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Abstract

This paper presents a model for end-to-
end learning of task-oriented dialog sys-
tems. The main component of the model
is a recurrent neural network (an LSTM),
which maps from raw dialog history di-
rectly to a distribution over system actions.
The LSTM automatically infers a repre-
sentation of dialog history, which relieves
the system developer of much of the man-
ual feature engineering of dialog state. In
addition, the developer can provide soft-
ware that expresses business rules and pro-
vides access to programmatic APIs, en-
abling the LSTM to take actions in the real
world on behalf of the user. The LSTM
can be optimized using supervised learn-
ing (SL), where a domain expert provides
example dialogs which the LSTM should
imitate; or using reinforcement learning
(RL), where the system improves by in-
teracting directly with end users. Exper-
iments show that SL. and RL are comple-
mentary: SL alone can derive a reasonable
initial policy from a small number of train-
ing dialogs; and starting RL optimization
with a policy trained with SL substantially
accelerates the learning rate of RL.

1 Introduction

Consider how a person would teach another per-
son to conduct a dialog in a particular domain.
For example, how an experienced call center
agent would help a new agent get started. First,
the teacher would provide an orientation to what
“agent controls” are available, such as how to
look up a customer’s information, as well as a
few business rules such as how to confirm a cus-
tomer’s identity, or a confirmation message which

must be read before performing a financial trans-
action. Second, the student would listen in to a
few “good” dialogs from the teacher, with the goal
of imitating them. Third, the student would be-
gin taking real calls, and the teacher would listen
in, providing corrections where the student made
mistakes. Finally, the teacher would disengage,
but the student would continue to improve on their
own, through experience.

In this paper, we provide a framework for build-
ing and maintaining automated dialog systems —
or “bots” — in a new domain that mirrors this pro-
gression. First, a developer provides the set of ac-
tions — both text actions and API calls — which a
bot can invoke, and action masking code that indi-
cates when an action is possible given the dialog
so far. Second, a domain expert — who need not
be a developer or a machine learning expert — pro-
vides a set of example dialogs, which a recurrent
neural network learns to imitate. Third, the bot
conducts a few conversations, and the domain ex-
pert makes corrections. Finally, the bot interacts
with users at scale, improving automatically based
on a weak signal that indicates whether dialogs are
successful.

Concretely, this paper presents a model of task-
oriented dialog control which combines a trainable
recurrent neural network with domain-specific
software that encodes business rules and logic, and
provides access to arbitrary APIs for actions in the
domain, such as ordering a taxi or reserving a table
at a restaurant. The recurrent neural network maps
directly from a sequence of user turns (represented
by the raw words and extracted entities) to actions,
and infers its own representation of state. As a
result, minimal hand-crafting of state is required,
and no design of a dialog act taxonomy is nec-
essary. The neural network is trained both using
supervised learning where “good” dialogs are pro-
vided for the neural network to imitate, and using



reinforcement learning where the bot tries new se-
quences of actions, and improves based on a weak
signal of whole-dialog success. The neural net-
work can be re-trained in under one second, which
means that corrections can be made on-line during
a conversation, in real time.

This paper is organized as follows. First, Sec-
tion 2] describes the model, and Section [3] com-
pares the model to related work. Section [] then
presents an example application, which is opti-
mized using supervised learning in Section [5] and
reinforcement learning in Section [6] Finally, Sec-
tion [l concludes.

2 Model description

At a high level, the three components of our
model are a recurrent neural network; tar-
geted and well-encapsulated software implement-
ing domain-specific functions; and a language un-
derstanding module. The software enables the de-
veloper to express business logic by gating when
actions are available; presents a coherent “sur-
face” of APIs available to the neural network, such
as for placing a phone call; tracks entities which
have been mentioned so far in the dialog; and pro-
vides features to the neural network which the de-
veloper feels may be useful for choosing actions.
The recurrent neural network is responsible for
choosing which action to take. The neural net-
work chooses among action templates which ab-
stract over entities, such as the text action “Do
you want to call <name>?", or the API action
PlacePhoneCall (<name>). Because a re-
current neural network has internal state, it can
accumulate history sufficient for choosing among
action templates.

The components and operational loop are
shown in Figure[I] The cycle begins when the user
provides input (step 1). This input could be text
typed in or text recognized from user speech. This
text is passed to an entity extraction module (step
2), which identifies mentions of entities in user
text — for example, identifying “Jason Williams”
as a <name> entity. The “entity input” (step 3)
is code provided by the developer which resolves
entity mentions into grounded entities — in this ex-
ample, it maps from the text “Jason Williams” to a
specific row in a database (or a collection of rows
in case there are multiple people with this name).
The developer-provided code is stateful, which al-
lows it to retain entities processed in step 3 for use

later on in the dialog.

In step 4, a feature vector is formed, which takes
input from 4 sources. First, the entity extraction
module (step 2) indicates which entity types were
recognized. For example, the vector [1,0] could
indicate that a name has been recognized, but a
type of phone (office vs. mobile) has not. Sec-
ond, the entity input module can return arbitrary
features specified by the developer. In this exam-
ple, this code returns features indicating that “Ja-
son Williams” has matched one person, and that
“Jason Williams” has two types of phones avail-
able. The other two sources are described further
below.

Step 5 is a recurrent neural network with a
softmax output layer. In our work, we chose a
long short-term memory (LSTM) neural network
(Hochreiter and Schmidhuber, 1997) because it
has the ability to remember past observations ar-
bitrarily long, and has been shown to yield supe-
rior performance in many domains. The LSTM
takes the feature vector from step 4 as input, up-
dates its internal state, and then outputs a dis-
tribution over all template actions — i.e., actions
with entity values replaced with entity names, as
in “Do you want to call <name>?". In step 6,
code from the developer outputs an action mask,
indicating actions which are not permitted at the
current timestep. For example, if a target phone
number has not yet been identified, the API action
to place a phone call may be masked In step 7,
the mask is applied by clamping masked actions
to a zero probability, and (linearly) re-normalizing
the resulting vector into a probability distribution
(step 8).

In step 9, an action is chosen from this proba-
bility distribution. How the action is chosen de-
pends on whether reinforcement learning (RL) is
currently active. When RL is active, exploration is
required, so in this case an action is sampled from
the distribution. When RL is not active, the best
action should be chosen, and so the action with
the highest probability is always selected.

The identity of the template action selected is
then used in 2 ways — first, it is passed to the
LSTM in the next timestep; and second it is passed
to the “entity output” developer code which substi-
tutes in any template entities. In step 11, control
branches depending on the type of the action: if it

'"The action mask is also provided as an input to the

LSTM, so it is aware of which actions are currently available;
this is not shown in the diagram, for space.
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Figure 1: Operational loop. Green trapezoids refer to programmatic code provided by the software
developer. The blue boxes indicate the recurrent neural network, with trainable parameters. The orange
box performs entity extraction. The vertical bars in steps 4 and 8 are a feature vector and a distribution
over template actions, respectively. See text for a complete description.

is an API text, the corresponding API call in the
developer code is invoked (step 12), and any fea-
tures it returns are passed to the LSTM features in
the next timestep. If the action is text, it is ren-
dered to the user (step 13), and cycle then repeats.

3 Related work

In comparing to past work, it is helpful to con-
sider the two main problems that dialog systems
solve: state tracking, which refers to how informa-
tion from the past is represented (whether human-
interpretable or not), and action selection, which
refers to how the mapping from state to action is
constructed. We consider each of these in turn.

3.1 State tracking

In a task-oriented dialog systems, state tracking
typically consists of tracking the user’s goal such
as the cuisine type and price range to use as search
criteria for a restaurant, and the dialog history
such as whether a slot has already been asked for
or confirmed, whether a restaurant has been of-
fered already, or whether a user has a favorite cui-
sine listed in their profile (Williams and Young,
2007). Most past work to building task-oriented
dialog systems has used a hand-crafted state rep-
resentation for both of these quantities — i.e., the
set of possible values for the user’s goal and the
dialog history are manually designed. For ex-
ample, in the Dialog State Tracking Challenge
(DSTC), the state consisted of a pre-specified
frame of name/value pairs that form the user’s
goal (Williams et al., 2016). Many DSTC entries
learned from data how to update the state, using
methods such as recurrent neural networks

lderson et al., 2014)), but the schema of the state be-
ing tracked was hand-crafted. Manually designed
frames are also used for tracking the user’s goal
and dialog history in methods based on partially
observable Markov decision processes (POMDPs)
(Young et al., 2013), methods which learn from
example dialogs (Hurtado et al., 2005} [Lee et al.,|
2009), supervised learning/reinforcement learning
hybrid methods (Henderson et al., 2005), and also
in commercial and open source frameworks such
as VoiceXMILZ and AIML[]

By contrast, our method automatically infers a
representation of dialog history in the recurrent
neural network which is optimal for predicting ac-
tions to take at future timesteps. This is an im-
portant contribution because designing an effec-
tive state space can be quite labor intensive: omis-
sions can cause aliasing, and spurious features can
slow learning. Worse, as learning progresses, the
set of optimal history features may change. Thus,
the ability to automatically infer a dialog state
representation in tandem with dialog policy opti-
mization simplifies developer work. On the other
hand, like past work, the set of possible user goals
in our method is hand-crafted — for many task-
oriented systems, this seems desirable in order to
support integration with back-end databases, such
as a large table of restaurant names, price ranges,
etc. Therefore, our method delegates tracking of
user goals to the developer-provided codeEl

Zwww.w3.org/TR/voicexml21

Swww.alicebot.org/aiml.html

“When entity extraction is reliable — as it may be in text-
based interfaces, which do not have speech recognition errors
— a simple name/value store can track user goals, and this
is the approach taken in our example application below. If


www.w3.org/TR/voicexml21
www.alicebot.org/aiml.html

Another line of research has sought to predict
the words of the next utterance directly from the
history of the dialog, using a recurrent neural net-
work trained on a large corpus of dialogs (Lowe
et al., 2015). This work does infer a representa-
tion of state; however, our approach differs in sev-
eral respects: first, in our work, entities are tracked
separately — this allows generalization to entities
which have not appeared in the training data; sec-
ond, our approach includes first-class support for
action masking and API calls, which allows the
agent to encode business rules and take real-world
actions on behalf of the system; finally, in addition
to supervised learning, we show how our method
can also be trained using reinforcement learning.

3.2 Action selection

Broadly speaking, three classes of methods for ac-
tion selection have been explored in the literature:
hand-crafting, supervised learning, and reinforce-
ment learning.

First, action selection may be hand-crafted,
as in VoiceXML, AIML, or a number of
long-standing research frameworks (Larsson and
Traum, 2000; Seneff and Polifroni, 2000). One
benefit of hand-crafted action selection is that
business rules can be easily encoded; however,
hand-crafting action selection often requires spe-
cialized rule engine skills, rules can be difficult
to debug, and hand-crafted system don’t learn di-
rectly from data.

Second, action selection may be learned from
example dialogs using supervised learning (SL).
For example, when a user input is received, a cor-
pus of example dialogs can be searched for the
most similar user input and dialog state, and the
following system action can be output to the user
(Hurtado et al., 2005; [Lee et al., 2009; Hori et
al., 2009; |[Lowe et al., 2015; |[Hiraoka et al., 2016)).
The benefit of this approach is that the policy can
be improved at any time by adding more exam-
ple dialogs, and in this respect it is rather easy to
make corrections in SL-based systems. However,
the system doesn’t learn directly from interaction
with end users.

Finally, action selection may be learned through
reinforcement learning (RL). In RL, the agent re-
ceives a reward signal that indicates the quality of
an entire dialog, but does not indicate what actions
entityexmerrors are more prevalent, methods from the

dialog state tracking literature for tracking user goals could
be applied (Williams et al., 2016).

should have been taken. Action selection via RL
was originally framed as a Markov decision pro-
cess (Levin et al., 2000), and later as a partially
observable Markov decision process (Young et al.,
2013). If the reward signal naturally occurs, such
as whether the user successfully completed a task,
then RL has the benefit that it can learn directly
from interaction with users, without additional la-
beling. Business rules can be incorporated, in a
similar manner to our approach (Williams, 2008)).
However, debugging an RL system is very diffi-
cult — corrections are made via the reward signal,
which many designers are unfamiliar with, and
which can have non-obvious effects on the result-
ing policy. In addition, in early stages of learn-
ing, RL performance tends to be quite poor, requir-
ing the use of practice users like crowd-workers or
simulated users.

In contrast to existing work, the neural network
in our method can be optimized using both su-
pervised learning and reinforcement learning: the
neural network is trained using gradient descent,
and optimizing with SL or RL simply requires a
different gradient computation. To get started, the
designer provides a set of training dialogs, and
the recurrent neural network is trained to recon-
struct these using supervised learning (Section [3)).
This avoids poor out-of-the-box performance. The
same neural network can then be optimized using
a reward signal, via a policy gradient (Section [6)).
As with SL-based approaches, if a bug is found,
more training dialogs can be added to the train-
ing set, so the system remains easy to debug. In
addition, our implementation of RL ensures that
the policy always reconstructs the provided train-
ing set, so RL optimization will not contradict the
training dialogs provided by the designer. Finally,
the action mask provided by the developer code
allows business rules to be encoded.

Past work has explored an alternate way of
combining supervised learning and reinforcement
learning for learning dialog control (Henderson et
al., 2005)). In that work, the goal was to learn from
a fixed corpus with heterogeneous control policies
—1i.e., a corpus of dialogs from many different ex-
perts. The reward function was augmented to pe-
nalize policies that deviated from policies found in
the corpus. Our action selection differs in that we
view the training corpus as being authoritative —
our goal is to avoid any deviations from the train-
ing corpus, and to use RL on-line to improve per-



formance where the example dialogs provide in-
sufficient coverage.

In summary, to our knowledge, this is the first
end-to-end method for dialog control which can
be trained with both supervised learning and re-
inforcement learning, and which automatically in-
fers a representation of dialog history while also
explicitly tracking entities.

4 Example dialog task

To test our approach, we created a dialog sys-
tem for initiating phone calls to a contact in an
address book, taken from the Microsoft internal
employee directory. In this system, a contact’s
name may have synonyms (“Michael” may also be
called “Mike”), and a contact may have more than
one phone number, such as “work”, “mobile”, etc.
These phone types have synonyms like “cell” for
“mobile”.

We started by defining entities. The user can say
entities <name>, <phonetype>, and <yesno>. The
system can also say these entities, plus three more:
<canonicalname> and <canonicalphonetype> al-
low the user to say a name as in “call Hillary”
and the system to respond with a canonical name
as in “calling Hillary Clinton”; and <phonetype-
savail> which allows the system to say “Which
type of phone: mobile or work?”. For entity ex-
traction, we trained a model using the Language
Understanding Intelligent Service (Williams et al.,
2015).

Next we wrote the programmatic portion of the
system. First, for tracking entities, we used a sim-
ple approach where an entity is retained indefi-
nitely after it is recognized, and replaced if a new
value is observed. Then we defined two API ac-
tions: one API places a call, and the other commits
to a phone type when a contact has only one phone
type in the address book. We then defined fea-
tures that the back-end can return to the LSTM, in-
cluding how many people match the most recently
recognized name, and how many phone types that
person has in the database. Altogether, the dimen-
sion of the LSTM input was 112 (step 4, Figurel|T).
Finally, for the action mask, we allow any action
for which the system has all entities — so “How
can I help you?” is always available, but the lan-
guage action “Calling <name>, <phonetype>" is
only available when the back-end is able to popu-
late those two entities. Altogether, the code com-
prised 209 lines of Python.

How can | help you?

Call Jason

Which type of phone: mobile or work?
Oh, actually call Mike on his office phone
Calling Michael Seltzer, work.
PlaceCall

Figure 2: One of the 21 example dialogs used for
supervised learning training. For space, the entity
tags that appear in the user and system sides of
the dialogs have been removed — for example, Call
<name>Jason</name> is shown as Call Jason.
See Appendix @ for additional examples.

We then wrote 21 example dialogs, covering
scenarios such as when a spoken name has a sin-
gle vs. multiple address book matches; when there
are one vs. more than one phone types available;
when the user specifies a phone type and when not;
when the user’s specified phone type is not avail-
able; etc. One example is given in Figure [2] and
several more are given in Appendix [A] The exam-
ple dialogs had on average 7.0 turns; the longest
was 11 turns and the shortest was 4 turns. There
were 14 action templates (step 8, Figure|[l).

In some of the experiments below, we make use
of a hand-designed stochastic simulated user. At
the start of a dialog, the simulated user randomly
selected a name and phone type, including names
and phone types not covered by the dialog sys-
tem. When speaking, the simulated user can use
the canonical name or a nickname; usually an-
swers questions but can ignore the system; can
provide additional information not requested; and
can give up. The simulated user was parameter-
ized by around 10 probabilities, and consisted of
314 lines of Python.

For the LSTM, we selected 32 hidden units,
and initialized forget gates to zero, as suggested in
(Jozefowicz et al., 2015)). The LSTM was imple-
mented using Keras and Theano (Chollet, 2015}
Theano Development Team, 2016).

5 Optimizing with supervised learning

5.1 Prediction accuracy

We first sought to measure whether the LSTM
trained with a small number of dialogs would suc-
cessfully generalize, using a 21-fold leave-one-out
cross validation experiment. In each folds, one di-
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Figure 3: Average accuracy of leave-one-out

cross-fold validation. The z axis shows the num-
ber of training dialogs used to train the LSTM. The
y axis shows average accuracy on the one held-out
dialog, where green bars show average accuracy
measured per turn, and blue bars show average ac-
curacy per dialog. A dialog is considered accurate
if it contains zero prediction errors.

alog was used as the test set, and four different
training sets were formed consisting of 1, 2, 5, 10,
and 20 dialogs. Within each fold, a model was
trained on each training set then evaluated on the
held out test dialog.

Training was performed using categorical cross
entropy as the loss, and with AdaDelta to smooth
updates (Zeiler, 2012)). Training was run until the
training set was reconstructed.

Figure [3] shows per-turn accuracy and whole-
dialog accuracy, averaged across all 21 folds. Af-
ter a single dialog, 70% of dialog turns are cor-
rectly predicted. After 20 dialogs, this rises to
over 90%, with nearly 50% of dialogs predicted
completely correctly. While this is not sufficient
for deploying a final system, this shows that the
LSTM is generalizing well enough for preliminary
testing after a small number of dialogs.

5.2 Benefit of recurrency

We next investigated whether the recurrency in the
LSTM was beneficial, or whether a non-stateful
deep neural network (DNN) would perform as
well. We substituted the (stateful) LSTM with a
non-stateful DNN, with the same number of hid-
den units as the LSTM, loss function, and gra-
dient accumulator. We also ran the same exper-
iment with a standard recurrent neural network
(RNN). Training was run until either the training

set was reconstructed, or until the loss plateaued
for 100 epochs. Results are shown in Table [I]
which shows that the DNN was unable to recon-
struct a training set with all 20 dialogs. Upon in-
vestigation, we found that some turns with differ-
ent actions had identical local features, but differ-
ent histories. Since the DNN is unable to store
history, these differences are indistinguishable to
the DNNP| The RNN also reconstructed the train-
ing set; this suggests a line of future work to in-
vestigate the relative benefits of different recurrent
neural network architectures for this task.

Training dialogs | DNN RNN LSTM
1 v v v
10 v v v
21 X v v

Table 1: Whether a DNN, RNN and LSTM can
reproduce a training set composed of 1, 10, and all
21 training dialogs.

5.3 Active learning

We next examined whether the model would be
suitable for active learning (Cohn et al., 1994).
The goal of active learning is to reduce the number
of labels required to reach a given level of perfor-
mance. In active learning, the current model is run
on (as yet) unlabeled instances, and the unlabeled
instances for which the model is most uncertain
are labeled next. The model is then re-built and
the cycle repeats. For active learning to be effec-
tive, the scores output by the model must be a good
indicator of correctness. To assess this, we plotted
a receiver operating characteristic (ROC) curve, in
Figure[d In this figure, 20 dialogs were randomly
assigned to a training set of 11 dialogs and a test
set of 10 dialogs. The LSTM was then estimated
on the training set, and then applied to the test set,
logging the highest scoring action and that action’s
correctness. This whole process was repeated 10
times, resulting in 590 correctly predicted actions
and 107 incorrectly predicted actions.

This figure shows that the model scores are
strong predictors of correctness. Looking at
the lowest scored actions, although incorrectly
predicted actions make up just 15% of turns
(107/(590+107)), 80% of the 20 actions with

S0f course it would be possible to hand-craft additional
state features that encode the history, but our goal is to avoid
hand-crafting the dialog state as much as possible.
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Figure 4: ROC plot of the scores of the actions
selected by the LSTM. False positive rate is the
number of incorrectly predicted actions above a
threshold r divided by the total number of incor-
rectly predicted actions; true positive rate (TPR)
is the number of correctly predicted actions above
the threshold r divided by the total number of cor-
rectly predicted actions.

the lowest scores are incorrect, so labeling low-
scoring actions will rapidly correct errors.

Finally, we note that re-training the LSTM re-
quires less than 1 second on a standard PC (with-
out a GPU), which means the LSTM could be
retrained frequently. Taken together, the model
building speed combined with the ability to reli-
ably identify actions which are errors suggests our
approach will readily support active learning.

6 Optimizing with reinforcement
learning

In the previous sections, supervised learning (SL)
was applied to train the LSTM to mimic dialogs
provided by the system developer. Once a system
operates at scale, interacting with a large number
of users, it is desirable for the system to continue
to learn autonomously using reinforcement learn-
ing (RL). With RL, each turn receives a measure-
ment of goodness called a reward; the agent ex-
plores different sequences of actions in different
situations, and makes adjustments so as to max-
imize the expected discounted sum of rewards,
which is called the return. We defined the reward
as being 1 for successfully completing the task,
and 0 otherwise. A discount of 0.95 was used to
incentivize the system to complete dialogs faster
rather than slower.

For optimization, we selected a policy gradi-

ent approach (Williams, 1992)). Conceptually, in
policy gradient-based RL, a model outputs a dis-
tribution from which actions are sampled at each
timestep. At the end of a dialog, the return for
that dialog is computed, and the gradients of the
probabilities of the actions taken with respect to
the model weights are computed. The weights are
then adjusted by taking a gradient step, weighted
by the difference between the return of this dialog
and the long-run average return. Intuitively, “bet-
ter” dialogs receive a positive gradient step, mak-
ing the actions selected more likely; and “worse”
dialogs receive a negative gradient step, making
the actions selected less likely. Policy gradient
methods have been successfully applied to dialog
systems (Jurcicek et al., 2011]), robotics (Kohl and!
Stone, 2004), and the board game Go (Silver et al.,
2016).
The weights w are updated as

W w—i—a(z Vawlog m(a¢|hy; w))(R—b) (1)
¢

where « is a learning rate; a; is the action taken at
timestep ¢; h; is the dialog history at time ¢; R is
the return of the dialog; V. I’ denotes the Jacobian
of F' with respect to x; b is a baseline described be-
low; and 7(a|h; w) is the LSTM —i.e., a stochastic
policy which outputs a distribution over a given
a dialog history h, parameterized by weights w.
The baseline b is an estimate of the average return
of the current policy, estimated on the last 100 di-
alogs using weighted importance samplingﬂ

Past work has applied the so-called natural gra-
dient estimate (Peters and Schaal, 2008) to dia-
log systems (Jurcicek et al., 2011). The natu-
ral gradient is a second-order gradient estimate
which has often been shown to converge faster
than the standard gradient. However, computing
the natural gradient requires inverting a matrix of
model weights, which we found to be intractable
for the large numbers of weights found in neural
networks.

To the standard policy gradient update, we make
three modifications. First, the effect of the action
mask is to clamp some action probabilities to zero,
which causes the logarithm term in the policy gra-
dient update to be undefined. To solve this, we add
a small constant to all action probabilities before

The choice of baseline does not affect the long-term
convergence of the algorithm (i.e., the bias), but does dra-
matically affect the speed of convergence (i.e., the variance)
(Williams, 1992)).
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Figure 5: Task completion rate (TCR) mean and standard deviation for a policy initially trained with
N =(0,1,2,5,10) dialogs using supervised learning (SL), and then optimized with 0 to 10, 000 dialogs
using reinforcement learning (RL). Training and evaluation were done with the same stochastic simulated
user. Each line shows the average of 10 runs, where the dialogs used in the SL training in each run were

randomly sampled from the 21 example dialogs.

applying the update. Second, it is well-known that
neural network convergence can be improved us-
ing some form of momentum — i.e., accumulation
of gradient steps over multiple turns. In this prob-
lem, we found that using AdaDelta sped up con-
vergence substantially (Zeiler, 2012). Finally, in
our setting, we want to ensure that the policy con-
tinues to reconstruct the example dialogs provided
by the developer. Therefore, after each RL gra-
dient step, we check whether the updated policy
reconstructs the training set. If not, we run super-
vised learning on the training set until the training
set is reconstructed. Note that this approach al-
lows new training dialogs to be added at any time,
whether RL optimization is underway or not.

We evaluate RL optimization in two ways. First,
we randomly initialize an LSTM, and begin RL
optimization. Second, we initialize the LSTM by
first applying supervised learning on a training set,
consisting of 1, 2, 5, or 10 dialogs, formed by ran-
domly sampling from the 21 example dialogs. RL
policy updates are made after each dialog. After
10 RL updates, we freeze the policy, and run 500
dialogs with the user simulation to measure task
completion. We repeat all of this for 10 runs, and
report average performance.

Results are shown in Figure[5] RL alone (N =
0) sometimes fails to discover a complete policy
— in the first 10,000 dialogs, some runs of RL
with fewer SL pre-training dialogs failed to dis-
cover certain action sequences, resulting in lower

average task completion — for the black line, note
the low average in Figure [5a] and the high vari-
ance in Figure [5b] The difficulty of discovering
long action sequences with delayed rewards has
been observed in other applications of RL to di-
alog systems (Williams, 2007). By contrast, the
addition of a few dialogs and pre-training with SL
both accelerates learning on average, and reduces
the variability in performance of the resulting pol-

icy.
7 Conclusion

This paper has taken a first step toward end-to-
end learning of task-oriented dialog systems. Our
approach is based on a recurrent neural network
which maps from raw dialog history to distribu-
tions over actions. The LSTM automatically infers
a representation of dialog state, alleviating much
of the work of hand-crafting a representation of di-
alog state. Code provided by the developer tracks
entities, wraps API calls to external actuators, and
can enforce business rules on the policy. Exper-
imental results have shown that training with su-
pervised learning yields a reasonable policy from a
small number of training dialogs, and that this ini-
tial policy accelerates optimization with reinforce-
ment learning substantially. To our knowledge,
this is the first demonstration of end-to-end learn-
ing of dialog control for task-oriented domains.
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How can | help you?

A Example dialogs Call Michael
) Theres more than one person named
A subset of the 21 example dialogs created for Michael. Can you say their full name?

this paper are given below. For space, the entity Call Michael Seltzer
tags that appear in the user and system sides of

the dialogs have been removed — for example, Call
<name>dJason</name> is shown as Call Jason.

SavePhonetypeavail
Calling Michael Seltzer, work

PlaceCall

How can | help you?

Call Jason Williams cellphone How can | help you?

Calling Jason Williams, mobile Call Michel

PlaceCall Sorry, | don’t know of any names called
Michel. Can you try again?
Call Michael Seltzer

How can | help you? SavePhonetypeavail

Call Jason Williams Calling Michael Seltzer, work

Which type of phone: mobile or work? PlaceCall

office

Calling Jason Williams, work

PlaceCall

How can | help you?

Call Frank on his cellphone

Sorry, | don’t have a cellphone number for
Frank Seide. | only have a work phone.
Do you want to call that number?

yes

SavePhonetypeavail

Calling Frank Seide, work

PlaceCall
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