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ABSTRACT 
Although mobile, tablet, large display, and tabletop 
computers increasingly present opportunities for using pen, 
finger, and wand gestures in user interfaces, implementing 
gesture recognition largely has been the privilege of pattern 
matching experts, not user interface prototypers. Although 
some user interface libraries and toolkits offer gesture 
recognizers, such infrastructure is often unavailable in 
design-oriented environments like Flash, scripting 
environments like JavaScript, or brand new off-desktop 
prototyping environments. To enable novice programmers 
to incorporate gestures into their UI prototypes, we present 
a “$1 recognizer” that is easy, cheap, and usable almost 
anywhere in about 100 lines of code. In a study comparing 
our $1 recognizer, Dynamic Time Warping, and the Rubine 
classifier on user-supplied gestures, we found that $1 
obtains over 97% accuracy with only 1 loaded template and 
99% accuracy with 3+ loaded templates. These results were 
nearly identical to DTW and superior to Rubine. In 
addition, we found that medium-speed gestures, in which 
users balanced speed and accuracy, were recognized better 
than slow or fast gestures for all three recognizers. We also 
discuss the effect that the number of templates or training 
examples has on recognition, the score falloff along 
recognizers’ N-best lists, and results for individual gestures. 
We include detailed pseudocode of the $1 recognizer to aid 
development, inspection, extension, and testing. 

ACM Categories & Subject Descriptors: H5.2. 
[Information interfaces and presentation]: User interfaces – 
Input devices and strategies. I5.2. [Pattern recognition]: 
Design methodology – Classifier design and evaluation. I5.5. 
[Pattern recognition]: Implementation – Interactive systems. 

General Terms: Algorithms, Design, Experimentation, 
Human Factors. 

Keywords: Gesture recognition, unistrokes, strokes, marks, 
symbols, recognition rates, statistical classifiers, Rubine, 
Dynamic Time Warping, user interfaces, rapid prototyping. 

 
Figure 1. Unistroke gestures useful for making selections, 
executing commands, or entering symbols. This set of 16 was used 
in our study of $1, DTW [18,28], and Rubine [23]. 

INTRODUCTION 
Pen, finger, and wand gestures are increasingly relevant to 
many new user interfaces for mobile, tablet, large display, 
and tabletop computers [2,5,7,10,16,31]. Even some 
desktop applications support mouse gestures. The Opera 
Web Browser, for example, uses mouse gestures to navigate 
and manage windows.1 As new computing platforms and 
new user interface concepts are explored, the opportunity 
for using gestures made by pens, fingers, wands, or other 
path-making instruments is likely to grow, and with it, 
interest from user interface designers and rapid prototypers 
in using gestures in their projects. 

However, along with the naturalness of gestures comes 
inherent ambiguity, making gesture recognition a topic of 
interest to experts in artificial intelligence (AI) and pattern 
matching. To date, designing and implementing gesture 
recognition largely has been the privilege of experts in 
these fields, not experts in human-computer interaction 
                                                           
1http://www.opera.com/products/desktop/mouse/  
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(HCI), whose primary concerns are usually not algorithmic, 
but interactive. This has perhaps limited the extent to which 
novice programmers, human factors specialists, and user 
interface prototypers have considered gesture recognition a 
viable addition to their projects, especially if they are doing 
the algorithmic work themselves. 

As an example, consider a sophomore computer science 
major with an interest in user interfaces. Although this 
student may be a capable programmer, it is unlikely that he 
has been immersed in Hidden Markov Models [1,3,25], 
neural networks [20], feature-based statistical classifiers 
[4,23], or dynamic programming [18,28] at this point in his 
career. In developing a user interface prototype, this student 
may wish to use Director, Flash, Visual Basic, JavaScript or 
a brand new tool rather than an industrial-strength 
environment suitable to production-level code. Without a 
gesture recognition library for these tools, the student’s 
options for adding gestures are rather limited. He can dig 
into pattern matching journals, try to devise an ad-hoc 
algorithm of his own [4,19,31], ask for considerable help, 
or simply choose not to have gestures. 

We are certainly not the first to note this issue in HCI. Prior 
work has attempted to provide gesture recognition for user 
interfaces through the use of libraries and toolkits [6,8,12, 
17]. However, libraries and toolkits cannot help where they 
do not exist, and many of today’s rapid prototyping tools 
may not have such resources available. 

On the flip side, ad-hoc recognizers also have their 
drawbacks. By “ad-hoc” we mean recognizers that use 
heuristics specifically tuned to a predefined set of gestures 
[4,19,31]. Implementing ad-hoc recognizers can be 
challenging if the number of gestures is very large, since 
gestures tend to “collide” in feature-space [14]. Ad-hoc 
recognition also prevents application end-users from 
defining their own gestures at runtime, since new heuristics 
would need to be added. 

To facilitate the incorporation of gestures into user interface 
prototypes, we present a $1 recognizer that is easy, cheap, 
and usable almost anywhere. The recognizer is very simple, 
involving only basic geometry and trigonometry. It requires 
about 100 lines of code for both gesture definition and 
recognition. It supports configurable rotation, scale, and 
position invariance, does not require feature selection or 
training examples, is resilient to variations in input 
sampling, and supports high recognition rates, even after 
only one representative example. Although $1 has 
limitations as a result of its simplicity, it offers excellent 
recognition rates for the types of symbols and strokes that 
can be useful in user interfaces. 

In order to evaluate $1, we conducted a controlled study of 
it and two other recognizers on the 16 gesture types shown 
in Figure 1. Our study used 4800 pen gestures supplied by 
10 subjects on a Pocket PC. Some of the questions we 
address in this paper are: How well does $1 perform on user 
interface gestures compared to two more complex 

algorithms used in HCI? How does recognition improve as 
the number of templates or training examples increases? 
How do gesture articulation speeds affect recognition? How 
do recognizers’ scores degrade as we move down their N-
best lists? Which gestures do users prefer? Along with 
answering these questions, the contributions of this paper 
are: 

1. To present an easy-to-implement gesture recognition 
algorithm for use by UI prototypers who may have 
little or no knowledge of pattern recognition. This 
includes an efficient scheme for rotation invariance; 

2. To empirically compare $1 to more advanced, 
theoretically sophisticated algorithms, and to show 
that $1 is successful in recognizing certain types of 
user interface gestures, like those shown in Figure 1;  

3. To give insight into which user interface gestures are 
“best” in terms of human and recognizer 
performance, and human subjective preference. 

We are interested in recognizing paths delineated by users 
interactively, so we restrict our focus to unistroke gestures 
that unfold over time. The gestures we used for testing 
(Figure 1) are based on those found in other interactive 
systems [8,12,13,27]. It is our hope that user interface 
designers and prototypers wanting to add gestures to their 
projects will find the $1 recognizer easy to understand, 
build, inspect, debug, and extend, especially in design-
oriented environments where gestures are typically scarce. 

RELATED WORK 
Various approaches to gesture recognition were mentioned 
in the introduction, including Hidden Markov Models 
(HMMs) [1,3,25], neural networks [20], feature-based 
statistical classifiers [4,23], dynamic programming [18,28], 
and ad-hoc heuristic recognizers [4,19,31]. All have been 
used extensively in domains ranging from on-line 
handwriting recognition to off-line diagram recognition. 
Space precludes a full treatment. For in-depth reviews, 
readers are directed to prior surveys [21,29]. 

For recognizing simple user interface strokes like those 
shown in Figure 1, many of these sophisticated methods are 
left wanting. Some must be trained with numerous 
examples, like HMMs, neural networks, and statistical 
classifiers, making them less practical for UI prototypes in 
which application end-users define their own strokes. These 
algorithms are also difficult to program and debug. Even 
Rubine’s popular classifier [23] requires programmers to 
compute matrix inversions, discriminant values, and 
Mahalanobis distances, which can be obstacles. Dynamic 
programming methods are computationally expensive and 
sometimes too flexible in matching [32], and although 
improvements in speed are possible [24], these 
improvements put the algorithms well beyond the reach of 
most UI designers and prototypers. Finally, ad-hoc methods 
scale poorly and usually do not permit adaptation or 
definition of new gestures by application end-users. 



Previous efforts at making gesture recognition more 
accessible have been through the inclusion of gesture 
recognizers in user interface toolkits. Artkit [6] and Amulet 
[17] support the incorporation of gesture recognizers in user 
interfaces. Amulet’s predecessor, Garnet, was extended 
with Agate [12], which used the Rubine classifier [23]. 
More recently, SATIN [8] combined gesture recognition 
with other ink-handling support for developing informal 
pen-based UIs. Although these toolkits are powerful, they 
cannot help in most new prototyping environments because 
they are not available. 

Besides research toolkits, some programming libraries offer 
APIs for supporting gesture recognition on specific 
platforms. An example is the Siger library for Microsoft’s 
Tablet PC [27], which allows developers to define gestures 
for their applications. The Siger recognizer works by 
turning strokes into directional tokens and matching these 
tokens using regular expressions and heuristics. As with 
toolkits, libraries like Siger are powerful; but they are not 
useful where they do not exist. The $1 recognizer, by 
contrast, is simple enough to be implemented wherever 
necessary, even in many rapid prototyping environments. 

THE $1 GESTURE RECOGNIZER 
In this section, we describe the $1 gesture recognizer. A 
pseudocode listing of the algorithm is given in Appendix A. 

Characterizing the Challenge 
A user’s gesture results in a set of candidate points C, and 
we must determine which set of previously recorded 
template points Ti it most closely matches. Candidate and 
template points are usually obtained through interactive 
means by some path-making instrument moving through a 
position-sensing region. Thus, candidate points are sampled 
at a rate determined by the sensing hardware and software. 
This fact and human variability mean that points in similar 
C and Ti will rarely “line up” so as to be easily comparable. 
Consider the two pairs of gestures made by the same 
subject in Figure 2. 

 
Figure 2. Two pairs of fast (~600 ms) gestures made by a subject 
with a stylus. The number of points in corresponding sections are 
labeled. Clearly, a 1:1 comparison of points is insufficient. 

In examining these pairs of “pigtail” and “x”, we see that 
they are different sizes and contain different numbers of 
points. This distinction presents a challenge to recognizers. 
Also, the pigtails can be made similar to the “x” gestures 
using a 90° clockwise turn. Reflecting on these issues and 
on our desire for simplicity, we formulated the following 
criteria for our $1 recognizer. The $1 recognizer must: 

1. be resilient to variations in sampling due to 
movement speed or sensing; 

2. support optional and configurable rotation, scale, and 
position invariance; 

3. require no advanced mathematical techniques (e.g., 
matrix inversions, derivatives, integrals); 

4. be easily written in few lines of code; 
5. be fast enough for interactive purposes (no lag); 
6. allow developers and application end-users to 

“teach” it new gestures with only one example; 
7. return an N-best list with sensible [0..1] scores that 

are independent of the number of input points; 
8. provide recognition rates that are competitive with 

more complex algorithms previously used in HCI to 
recognize the types of gestures shown in Figure 1. 

With these goals in mind, we describe the $1 recognizer in 
the next section. The recognizer uses four steps, which 
correspond to those offered as pseudocode in Appendix A. 

A Simple Four-Step Algorithm 
Raw input points, whether those of gestures meant to serve 
as templates, or those of candidate gestures attempting to be 
recognized, are initially treated the same: they are 
resampled, rotated once, scaled, and translated. Candidate 
points C are then scored against each set of template points 
Ti over a series of angular adjustments to C that finds its 
optimal angular alignment to Ti. Each of these steps is 
explained in more detail below. 

Step 1: Resample the Point Path 
As noted in the previous section, gestures in user interfaces 
are sampled at a rate determined by the sensing hardware 
and input software. Thus, movement speed will have a clear 
effect on the number of input points in a gesture (Figure 3). 

 
Figure 3. A slow and fast question mark and triangle made by 
subjects using a stylus on a Pocket PC. Note the considerable time 
differences and resulting numbers of points. 

To make gesture paths directly comparable even at different 
movement speeds, we first resample gestures such that the 
path defined by their original M points is defined by N 
equidistantly spaced points (Figure 4). Using an N that is 
too low results in a loss of precision, while using an N that 
is too high adds time to path comparisons. In practice, we 
found N=64 to be adequate, as was any 32 ≤ N ≤ 256. 

Although resampling is not particularly common compared 
to other techniques (e.g., filtering), we are not the first to 



use it. Some prior handwriting recognition systems have 
also resampled stroke paths [21,29]. Also, the SHARK2 
system resampled its strokes [11]. However, SHARK2 is 
not fully rotation, scale, and position invariant, since 
gestures are defined atop the soft keys of an underlying 
stylus keyboard, making complete rotation, scale, and 
position invariance undesirable. Interestingly, the original 
SHARK system [32] utilized Tappert’s elastic matching 
technique [28], but SHARK2 discontinued its use to 
improve accuracy. However, in mentioning this choice, the 
SHARK2 paper [11] provided no specifics as to the 
comparative performance of these techniques. We now take 
this step, offering an evaluation of an elastic matching 
technique (DTW) and our simpler resampling technique 
($1), extending both with efficient rotation invariance. 

 
Figure 4. A star gesture resampled to N=32, 64, and 128 points. 

To resample, we first calculate the total length of the M-
point path. Dividing this length by (N–1) gives the length of 
each increment, I, between N new points. Then the path is 
stepped through such that when the distance covered 
exceeds I, a new point is added through linear interpolation. 
The RESAMPLE function in Appendix A gives a listing. 

At the end of this step, the candidate gesture and any loaded 
templates will all have exactly N points. This will allow us 
to measure the distance from C[k] to Ti[k] for k=1 to N. 

Step 2: Rotate Once Based on the “Indicative Angle” 
With two paths of ordered points, there is no closed-form 
solution for determining the angle to which one set of 
points should be rotated to best align with the other [9]. 
Although there are complex techniques based on moments, 
these are not made to handle ordered points [26]. Our $1 
algorithm therefore searches over the space of possible 
angles for the best alignment between two point-paths. 
Although for many complex recognition algorithms an 
iterative process is prohibitively expensive [9], $1 is fast 
enough to make iteration useful. In fact, even naïvely 
rotating the candidate gesture by +1° for 360° is fast 
enough for interactive purposes with 30 templates. 
However, we can do better than brute force with a “rotation 
trick” that makes finding the optimal angle much faster. 

First, we find a gesture’s indicative angle, which we define 
as the angle formed between the centroid of the gesture (x̄,ȳ) 
and the gesture’s first point. Then we rotate the gesture so 
that this angle is at 0° (Figure 5). The ROTATE-TO-ZERO 
function in Appendix A gives a listing. An analysis of $1’s 
rotation invariance scheme is discussed in the next section. 

 
Figure 5. Rotating a triangle so that its “indicative angle” is at 0° 
(straight right). This approximates finding the best angular match. 

Step 3: Scale and Translate 
After rotation, the gesture is scaled to a reference square. 
By scaling to a square, we are scaling non-uniformly. This 
will allow us to rotate the candidate about its centroid and 
safely assume that changes in pairwise point-distances 
between C and Ti are due only to rotation, not to aspect 
ratio. Of course, non-uniform scaling introduces some 
limitations, which will be discussed below. The SCALE-TO-
SQUARE function in Appendix A gives a listing. 

After scaling, the gesture is translated to a reference point. 
For simplicity, we choose to translate the gesture so that its 
centroid (x̄,ȳ) is at (0,0). The TRANSLATE-TO-ORIGIN 
function gives a listing in Appendix A. 

Step 4: Find the Optimal Angle for the Best Score 
At this point, all candidates C and templates Ti have been 
treated the same: resampled, rotated once, scaled, and 
translated. In our implementations, we apply the above 
steps when templates’ points are read in. For candidates, we 
apply these steps after they are articulated. Then we take 
Step 4, which actually does the recognition. RECOGNIZE and 
its associated functions give a listing in Appendix A. 

Using Equation 1, a candidate C is compared to each stored 
template Ti to find the average distance di between 
corresponding points: 
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Equation 1 defines di, the path-distance between C and Ti. 
The template Ti with the least path-distance to C is the 
result of the recognition. This minimum path-distance di
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In Equation 2, size is the length of a side of the reference 
square to which all gestures were scaled in Step 3. Thus, the 
denominator is half of the length of the bounding box 
diagonal, which serves as a limit to the path-distance. 

When comparing C to each Ti, the result of each 
comparison must be made using the best angular alignment 
of C and Ti. In Step 2, rotating C and Ti once using their 



indicative angles only approximated their best angular 
alignment. However, C may need to be rotated further to 
find the least path-distance to Ti. Thus, the “angular space” 
must be searched for a global minimum, as described next. 

An Analysis of Rotation Invariance 
As stated, there is no closed-form means of rotating C into 
Ti such that their path-distance is minimized. For simplicity, 
we take a “seed and search” approach that minimizes 
iterations while finding the best angle. This is simpler than 
the approach used by Kara and Stahovich [9], which used 
polar coordinates and had to employ weighting factors 
based on points’ distances from the centroid. 

After rotating the indicative angles of all gestures to 0° 
(Figure 5), there is no guarantee that two gestures C and Ti 
will be aligned optimally. We therefore must fine-tune C’s 
angle so that C’s path-distance to Ti is minimized. As 
mentioned, a brute force scheme could rotate C by +1° for 
all 360° and take the best result. Although this method is 
guaranteed to find the optimal angle to within 0.5°, it is 
unnecessarily slow and could be a problem in processor-
intensive applications (e.g., games). 

We manually examined a stratified sample of 480 similar2 
gesture-pairs from our subjects, finding that there was 
always a global minimum and no local minima in the 
graphs of path-distance as a function of angle (Figure 6a). 
Therefore, a first improvement over the brute force 
approach would be hill climbing: rotate C by ±1° for as 
long as C’s path-distance to Ti decreases. For our sample of 
480 pairs, we found that hill climbing always found the 
global minimum, requiring 7.2 (SD=5.0) rotations on 
average. The optimal angle was, on average, just 4.2° (5.0°) 
away from the indicative angle at 0°, indicating that the 
indicative angle was indeed a good approximation of 
angular alignment for similar gestures. (That said, there 
were a few matches found up to ±44° away.) The path-
distance after just rotating the indicative angle to 0° was 
only 10.9% (13.0) higher than optimal. 

However, although hill climbing is efficient for similar 
gestures, it is not efficient for dissimilar ones. In a second 
stratified sample of 480 dissimilar gesture-pairs, we found 
that the optimal angle was an average of 63.6° (SD=50.8°) 
away from the indicative angle at 0°. This required an 
average of 53.5 (45.7) rotations using hill climbing. The 
average path-distance after just rotating the indicative angle 
to 0° was 15.8% (14.7) higher than optimal. Moreover, of 
the 480 dissimilar pairs, 52 of them, or 10.8%, had local 
minima in their path-distance graphs (Figure 6b), which 
means that hill climbing might not succeed. However, local 
minima alone are not concerning, since suboptimal scores 
for dissimilar gestures only decrease our chances of getting 
unwanted matches. The issue of greater concern is the high 
number of iterations, especially with many templates. 

                                                           
2By “similar,” we mean gestures subjects intended to be the same. 

 
Figure 6. Path-distance as a function of angular rotation away 
from the 0° indicative angle (centered y-axis) for (a) similar 
gestures and (b) dissimilar gestures. 

Since there will be many more comparisons of a candidate 
to dissimilar templates than to similar ones, we chose to use 
a strategy that performs slightly worse than hill climbing 
for similar gestures but far better for dissimilar ones. The 
strategy is Golden Section Search (GSS) [22], an efficient 
algorithm that finds the minimum value in a range using the 
Golden Ratio ϕ=0.5(-1 + √5). In our sample of 480 similar 
gestures, no match was found beyond ±45° from the 
indicative angle, so we use GSS bounded by ±45° and a 2° 
threshold. This guarantees that GSS will finish after exactly 
10 iterations, regardless of whether or not two gestures are 
similar. For our 480 similar gesture-pairs, the distance 
returned by GSS was, on average, within 0.2% (0.4) of the 
optimal, while the angle returned was within 0.5°. 
Furthermore, although GSS loses |10.0–7.2|=2.8 iterations 
to hill climbing for similar gestures, it gains  
|10.0–53.5|=43.5 iterations for dissimilar ones. Thus, in a 
recognizer with 10 templates for each of 16 gesture types 
(160 templates), GSS would require 160×10=1600 
iterations to recognize a candidate, compared to 7.2×10 + 
53.5×150=8097 iterations for hill climbing—an 80.2% 
savings. (Incidentally, brute force would require 
160×360=57,600 iterations.) The DISTANCE-AT-BEST-
ANGLE function in Appendix A implements GSS. 

Limitations of the $1 Recognizer 
Simple techniques have limitations, and the $1 recognizer is 
no exception. The $1 recognizer is a geometric template 
matcher, which means that candidate strokes are compared 
to previously stored templates, and the result produced is 
the closest match in 2-D Euclidean space. To facilitate 
pairwise point comparisons, the default $1 algorithm is 
rotation, scale, and position invariant. While this provides 
tolerance to gesture variation, it means that $1 cannot 
distinguish gestures whose identities depend on specific 
orientations, aspect ratios, or locations. For example, 
separating squares from rectangles, circles from ovals, or 
up-arrows from down-arrows is not possible without 
modifying the algorithm. Furthermore, horizontal and 
vertical lines are abused by non-uniform scaling; if 1-D 
gestures are to be recognized, candidates can be tested to 
see if the minor dimension of their bounding box exceeds a 
minimum. If it does not, the candidate (e.g., line) can be 



scaled uniformly so that its major dimension matches the 
reference square. Finally, $1 does not use time, so gestures 
cannot be differentiated on the basis of speed. Prototypers 
wishing to differentiate gestures on these bases will need to 
understand and modify the $1 algorithm. For example, if 
scale invariance is not desired, the candidate C can be 
resized to match each unscaled template Ti before 
comparison. Or if rotation invariance is unwanted, C and Ti 
can be compared without rotating the indicative angle to 0°. 
Importantly, such treatments can be made on a per gesture 
(Ti) basis. 

Accommodating gesture variability is a key property of any 
recognizer. Feature-based recognizers, like Rubine [23], 
can capture properties of a gesture that matter for 
recognition if the features are properly chosen. 
Knowledgeable users can add or remove features to 
distinguish troublesome gestures, but because of the 
difficulty in choosing good features, it is usually necessary 
to define a gesture class by its summary statistics over a set 
of examples. In Rubine’s case, this has the undesirable 
consequence that there is no guarantee that even the 
training examples themselves will be correctly recognized 
if they are entered as candidates. Such unpredictable 
behavior may be a serious limitation for $1’s audience. 

In contrast, to handle variation in $1, prototypers or 
application end-users can define new templates that capture 
the variation they desire by using a single name. For 
example, different arrows can all be recognized as “arrow” 
with just a few templates bearing that name (Figure 7). This 
aliasing is a direct means of handling variation among 
gestures in a way that users can understand. If a user finds 
that a new arrow he makes is not recognized, he can simply 
add that arrow as a new template of type “arrow” and it will 
be recognized from then on. Of course, the success of this 
approach depends on what other templates are loaded. 

 
Figure 7. Defining multiple instances of “arrow” allows variability in 
the way candidate arrows can be made and matched. Note that 
orientation is not an issue, since $1 is rotation invariant. 

EVALUATION 
To compare the performance of our $1 recognizer to more 
complex recognizers used in HCI, we conducted an 
evaluation using 4800 gestures collected from 10 subjects. 

Method 
Subjects 
Ten subjects were recruited. Five were students. Eight were 
female. Three had technical degrees in science, engineering, 
or computing. The average age was 26.1 (SD=6.4). 

Apparatus 
Using an HP iPAQ h4355 Pocket PC with a 2.25"×3.00" 
screen, we presented the gestures shown in Figure 1 in 
random order to subjects. The gestures were based on those 
used in other user interface systems [8,12,13,27]. Subjects 
used a pen-sized plastic stylus measuring 6.00" in length to 
enter gestures on the device. Our Pocket PC application 
(Figure 8) logged all gestures in a simple XML format 
containing (x,y) points with millisecond timestamps. 

  
Figure 8. The Pocket PC application used to capture gestures 
made by subjects. The right image shows the reminder displayed 
when subjects began the fast speed for the “delete_mark” gesture. 

Procedure: Capturing Gestures 
For each of the 16 gesture types from Figure 1, subjects 
entered one practice gesture before beginning three sets of 
10 entries at slow, medium, and fast speeds. Messages were 
presented between each block of slow, medium, and fast 
gestures to remind subjects of the speed they should use. 
For slow gestures, they were asked to “be as accurate as 
possible.” For medium gestures, they were asked to 
“balance speed and accuracy.” For fast gestures, they were 
asked to “go as fast as they can.” After entering 
16×3×10=480 gestures, subjects were given a chance to rate 
them on a 1-5 scale (1=disliked a lot, 5=liked a lot). 

Procedure: Recognizer Testing 
We compared our $1 recognizer to two popular recognizers 
previously used in HCI. The Rubine classifier [23] has been 
used widely (e.g., [8,13,14,17]). It relies on training 
examples from which it extracts and weights features to 
perform statistical matching. Our version includes the gdt 
[8,14] routines for improving Rubine on small training sets. 

We also tested a template matcher based on Dynamic Time 
Warping (DTW) [18,28]. Like $1, DTW does not extract 
features from training examples but matches point-paths. 
Unlike $1, however, DTW relies on dynamic programming, 
which gives it considerable flexibility in how two point 
sequences may be aligned. 

We extended Rubine and DTW to use $1’s rotation 
invariance scheme. Also, the gestures for Rubine and DTW 
were scaled to a standard square size and translated to the 
origin. They were not resampled, since these techniques do 
not use pairwise point comparisons. Rubine was properly 
trained after these adjustments to gestures were made. 



 
Figure 9. (a) Recognition error rates as a function of templates or training (lower is better). (b) Recognition error rates as a function of 
articulation speeds (lower is better). (c) Normalized gesture scores [0..1] for each position along the N-best list at 9 training examples. 

The testing procedure we followed was based on those used 
for testing in machine learning [15] (pp. 145-150). Of a 
given subject’s 16×10=160 gestures made at a given speed, 
the number of training examples E for each of the 16 
gesture types was increased systematically from E=1 to 9 
for $1 and DTW, and E=2 to 9 for Rubine (Rubine fails on 
E=1). In a process repeated 100 times per level of E, E 
training examples were chosen randomly for each gesture 
category. Of the remaining 10–E untrained gestures in each 
category, one was picked at random and tested as the 
candidate. Over the 100 tests, incorrect outcomes were 
averaged into a recognition error rate for each gesture type 
for that subject at that speed. 

For a given subject at a given speed, there were 
9×16×100=14,400 recognition tests for $1 and DTW, and 
8×16×100=12,800 tests for Rubine. These 41,600 tests 
were done at 3 speeds, for 124,800 total tests per subject. 
Thus, with 10 subjects, the experiment consisted of 
1,248,000 recognition tests. The results of every test were 
logged, including the entire N-best lists. 

Design and Analysis 
The experiment was a 3-factor within-subjects repeated 
measures design, with nominal factors for recognizer and 
articulation speed, and a continuous factor for number of 
training examples. The outcome measure was mean 
recognition errors. Since errors were rare, the data were 
skewed toward zero and violated ANOVA’s normality 
assumption, even under usual transformations. However, 
Poisson regression [30] was well-suited to these data and 
was therefore used. The overall model was significant 
(χ2

(22,N=780)=3300.21, p<.0001). 

Results 
Recognition Performance 
$1 and DTW were very accurate overall, with 0.98% 
(SD=3.63) and 0.85% (3.27) recognition errors, 
respectively. (Equivalently, recognition rates were 99.02% 
and 99.15%, respectively.) Rubine was less successful, with 

7.17% (10.60) errors. These differences were statistically 
significant (χ2

(2,N=780)=867.33, p<.0001). $1 and DTW were 
significantly more accurate than Rubine (χ2

(1,N=780)=668.43, 
p<.0001), but $1 and DTW were not significantly different 
from one another (χ2

(1,N=780)=0.13, n.s.). 

Effect of Number of Templates / Training Examples 
The number of templates or training examples had a 
significant effect on recognition errors (χ2

(1,N=780)=125.24, 
p<.0001). As shown in Figure 9a, $1 and DTW improved 
slightly as the number of templates increased, from 2.73% 
(SD=2.38) and 2.14% (1.76) errors with 1 template to 
0.45% (0.64) and 0.54% (0.84) errors with 9 templates, 
respectively. Rubine’s improvement was more pronounced, 
from 16.03% (5.98) errors with 2 training examples to 
4.70% (3.03) errors with 9 training examples. However, this 
difference only produced a marginal recognizer×training 
interaction (χ2

(2,N=780)=4.80, p=0.09). 

Effect of Gesture Articulation Speed 
Subjects’ average speeds for slow, medium, and fast 
gestures were 1761 (SD=567), 1153 (356), and 668 (212) 
milliseconds. Speed had a significant effect on errors 
(χ2

(2,N=780)=24.56, p<.0001), with slow, medium, and fast 
gestures being recognized with 2.84% (4.07), 2.46% (4.09), 
and 3.22% (4.44) errors, respectively (Figure 9b). All three 
recognizers were affected similarly, so a recognizer×speed 
interaction was not significant (χ2

(4,N=780)=4.52, n.s.). 

Scores Along the N-Best List 
In recognizing a candidate, all three recognizers produce an 
N-best list with scores at each position. (The result of the 
recognition is the head of this list.) An examination of the 
falloff that occurs as we move down the N-best list gives us 
a sense of the relative competitiveness of results as they vie 
for the top position. We prefer a rapid and steady falloff, 
especially from position 1 to 2, indicating a good separation 
of scores. Such a falloff makes it easier to set a non-
recognition threshold and improve recognition robustness. 



$1.00 DTW Rubine
Slow Medium Fast Slow Medium Fast

arrow 1876 1268 768 90 76 61 0* 0* 3.70 3.0
caret 1394 931 452 70 59 43 0.33 0* 2.87 4.0
check 1028* 682* 393 58* 49* 37* 0.97 0.93 3.97 4.1
circle 1624 936 496 91 70 50 0.40 0.40 3.13 4.0
delete_mark 1614 1089 616 84 71 55 0* 0* 0.33* 3.2
left_curly_brace 1779 1259 896 81 70 63 1.67† 2.20† 2.10 2.0†
left_square_bracket 1591 1092 678 74 62 51 0* 0* 1.17 3.2
pigtail 1441 949 540 87 72 52 0* 0* 2.83 4.4*
question_mark 1269 837 523 70 60 48 1.37 1.83 6.40 2.7
rectangle 2497 1666 916 117 96 70 0* 0* 12.87 3.0
right_curly_brace 2060 1429 1065† 81 73 66 0.33 0.50 5.47 2.1
right_square_bracket 1599 1044 616 75 62 52 0* 0* 5.90 3.4
star 3375† 2081† 998 139† 110† 75† 0* 0* 0.40 3.7
triangle 2041 1288 706 99 78 58 1.03 0.73 14.80† 3.6
v 1143 727 377* 65 53 38 0.83 1.70 6.40 4.1
x 1837 1162 640 91 73 55 0.23 0.40 2.80 3.7
Mean 1760.5 1152.5 667.5 85.8 70.9 54.6 0.45 0.54 4.70 3.4
StdDev 567.3 356.3 211.6 20.1 15.2 10.7 0.55 0.75 4.06 0.7

Gesture Millseconds NumPts Subjective 
(1-5)(error % with 9 training examples)

 

Table 1. Results for individual 
gestures: times (ms), number 
of points, recognition error 
rates (%), and subjective 
ratings (1=dislike a lot, 5=like 
a lot). For times, number of 
points, and error rates, 
minimum values in each 
column are marked with (*); 
maximum values are marked 
with (†). For subjective ratings, 
the best is marked with (*); 
the worst is marked with (†). 
For readability, extra zeroes 
are omitted for error rates that 
are exactly 0%. 

Figure 9c shows the normalized N-best falloff for all three 
recognizers using 9 templates or training examples. The 
first and last results are defined as scores 1.0 and 0.0, 
respectively. We can see that $1 falls off the fastest, DTW 
second, and Rubine third. Note that $1 shows the greatest 
falloff from position 1 to position 2. 

Recognizer Execution Speed 
We found that DTW runs noticeably slower than the other 
techniques. On average, DTW took a whopping 128.26 
(SD=60.02) minutes to run the 14,400 tests for a given 
subject’s 160 gestures made at a given speed. In contrast, 
$1 only took 1.59 (0.04) minutes, while Rubine took 2.38 
(0.60) minutes. This difference in speed is explained by the 
fact that DTW’s runtime is quadratic in the number of 
samples. Thus slowly-made gestures are much slower to 
recognize. As noted, there are procedures to accelerate 
DTW [24], but these make it a more complicated algorithm, 
which runs counter to our motivation for this work. 

Differences Among Gestures and Subjective Ratings 
Table 1 shows results for individual gestures. Here we can 
see that “check” and “v” were fast gestures at all speeds, 
and that “star” and “right_curly_brace” were slow. The 
“check” had the fewest points at all speeds, while the “star” 
had the most. With 9 templates or training examples loaded 
for each gesture type, $1 and DTW had perfect recognition 
rates for 7 and 8 of 16 gestures, respectively, while Rubine 
had none. Recognizing the “left_curly_brace” gesture was 
the most difficult for $1 and DTW, while for Rubine it was 
the “triangle”. Rubine performed best on “delete_mark” and 
“star”. 

Qualitative results show that subjects liked “pigtail”, 
“check”, and “v”, all fairly quick gestures. They disliked 
the curly braces and “question_mark”. Subjects’ comments 
as to why they liked certain gestures included, “They were 
easiest to control,” and “They were all one fluid motion.” 
Comments on disliked gestures included, “The curly braces 
made me feel clumsy,” and “Gestures with straight lines or 
90° angles were difficult to make, especially slowly.” 

Discussion 
From our experiment, it is clear that $1 performs very well 
for user interface gestures, recognizing them at more than 
99% accuracy overall. DTW performed almost identically, 
but with much longer processing times. Both algorithms did 
well even with only 1 loaded template, performing above 
97% accuracy. With only 3 loaded templates, both 
algorithms function at about 99.5% of the accuracy they 
exhibit at 9 templates. This means that designers and 
application end-users can define gestures using only a few 
examples and still expect reliable recognition. Although 
DTW’s flexibility gave it an edge over $1 with few 
templates, with 9 templates, that same flexibility causes 
DTW to falter while $1 takes a small lead. This finding 
resonates with Kristensson and Zhai’s decision to abandon 
elastic matching due to unwanted flexibility [11]. 

Another interesting finding is that $1 performs well even 
without using Golden Section Search. $1’s overall error rate 
after only rotating the indicative angle to 0° was 1.21% 
(3.88), just 1.21–0.98=0.23% higher than using GSS to 
search for the optimal angular alignment. 

At its best, Rubine performed at about 95% accuracy using 
9 training examples for each of the 16 gesture types. This 
result is comparable to the result reported by Rubine 
himself, who showed 93.5% accuracy on a set of 15 gesture 
types with 10 training examples per type [23]. Our result 
may be better due to our use of rotation invariance. Of 
course, Rubine would improve with more training examples 
that capture more gesture variability. 

Although gesture articulation speed significantly affected 
errors, this was most evident for Rubine. It is interesting 
that the medium speed resulted in the best recognition rates 
for all three recognizers. This may be because at slow 
speeds, subjects were less fluid, and their gestures were 
made too tentatively; at fast speeds, their gestures were 
sloppier. At medium speeds, however, subjects’ gestures 
were neither overly tentative nor overly sloppy, resulting in 
higher recognition rates. Subjective feedback resonates with 
this, where fluid gestures were preferred. 



The falloff during $1’s N-best list is a positive feature of the 
algorithm, since scores are better differentiated. DTW is 
nearly the same, but Rubine showed a clear disadvantage in 
this regard. 

Recognizers, Recorders, and Gesture Data Set 
To facilitate the recording and testing of gestures, we 
implemented $1, DTW, and Rubine in C#. Each uses an 
identical XML gesture format, which is also the format 
written by our Pocket PC recorder (Figure 8). In addition, 
we implemented a JavaScript version of $1 for use on the 
web.3 This version recognizes quite well, even with only 1 
template defined. When it does err, the misrecognized 
gesture can be immediately added as a new template, 
increasing recognition rates thereafter. In addition to these 
implementations, we have made our XML gesture set 
available to other researchers for download and testing. 

FUTURE WORK 
Although we demonstrate the strengths of a simple $1 
recognizer, we have not yet validated its programming ease 
for novice programmers. A future study could give different 
recognition algorithms to user interface prototypers to see 
which are easiest to build, debug, and comprehend. Given 
the simplicity of $1, we would expect it to fare quite well. 

An interactive extension would be to allow users to correct 
a failed recognition result using the N-best list, and then 
have their articulated gesture morph some percentage of the 
way toward the selected template until it would have been 
successfully recognized. This kind of interactive correction 
and animation might aid gesture learning and retention. 

Further empirical analysis may help justify some 
algorithmic choices. For example, we currently compute the 
indicative angle from the centroid to the first point in the 
gesture, but the first point in a stroke is probably not the 
most reliable. Is there another point that would generate 
more consistent estimates of the best angular alignment? 

CONCLUSION 
We have presented a simple $1 recognizer that is easy, 
cheap, and usable almost anywhere. Despite its simplicity, 
it provides optional rotation, scale, and position invariance, 
and offers 99+% accuracy with only a few loaded 
templates. It requires no complex mathematical procedures, 
yet competes with approaches that use dynamic 
programming and statistical classification. It also employs a 
rotation invariance scheme that is applicable to other 
algorithms like DTW and Rubine. Although $1 has known 
limitations, it is our hope that this work will support the 
incorporation of gestures into mobile, tablet, large display, 
and tabletop systems, particularly by user interface 
prototypers who may have previously felt gesture 
recognition was beyond their reach. 

                                                           
3 http://faculty.washington.edu/wobbrock/proj/dollar/ 
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APPENDIX A – $1 GESTURE RECOGNIZER 
 

RESAMPLE(points, n) 
1 I ← PATH-LENGTH(points) / (n – 1) 
2 D ← 0 
3 newPoints ← points0 
4 foreach point pi for i ≥ 1 in points do 
5  d ← DISTANCE(pi-1, pi) 
6  if (D + d) ≥ I then 
7   qx ← pi-1x

 + ((I – D) / d) × (pix
 – pi-1x

) 
8   qy ← pi-1y

 + ((I – D) / d) × (piy
 – pi-1y

) 
9   APPEND(newPoints, q) 
10   INSERT(points, i, q)   // q will be the next pi  
11   D ← 0 
12  else D ← D + d 
13 return newPoints 

PATH-LENGTH(A) 
1 d ← 0 
2 for i from 1 to |A| step 1 do 
3  d ← d + DISTANCE(Ai-1, Ai) 
4 return d 

 
ROTATE-TO-ZERO(points) 

1 c ← CENTROID(points)   // computes (x̄, ȳ) 
2 θ ← ATAN (cy – points0y

, cx – points0x
)   // for -π ≤ θ ≤ π 

3 newPoints ← ROTATE-BY(points, -θ) 
4 return newPoints 

ROTATE-BY(points, θ) 
1 c ← CENTROID(points) 
2 foreach point p in points do 
3  qx ← (px – cx) COS θ – (py – cy) SIN θ + cx 
4  qy ← (px – cx) SIN θ + (py – cy) COS θ + cy 
5  APPEND(newPoints, q) 
6 return newPoints 

 
SCALE-TO-SQUARE(points, size) 

1 B ← BOUNDING-BOX(points) 
2 foreach point p in points do 
3  qx ← px × (size / Bwidth) 
4  qy ← py × (size / Bheight) 
5  APPEND(newPoints, q) 
6 return newPoints 

TRANSLATE-TO-ORIGIN(points) 
1 c ← CENTROID(points) 
2 foreach point p in points do 
3  qx ← px – cx 
4  qy ← py – cy 
5  APPEND(newPoints, q) 
6 return newPoints 

 
RECOGNIZE(points, templates) 

1 b ← +∞ 
2 foreach template T in templates do 
3  d ← DISTANCE-AT-BEST-ANGLE(points, T, -θ, θ, θ∆) 
4  if d < b then 
5   b ← d 
6   T′ ← T 
7 score ← 1 – b / 0.5√(size2 + size2) 
8 return 〈T′, score〉 

DISTANCE-AT-BEST-ANGLE(points, T, θa, θb, θ∆) 
1 x1 ← ϕθa + (1 – ϕ)θb 
2 f1 ← DISTANCE-AT-ANGLE(points, T, x1) 
3 x2 ← (1 – ϕ)θa + ϕθb 
4 f2 ← DISTANCE-AT-ANGLE(points, T, x2) 
5 while |θb – θa| > θ∆ do 
6  if f1 < f2 then 
7   θb ← x2 
8   x2 ← x1 
9   f2 ← f1 
10   x1 ← ϕθa + (1 – ϕ)θb 
11   f1 ← DISTANCE-AT-ANGLE(points, T, x1) 
12  else 
13   θa ← x1 
14   x1 ← x2 
15   f1 ← f2 
16   x2 ← (1 – ϕ)θa + ϕθb 
17   f2 ← DISTANCE-AT-ANGLE(points, T, x2) 
18 return MIN(f1, f2) 

DISTANCE-AT-ANGLE(points, T, θ) 
1 newPoints ← ROTATE-BY(points, θ) 
2 d ← PATH-DISTANCE(newPoints, Tpoints) 
3 return d 

PATH-DISTANCE(A, B) 
1 d ← 0 
2 for i from 0 to |A| step 1 do 
3  d ← d + DISTANCE(Ai, Bi) 
4 return d / |A| 

Step 4. Match points against a set of templates. The size variable 
on line 7 of RECOGNIZE refers to the size passed to SCALE-TO-
SQUARE in Step 3. The symbol ϕ equals ½(-1 + √5). We use 
θ=±45° and θ∆=2° on line 3 of RECOGNIZE. Due to using 
RESAMPLE, we can assume that A and B in PATH-DISTANCE 
contain the same number of points, i.e., |A|=|B|. 

Step 3. Scale points so that the resulting bounding box will be of 
size2 dimension; then translate points to the origin. BOUNDING-
BOX returns a rectangle according to (minx, miny), (maxx, maxy). 
For gestures serving as templates, Steps 1-3 should be carried out 
once on the raw input points. For candidates, Steps 1-4 should be 
used just after the candidate is articulated. 

Step 2. Rotate points so that their indicative angle is at 0°. 

Step 1. Resample a points path into n evenly spaced points. 
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