a low-power core4 that can
act as a secondary “sensor” proces-
sor that wakes the main CPU from a
sleep state only when necessary, in a
manner analogous to that of Somnil-
oquy. This enables a variety of appli-
cations ranging from activity moni-

toring to spoken keyword detection
without significantly compromising
battery life. Various forms of offload-
ing computation to cloud processing
services are also emerging, and we
expect the use of cloud processing to
become more dynamic, as envisaged
in the MAUI system. Techniques
such as WearDrive, which offload
storage to a local device to improve
battery life, are still predominately in
the research stage.

A challenge that we hope to address
in future work is the creation and
adoption of easy-to-use primitives
and APIs that let developers leverage
the benefits of these systems reliably
and seamlessly. Also challenging is
the fact that power consumption in
the network is still significant. For a
fixed, wired network infrastructure,
this is less of an issue, because power
is more readily available. For wire-
less communications powered by the
mobile device, we’re looking forward
to the roll-out of the impending 5G
standard (see www.3gpp.org), which
promises to offer a low-latency, high-
bandwidth, and power-efficient last-
mile link to the base station. This will
make it extremely attractive to offload
computation, storage, and potentially
other tasks to the cellular base station
and the cloud and is likely to make the
offloading technologies increasingly
relevant for improving the battery life
of mobile devices.

References

	 1.	 Y. Agarwal et al., “Somniloquy: Aug-
menting Network Interfaces to Reduce
PC Energy Usage,” Proc. 6th USENIX
Symp. Networked Systems Design and
Implementation (NSDI), 2009,
pp. 365–380.

	 2.	 J. Huang et al., “WearDrive: Fast and
Energy-Efficient Storage for Wear-
ables,” Proc. 2015 USENIX Conf. on
Usenix Annual Technical Conference
(ATC), 2015, pp. 613–625.

	 3.	 E. Cuervo et al., “MAUI: Making
Smartphones Last Longer with Code

Offload,” Proc. 8th Int’l Conf. Mobile
Systems, Applications, and Services
(MobiSys), 2010, pp. 49–62.

	 4.	 R.C. Johnson, “iPhone 5-Like Motion
Processor for Any Mobile Device,” EE
Times, 12 Sept. 2013; www.eetimes.
com/document.asp?doc_id=1319462.

Ranveer Chandra is a

principal researcher at

Microsoft Research. Contact

him at ranveer@microsoft.

com.

Steve Hodges is a princi-

pal researcher at Microsoft

Research, where he leads

the Sensors and Devices

research group. He is also

a Visiting Professor at the

School of Computing Sci-

ence, Newcastle Univer-

sity. Contact him at steve.

hodges@microsoft.com.

Anirudh Badam is a re-

searcher at Microsof t

Research. Contact him at

anirudh.badam@microsoft.

com.

Jian Huang is a graduate

student at Georgia Tech.

Contact him at jian.huang@

gatech.edu.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

