
Pacific Graphics 2016
E. Grinspun, B. Bickel, and Y. Dobashi
(Guest Editors)

Volume 35 (2016), Number 7

Proxy-guided Image-based Rendering for Mobile Devices

Bernhard Reinert1 Johannes Kopf2,4 Tobias Ritschel3 Eduardo Cuervo2 David Chu2,5 Hans-Peter Seidel1

MPI Informatik1 Microsoft Research2 University College London3 now at Facebook4 now at Google5

Original view Novel view [Lee 2015]
37.2 fps

Mesh warp
2.3 fps

Our method
35.4 fps

Ground truth

Figure 1: Our new image-based rendering algorithm warps original views (with depth, not shown) to produce novel views. It performs as
fast as the fastest competitors but maintains much higher visual quality for larger displacements. The insets compare against other common
approaches and show the RGB-DSSIM difference. Frame rates are computed on an an Intel Compute Stick at a resolution of 1280×720.

Abstract
VR headsets and hand-held devices are not powerful enough to render complex scenes in real-time. A server can take on the
rendering task, but network latency prohibits a good user experience. We present a new image-based rendering (IBR) architecture
for masking the latency. It runs in real-time even on very weak mobile devices, supports modern game engine graphics, and
maintains high visual quality even for large view displacements. We propose a novel server-side dual-view representation that
leverages an optimally-placed extra view and depth peeling to provide the client with coverage for filling disocclusion holes. This
representation is directly rendered in a novel wide-angle projection with favorable directional parameterization. A new client-side
IBR algorithm uses a pre-transmitted level-of-detail proxy with an encaging simplification and depth-carving to maintain highly
complex geometric detail. We demonstrate our approach with typical VR / mobile gaming applications running on mobile
hardware. Our technique compares favorably to competing approaches according to perceptual and numerical comparisons.

1. Introduction

After going through decades of neglect 2016 might be the year
in which virtual reality (VR) will finally happen, backed by large
investments from major corporations. Widespread interest is driven
by the promise of countless applications ranging from video gaming
to education, training, industrial and architectural design, art, therapy
etc. But any system that wants to provide a truly immersive VR
experience needs to excel in three mutually conflicting areas—visual
fidelity: the virtual environments should look beautiful, detailed,
and life-like, but this requires substantial computational resources;

responsiveness: any head motion must be reflected as quickly as
possible in visual feedback to prevent motion sickness, so the system
needs to provide high refresh rate and low latency; and mobility:
users ought to move untethered in physical space, free to explore
the virtual world.

It is challenging to fulfill all three requirements simultaneously,
and, no current VR platform meets more than two of these three ob-
jectives (Figure 2). Head-mounted display (HMD) systems like the
Oculus Rift or HTC Vive can provide high quality graphics, but only
when tethered (with a thick and short cable) to a high-end computer

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, H.-P. Seidel / Proxy-guided Image-based Rendering for Mobile Devices

Visual
fidelity

Low latency

Mobility

Tethered HMDs:
Occulus Rift

HTC Vive

Untethered HMDs:
HoloLens, Gear VR,
Google Cardboard 
and Glass

Remote Rendering
Cloud Gaming

Figure 2: Landscape of current VR systems

with a powerful GPU, thus, limiting the users’ mobility to narrow
head movement. Untethered HMDs, such as the Samsung Gear VR
or Google Cardboard, allow the user to freely move around while
wearing the device, but they do not provide translational position
tracking and the mobile GPUs force compromises on rendering qual-
ity. The Microsoft HoloLens does provide positional tracking, but
the rendering performance is still limited. Wearable mobile GPUs
are likely to remain limited due to battery power and thermal dis-
sipation constraints. It is possible to improve the graphics quality
of untethered HMDs by offloading the rendering task to a remote
server, e.g. a Wi-Fi-connected desktop computer or a cloud machine.
However, this introduces unacceptable latency for VR, up to 100 ms
for Wi-Fi and in excess of 200 ms for wide-area connections.

There has been previous work on lowering the perceived latency
for remote rendering. The Oculus Mobile SDK contains a function
called “Asynchronous TimeWarp” [Ocu15] that updates a rendered
frame at presentation time with a simple global transformation that
models the interim head rotation. The same technique can also be
used to avoid visual judder from dropped frames by temporally
upsampling low rendered frame rates to higher screen refresh rates.
The technique works well in the context of rotational-only tracking
(i.e. a world at infinity), but does not model parallax, and thus cannot
handle translational head motion and near-field objects (Figure 10).
It is notably absent from the Oculus PC SDK.

State-of-the-art mobile cloud gaming systems such as Outatime
[LCC∗15] hide latency by transmitting both color and depth maps
for each frame, which are then forward-warped using points [CW93],
coarse grids [MMB97], or quad-trees [DRE∗10]. These simple
image-based rendering (IBR) techniques suffer from several prob-
lems: (1) mobile GPUs are not powerful enough to render many
primitives; however, subsampled depth meshes cause a variety of
rendering artifacts, e. g., problems with thin structures and poorly
localized depth discontinuities (Figure 1); (2) depth maps do not
store connectivity information, so heuristics need to be used to de-
cide whether neighboring samples are part of the same surface or
a disocclusions (i. e., hole or tear) should open up; (3) only pix-
els that exist in the reference viewpoint can be warped correctly.
Disoccluded pixels need to be inpainted, which causes distracting
visual artifacts. In this paper, we present a new method that is de-
signed to avoid the problems mentioned above and achieve all three
earlier mentioned objectives—visual quality, responsiveness, and
mobility—simultaneously.

Our technique comprises new server-side and client-side algo-
rithms. We propose a novel dual-view representation for the server-
rendered frames, that comprises the primary and an extra view, ren-

dered from an optimally placed camera offset and using a depth peel-
ing technique to avoid redundancies. It leverages a novel wide-angle
projection with full hemisphere coverage and favorable directional
parameterization.

A new client-side IBR algorithm replaces the slow forward-
warping of previous methods with faster backward-warping, en-
abled by delivering a level-of-detail (LoD) scene representation to
the client ahead of time. The combination of a special encaging
LoD simplification and a depth-carving pixel shader enables precise
reproduction of highly detailed silhouettes. The pixel shader also
inpaints residual disocclusions without extra performance cost.

Our technique is fast enough to run on very modest client hard-
ware and can extrapolate high-quality novel views even for large
view changes. It supports temporally upsampling low and/or fluc-
tuating server frame rates to constant high client frame rates. In
addition to VR, our techniques are also applicable to regular (non-
VR) cloud-based gaming.

We tested an end-to-end prototype implementation of our algo-
rithms on different mobile systems including an extremely low-
powered Intel Compute Stick (i.e. a fat-finger sized computer that
plugs into any HDMI port). Our results compare favorably to com-
peting approaches in a perceptual user study as well as in numeric
evaluations. An important limitation of our base system is that it only
supports static scenes. However, in Section 6.3, we discuss three
extensions for handling dynamic content with different trade-offs.

2. Related work

In this work we are interested in masking network latency in a
remote rendering setup for interactive untethered VR or mobile
cloud gaming applications. Shi and Hsu [SH15] provide a survey
on the state-of-the-art in interactive remote rendering. One solution
is image-based rendering (IBR), which describes the concept of
synthesizing novel views of a 3D scene from one or multiple existing
pre-rendered (or captured) views [CW93]. The idea is to extrapolate
images instead of transferring them across a network for remote
rendering. In this paper, we propose an improved IBR approach that
is custom-tailored to the requirements of remote rendering.

The most related work to our effort is the Outatime system
[LCC∗15], which shares a similar goal, though they only discuss
cloud gaming (which may use more powerful GPUs and has lower
requirements on target frame rate). Their key contribution is a specu-
lative execution engine: the server predicts future user actions from
the past behavior and recent tendencies, and renders multiple frames
ahead of time for different possible outcomes. The frames are then
sent to the client which selects the one that is most relevant to the
actual user input that has happened since. As a result, the frames are
often close to what the client ought to see, though, slight mispredic-
tions still have to be compensated for. To that end, Outatime uses a
very simple IBR approach, single-view coarse mesh-based forward
warping, which shows poor performance on our target devices and
leads to a variety of artifacts.

The new IBR algorithm presented in this paper could be used as a
drop-in replacement to achieve better performance and higher visual
fidelity in a system like Outatime. For simplicity’s sake we tested

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, H.-P. Seidel / Proxy-guided Image-based Rendering for Mobile Devices

our algorithm in a standalone fashion, i.e., we don’t use any form of
user input prediction or speculative execution and our server simply
renders views for the last known user state. In the following we will
discuss different flavors of IBR in the context of this scenario.

Ray space It is possible to perform IBR purely in ray space without
the need for any geometric scene information [LH96,GGSC96]. This
is attractive if such data is not available, e.g. for captured scenes.
However, since we are rendering 3D models, we can trivially pass
3D scene information to the IBR algorithm. Utilizing it generally
leads to more accurate results.

Forward warping Most of the earlier IBR algorithms rely on for-
ward warping to deform the input images before blending them
[Wol98]. In their seminal paper, Chen and Williams [CW93] pro-
pose to represent the scene using pairs of color and depth maps.
The depth information is used to independently project and splat
each pixel. Since the splats are not connected, small holes can form
in the output, and the massive amount of rendering primitives is
prohibitively slow on our target GPUs. Resulting warp quality can
be improved by predicting its outcome on the server and trans-
mitting adaptively compressed residuals [YN00, BG04]. Forward
warping was used for remote rendering on mobile devices [CG02],
but remains of low fidelity and speed without addressing its specific
requirements. Follow-on work resolved the lack of connectivity by
using fine grid-meshes with micro polygons [MMB97]. Continuous
meshes produce long and skinny “rubber sheet” triangles at depth
discontinuities that connect the edge of the foreground object with
the background, although heuristics may be able to introduce tears in
these cases. Fine meshes still employ a prohibitively large number of
rendering primitives. Better performance is achieved by downscaling
the meshes [LCC∗15]. However, this has a degrading effect on visual
fidelity, since thin structures cannot be well represented and depth
discontinuities cannot be localized. Quadtrees [DRE∗10] provide
a more adaptive way of reducing the number of primitives. Novel
views of a quadtree can also be produced by ray-tracing [WPS∗15].
Our experiments show that while quadtrees work well for moder-
ately complex scenes, the highly detailed scenes used in modern
graphics engines require too many subdivisions, and, hence, incur
encoding, transmission and processing overhead that does not fit
the simple GPUs of mobile clients. In this paper, we advocate using
simplified 3D geometry instead of simplified 2D depth geometry as
in quadtree-based IBR.

Multiple layers An improvement in quality can be achieved by ren-
dering not just the first visible surface, but multiple layers [SGHS98].
Our approach uses a related representation: the server generates dual-
view pairs, comprising a primary view for visible surfaces and an
extra view for surfaces that are occluded in the primary view.

Backward warping Instead of forward-projecting points in the
input image to the output space, another option is to start with a
pixel in the output image and search for a location in the source
image that projects there [YTS∗11, BMS∗12]. This search can be
done in a simple iterative procedure in a pixel shader, which leads
to very fast performance. However, as our experiments show, this
approach is critically dependent on good initialization, especially

for large view offsets and at depth discontinuities, where the results
might be noisy (see Section 6.2).

Proxy geometry Another kind of backward-warp algorithms ren-
ders approximate 3D proxy representations of the scene objects,
and gathers color samples by projecting the resulting fragments into
the input images [DTM96, BBM∗01]. Our method belongs to this
category. Our client-side algorithm renders a dramatically simpli-
fied pre-transmitted level-of-detail representation of the scene to
efficiently gather color and depth from the input views, and uses the
depth information to refine silhouette boundaries as well as resolve
occlusion ordering.

Phase-based Working in phase space does not require depth infor-
mation, is fast and simple and allows for specular and transparent
surfaces [DSAF∗13]. Regrettably, it can only be applied to small
baselines, preventing its use for novel-view synthesis of practical
head motions in an interactive application such as a computer game.

Non-Lambertian scenes Most algorithms discussed in this
section—including ours—tacitly assume diffuse surfaces that have
the same appearance from all viewing directions. Some recent algo-
rithms [SKG∗12, LRR∗14] extended IBR toward supporting some
non-Lambertian effects, e.g., specularities and reflections. Many
of these ideas could potentially be incorporated into our method,
although we leave this for future work.

3. Overview

Since our client devices have neither the power to run a modern game
engine nor to render high-fidelity graphics, they merely transmit the
user input events to a high-end network-connected computer, which
executes the game engine and streams high-fidelity “views” back
to the client, each consisting of color and depth maps, as well as
camera pose parameters.

The key technical problems are in dealing with network latency,
and low or fluctuating server frame rates. As in previous approaches
[LCC∗15], we run an IBR algorithm on the client to mask the
latency by warping the latest received frame to account for interim
camera pose changes. There are substantial technical difficulties in
this approach: (1) due to the high latency, the camera position and
orientation can have changed significantly since the server rendered
the last frame, so our IBR algorithm has to be able to maintain
high visual fidelity even in the presence of strong induced parallax;
(2) while many previous temporal upsampling algorithms generate
novel in-between views by interpolating past and future frames, our
system operates in real-time, so we cannot access future information
and have to extrapolate our novel views purely from past frames;
(3) we target light-weight mobile devices with low-powered GPUs,
so our algorithm needs to be very fast. Our method comprises both
server- and client-side algorithms that are carefully designed to deal
with these challenges.

In the next two sections, we first present our novel server-side
generated dual-view representation (Section 4) followed by our
novel client-side proxy-based IBR algorithm (Section 5).

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, H.-P. Seidel / Proxy-guided Image-based Rendering for Mobile Devices

(a) Perspective (b) Partial cube map (c) Hemispherical fisheye (d) Final projection

Figure 3: Comparison of different projection methods. The magenta line indicates a view with horizontal and vertical70◦ FOV. A favorable
projection should have sufficient pixel density inside the line and slowly reduce pixel density in the periphery.

4. Dual-view Representation

In a simple IBR architecture, a server might stream regular depth-
augmented color images to the client, which only cover the visible
surfaces seen from the last known client pose. This is not ideal,
however, because they do not provide the client with information
to deal with disocclusions, i.e. previously unseen parts of the scene
that come into view due to pose changes.

We distinguish between two types of motion that induce disoc-
clusions: translational motion induces parallax and uncovers parts
of the scene that were previously occluded by other objects closer
to the camera, while rotational motion does not induce parallax but
uncovers previously out-of-frame directions. We introduce a new
view representation that is designed to help the client handle both
situations.

Rotational disocclusions are easily dealt with by providing the
client with wider field-of-view (FOV) imagery. However, it is tricky
to do this efficiently, both in terms of storage and rendering per-
formance. We propose a 180◦ wide-angle projection that can be
directly rendered to in a single pass and that concentrates samples
where they are most useful (Section 4.1).

To alleviate translational client motion, we generate an extra view
that provides some coverage of surfaces that are occluded in the
primary view, and use a depth peeling technique to avoid storing
redundant surfaces, i.e. ones that are already visible in the primary
view (Section 4.2).

4.1. Wide-angle Projection

As discussed before, generating views that are wider than the client
FOV allows compensating some rotational motion. Since the maxi-
mal rotation rate is unbounded, only transmitting a full 360◦ sphere
would be completely safe. However, in practice it is acceptable to
leave a few pixels missing during rapid rotations [Ocu15], so we
settle on transmitting a 180◦ hemisphere per view.

Standard linear perspective projections distribute samples un-
evenly across the viewing plane: the lowest density is in the image
center, while highest in the periphery. This is the exact opposite of
the ideal situation, since the center parts are more likely to be used
in novel views than the image edges when moving forward, and fast

rotation masks a slight undersampling of peripheral regions. More-
over, beyond ca. 90◦, perspective projections become increasingly
distorted (Figure 3a).

Partial cube maps (Figure 3b) have been used to alleviate this
problem [MMB97, BP06, LCC∗15]. However, cube maps are expen-
sive to generate since each cube face requires a separate rendering
pass, or a slow geometry shader needs to be employed to replicates
primitives into multiple output render buffers. In addition, they still
allocate a larger-than-necessary proportion of samples to peripheral
parts of the image, and, thus, excessive image sizes are necessary
for acceptable image quality.

We are interested in a projection where most samples concentrate
in the center (i. e., where they are most useful) and the density
gradually decays towards the periphery. A hemispherical fisheye
projection has this property (Figure 3c). It is constructed as follows:
Let p be a 3D point in camera coordinates, i.e., already transformed
by the model-view matrix. We first project p onto the unit sphere,
and then orthographically project it on the view plane (by dropping
the z component). Formally, the texture coordinates (tx, ty)∈ [−1,1]2

are obtained as tx = px/‖p‖ and ty = py/‖p‖.

This projection has the slight disadvantage that the corners of
the image remain unused (Figure 3c). While this does not incur a
significant network bandwidth cost, since the empty areas compress
efficiently, it still amounts to a somewhat poor utilization of texture
space. We use a slightly modified projection that resolves this prob-
lem by horizontally stretching each row to fill the full height of the
texture (Figure 3d):

t ′x =
tx√
1− t2

y

, t ′y = ty. (1)

We could have alternatively stretched vertically. However, since
panning rotations occur more frequently, we opted for filling the
corners with samples that are most useful for this case. We also
considered fisheye projections that fill the corners with samples
from behind the camera. However, these seemed less useful for
novel view generation than extra samples obtained by the modified
projection in Eq. 1.

This wide-angle projection is not linear. However, we can still effi-
ciently render the scene directly in a single pass by computing Eq. 1

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, H.-P. Seidel / Proxy-guided Image-based Rendering for Mobile Devices

0%

15%

0 Frame

D
is

oc
cl

us
io

n

150

Ours
Peeling only
Offset only
Single view, 20 fps
Single view, 10 fps

Figure 4: Fraction of missing pixels during a walkthrough of the
VIKING VILLAGE as seen in Figure 5.

in the vertex shader instead of applying the traditional projection
matrix, and clipping against near and far clipping spheres instead
of planes. Straight lines in world-space turn into curves in a fisheye
projection, hence, triangles that cover a large screen-space area need
to be subdivided to account for this non-linearity. To this end, we
employ a tessellation shader that adaptively subdivides triangles
based on their screen-space size to cover less than a pixel.

4.2. Dual-view Generation

Translational disocclusion is another source of missing regions that
is more difficult to deal with than rotational disocclusion, because
the holes occur not only at image boundaries but spread across
the entire image, and they uncover areas unseen from the original
vantage point.

If there is network latency between server and client the amount
of disocclusion can be reduced by anticipating future client motion,
and rendering frames from the predicted location instead of the last
known location. We experimented with using a Kalman filter to pre-
dict client motion, however, the reaction time to acceleration changes
commonly caused mispredictions, which momentarily increased the
amount of disocclusions. The Outatime system [LCC∗15] is more
successful with a similar strategy because their server renders and
transmits multiple frames for different motion hypothesis, out of
which the client then picks the most suitable one, which in turn
however increases the required bandwidth.

Some disocclusion holes can be filled in using extra views from
different vantage points. One potential source are views that have
been transmitted in the past. However, we found that they usually
do not provide sufficient coverage to fill disocclusion holes. Instead,
we generate and transmit a dual-view, consisting of a primary view
rendered from the last known client location and an extra view
rendered from an offset location to provide extra visibility coverage.
Both views are rendered at the same point in game time, and we store
the extra view at quarter resolution (i.e., half image dimensions).

The extra view should ideally not contain redundant coverage of
surfaces that are already visible in the primary view. However, it is
difficult to selectively transmit only the unique sub-parts of the extra
view efficiently. Instead, we use a depth peeling technique [SGHS98]
to prevent inclusion of redundant samples in the extra view to begin
with. In a pixel shader, we project every extra view fragment into
the primary view. Here, a z-buffer comparison determines if the
fragment is visible in the primary view, i.e. redundant, in which case
it is discarded.

Finding the optimal placement of the extra view is a difficult visi-
bility problem, which is impractical to solve in real-time. Instead,
we precomputed a heuristic, constant offset by analyzing long user
traces in multiple scenes (Figure 4 shows an example). We excluded
sideways translation and rotation from the optimization, since we
did not want to introduce horizontal bias. We used exhaustive search
to determine the optimal setting for the remaining vertical and for-
ward/backward translation as well as the tilt rotation angle. This
procedure yielded a pose offset 1.5 m in front, 1.8 m above (Unity
game engine units), and 15◦ tilted down relative to the primary view,
which we heuristically used to produce all results shown in this
paper. We have also experimented with generating the extra view
pose using a Kalman filter, but this yielded a less optimal result than
the constant offset.

Figure 5 illustrates different variants of the dual-view represen-
tation, and shows how using both camera offset and depth peeling
in the extra view produces the most complete novel view. Figure 4
expands the comparison and plots the fraction of missing pixels for
each frame in a 150 frames long walkthrough sequence. As can be
seen the combination of both, depth peeling and a constant camera
offset, leads to the lowest number of undefined pixels.

For transmission, linear depth units are converted into disparity
(inverse depth) units, quantized to 8 bits. Using disparity instead of
depth reserves more precision for depth details in nearby geometry,
which moves noticeably when the view position changes and allo-
cates less precision for distant objects, such as the sky, that move
little in response to user motion. Finally, the pair of primary and
extra color and depth images are placed in a rectangular layout and
encoded in a single H.264 stream.

5. Proxy-based IBR Algorithm

The client receives the stream of dual-view images with a certain
delay and at a potentially lower frame rate than desired. Its task is to
then synthesize using IBR what the scene would look like from the
new pose it has moved to since the server rendered the last frame.
Since the network latency can be significant, the method has to be
able to handle large view changes. Since it runs on a weak mobile
device and we target high output frame rates, it needs be very fast.

Most IBR methods that are suitable for real-time applications
use some form of depth map-based forward warping, i.e., pixel
splatting [CW93], grid-mesh warping [MMB97], or quad-tree warp-
ing [DRE∗10]. Iterative image warping [YTS∗11, BMS∗12] is a
notable exception, but it does not provide sufficient quality for our
application; see the discussion in Section 6.2. The primary problem
with these methods is that they require a prohibitive number of prim-
itives to represent detailed geometry and perform very slowly on
our target devices (Section 6.2). To improve the performance the
primitive count can be decreased, i. e., by subsampling the depth
maps. This however has a degrading effect on visual quality. In par-
ticular, geometric details cannot be accurately represented anymore
and depth discontinuities become poorly localized (cf. Figure 1a in
the supplemental material). Another problem is that depth maps do
not store connectivity information. Whether neighboring samples
belong to the same surface and hence should be conntected can
only be decided using heuristics that can fail and produce erroneous

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, H.-P. Seidel / Proxy-guided Image-based Rendering for Mobile Devices
Tr

an
sm

itt
ed

im
ag

e
B

ir
ds

ey
e

ill
us

tr
at

io
n

N
ov

el
vi

ew

Primary view Extra view: Depth peeling only Extra view: Offset only Extra view: Offset + depth peeling

Figure 5: Analysis of dual-view sampling: The first column shows an image of the scene from the primary view, while the other columns show
images of three increasingly refined approaches to producing the extra view: only depth peeling, only offsetting and finally both simultaneously.
The first row shows images taken from the respective view in each column, the second row shows the world from an bird’s eye-view, and the
third row shows a novel view. In the second and third rows visibility is color-coded: gray surface points are not seen by any of the two views,
orange/blue points are only seen by the primary or extra view, respectively. Note, that due to depth peeling, no surfaces are ever seen by both
views. The bottom row shows the variants adding coverage : in the right-most novel view almost all disocclusions have been filled in.

tears or long “rubber sheet” triangles. In this section, we propose a
new IBR method that avoids these problems, produces high quality
results and runs fast on our target devices.

In particular, we use a geometry proxy. Assuming that our scene
geometry is mostly static as well as entirely and precisely known
in advance, enables us to generate and transmit a level-of-detail
(LoD) representation of the whole scene in advance to the client.
When rendering a novel viewpoint we adjust the LoD to achieve
a screen-space geometric complexity that is roughly constant and
dramatically decimated compared to the original geometry, so it
requires only relatively few primitives and renders fast on our target
devices. The simplified geometry serves as scene proxy [DTM96,
BBM∗01]. In a pixel shader we back-project fragments into both
source views (primary and extra), gather color samples, and compute

an output color as described below. Implementation details of the
LoD generation and rendering are described in Section 5.1.

Since we use a geometry-adaptive simplification, major depth
discontinuities remain well-localized. However, silhouettes are only
approximated with simple outlines, causing some artifacts when
a foreground object with intricate detail is projected onto such a
proxy: a fraction of background samples projects erroneously on
the foreground (Figure 6a). To remove these erroneous samples
we use the transmitted depth maps of our dual view representation
(Section 4) in a pixel shader as follows.

Let fp, fe be the distances between a fragment’s world position
and the camera positions of the primary and extra view, respectively,
and let dp,de be the values sampled from the respective depth maps

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, H.-P. Seidel / Proxy-guided Image-based Rendering for Mobile Devices

(a) Regular simplification (b) Regular simplification
with depth test

(c) Encaging simplification (d) Encaging simplification
with depth test

Figure 6: (a) Common mesh simplification causes background to be
projected onto foreground (neck of figure) as well as foreground to
be cut off (missing nose). (b) Depth testing removes erroneous back-
ground, but foreground details remain lost. (c) Using an encaging
simplification guarantees to never remove foreground details. (d)
Combining both techniques results in a near-perfect image.

(a) No hole filling (b) 2D Pull-push (c) Our hole filling

Figure 7: Comparison of different hole-filling strategies.

at the back-projected location of the fragment. We compute depth
errors for both views,

ep =

∣∣∣∣dp− fp
fp

∣∣∣∣ , ee =

∣∣∣∣de− fe
fe

∣∣∣∣ , (2)

and successively test both errors against a threshold of τdepth = 0.1.
If one of these depth errors is smaller than τdepth, we use the color
of the respective view, otherwise we discard the fragment. While
this algorithm successfully removes erroneous background samples
on the forground object it cannot recover foreground details that are
located outside of the simplified outline (Figure 6b). We fix this prob-
lem by modifying the LoD decimation to produce a strictly encaging
simplification, i.e., one that surrounds the original geometry without
intersecting it [SVJ15] (Figure 6c, Section 5.1). This guarantees that
the shader described above never clips foreground samples and is
able to precisely cut out the original detailed silhouette (Figure 6d).

Usually, a few isolated disocclusions remain that cannot be filled
from either of the two views (Figure 7a). Most real-time IBR imple-
mentations use the pull-push algorithm [GGSC96] to inpaint these

smoothly (Figure 7b), since it can efficiently be implemented by
creating and collapsing an image pyramid on the GPU. Our exper-
iments showed, however, that this roughly halves the frame rate,
which pushes us well below 30 frames per second on our weak-
est devices. As an alternative, we modify the shader above so it
does not discard fragments anymore to achieve hole inpainting with
zero performance overhead. Instead of filling gaps with a smooth
membrane it fills with misplaced texture (Figure 7c). However, just
changing the shader to always accept all fragments and use the color
from the lower-error view does not work, because it eliminates the
ability to carve out the original silhouettes. Instead, we “deprioritize”
fragments that would have been discarded by rewriting their z-value
behind any fragments within the depth threshold. Pseudocode for
this algorithm can be found in the supplemental material.

5.1. Level-of-detail Implementation Details

There is extensive literature on geometry simplification [Lue97] and
level-of-detail techniques [DFKP05]. Modern game engine imple-
mentations of these algorithms are highly sophisticated and tuned for
maximum performance. As this work is mostly interested in build-
ing a proof-of-concept system in reasonable time, we compromised
on an extremely simplistic LoD implementation, described below.
We would like to stress that we do not claim any contribution in this
section, and merely include the description for completeness. Any
practical system should be built on top of existing game engines and
utilize their built-in LoD systems, for achieving best performance
and quality.

Our test scenes are downloaded from public 3D scene repositories.
They are composed of individual objects, potentially instanced mul-
tiple times throughout the scene. For each object, we precompute
three LoD representations: the original geometry, a simplified mesh,
and a bounding box (Figure 8). At runtime we cull objects against
the view frustum and select the appropriate LoD based on distance
thresholds.

Most original meshes in our test scenes are not watertight and
contain self-intersections, tiny gaps, and other defects. We tried a
variety of existing simplification methods, in particular, PolyMender
† [Ju04], Poisson surface reconstruction ‡ [KH13], and the Blender
decimation modifier §, but they did not handle the mesh defects
satisfactorily. So, we implemented a simple and robust alternative.
We first voxelize each object into a 1283 array. This closes tiny
gaps in the original mesh. Next, we remove big internal holes by
flood-filling from the outside and inverting the selection. Finally, we
use the marching cubes algorithm [LC87] to produce a watertight
mesh, which we simplify using the Blender decimate modifier to
0.5% of the original number of triangles.

The recent Nested Cages algorithm [SVJ15] is able to produce
strictly encaging simplifications. However, source code is not avail-
able. Fortunately, the voxelization described above already tends to
produce slightly enlarged meshes. We detect any violating vertices

† http://www.cs.wustl.edu/~taoju/code
‡ http://www.cs.jhu.edu/~misha/Code/PoissonRecon
§ https://www.blender.org

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

http://www.cs.wustl.edu/~taoju/code
http://www.cs.jhu.edu/~misha/Code/PoissonRecon
https://www.blender.org


B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, H.-P. Seidel / Proxy-guided Image-based Rendering for Mobile Devices

Full geometry Decimated Bounding box

Figure 8: LoD levels used in our implementation.

in the simplification, and simply push them outwards. This happens
rarely, and worked well in our experiments.

6. Results and Evaluation

6.1. Implementation Details

A prototype of our system was implemented in C++ using the
OpenGL API. We ran our server-side algorithms on an Intel Xeon
E5645 (2.40 GHz) CPU with 24 GB RAM and an NVidia GTX680
GPU. Our client side algorithms were tested on several different ma-
chines that allow for mobile usage ranging from an Intel Compute
Stick STCK1A32WFC over an HP Stream Mini 200-010 and an HP
Pavilion Mini 300-030 to a Microsoft Surface 3 Pro. Our algorithm
was tested on three scenes (cf. Figure 2 in the supplemental mate-
rial). We implemented our own rendering engine to generate the
dual-views on the server as it offered more control over the rendered
images as the build-in Unity rendering engine. For a 720p client
resolution the primary view size is set to 2048×2048, for 1080p
client resolution the primary view size is set to 3072×3072. To get a
similar sample density in the center of the original view with a FOV
of 70◦, the resolution of each dimension of the output view needs
to be multiplied with a factor of ca. 1.6 to get the resolution of the
input view. When storing the dual view at 10 fps for 720p resolution
it requires a bandwidth of 2,516 mbps uncompressed and 2,910 kbps
when compressed with H.264.

6.2. Comparisons

We compared our algorithm against a variety of existing algorithms,
which in turn have a varity of parameters described below. In the
supplementary material we provide more extensive comparisons.
Figure 9 shows average timings and DSSIM quality measures for 20
snapshots of the ROBOT LAB scene. All timings are measured on
an Intel Compute Stick, for a more detailed analysis including other
devices please see the supplemental material. Figures 1 and 10 show
the visual quality of our method in comparison to other methods. In
all of our experiments we used a simulated latency of 128 ms and
the server produced a video stream with 10 frames per second.

All methods use the same input, i. e., the color and quantized
depth values generated by our dual-view generation (Section 4).
Per-pixel depth values and the view matrix are used by all methods
to reconstruct the world position of each pixel of the input view
which in turn can be used to reproject the pixel into the new view,
resulting in a forward flow field for each view. We did not use any
additional hole filling for any of the algorithms described, as this

Ours

Point IIW

Quadtree

Mesh warp

Coarse mesh warp1-5

0
10
20
30
40

0.03 0.05 0.08 0.11 0.135 0.22
DSSIM

Fr
am

es
 p

er
 s

ec
on

d 50
Homography

Figure 9: Performance/quality tradeoff for different methods.

step substantially decreased the performance on the target hardware
and is orthogonal for all methods. Next, we will discuss the details
of alternative techniques:

Homography as recommend in the Oculus SDK [Ocu15] assumes
that all pixels have constant, fixed depth value allowing to compute
the backward flow for each pixel in closed form. While this approach
is capable of correcting rotational movements is fails to correctly
handle disparities induced by view translation, leading to visible
jumps when inputs views are updated. Homography only uses the
first of our dual views.

Point Splatting by Chen and Williams [CW93] transforms a single
point primitive for each pixel of the input view image to be drawn
in the output view. To close small holes the point size is set to cover
two pixels of the final screen size.

Mesh Warp uses the same transformation as point splatting, but
assumes implicit connectivity between the pixels, i. e., renders trian-
gles between neighboring pixels. A naïve implementation renders
all triangles regardless if its vertices make up a connected surface or
not, leading to rubber sheet-like triangles at depth discontinuities. To
increase the performance, the pixels can be subsampled, i. e., instead
of rendering a full set of vertices for all pixels only for each n-th
pixel a vertex can be emitted [LCC∗15]. Similar to the connectivity
heuristic described in [MMB97] stretched triangles can be split into
two triangles: one with the minimal and one with the maximal depth
value of all three vertices. Instead of using a position and a normal
buffer to determine the connectivity, our decision is based solely
on the depth buffer as transmitting an extra normal or connectivity
buffer is not feasible in our streaming setup. We tested different
setups: one setup in which we used both views, split the triangles
at depth discontinuities and emit one vertex for each pixel, denoted
as Mesh warp. The second choice uses only the first view, without
splitting the triangles and with a subsampled depth map resulting in
an increased performance for different subsample factorss denoted
as Coarse mesh warps.

Quadtree Warping combines groups of neighboring pixels to form
quads that can be warped together to reduce the number of primitives
that need to be drawn. Since computation of the quadtree requires
powerful parallel hardware only the server can generate the quadtree.
As the client movement is unknown to the server at construction
time, the disparity measure used to construct the quadtree [DRE∗10]
cannot be used in our case; instead we group pixels based on their

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, H.-P. Seidel / Proxy-guided Image-based Rendering for Mobile Devices

Ground Truth Homography
(“Timewarp”)

Mean DSSIM 0.2977, 44.3 FPS

Mesh warp
[MMB97]

Mean DSSIM .0796, 1.5 FPS

Coarse mesh warp5 (Outatime)
[LCC∗15]

Mean DSSIM .1198, 31.3 FPS

Point splatting
[CW93]

Mean DSSIM 0.13, 4.2 FPS

Quadtree
[DRE∗10]

Mean DSSIM 0.0876, 20.9 FPS

Iterative image warping
[YTS∗11, BMS∗12]

Mean DSSIM 0.2109, 3.5 FPS

Our method
Mean DSSIM 0.0543, 35.9 FPS

Figure 10: Numerical analysis. We used the DSSIM metric to asses the visual quality of the results of different methods to ground truth.

depth values to construct the quadtree. To combine multiple views,
we used the same triangle split as done in mesh warping, as rendering
each view into different framebuffers and combining them based on
their stretch factor as described in [DRE∗10] yielded inferior results
both in terms of speed and quality on our target hardware. Quadtrees
reduce the number of primitives that need to be drawn to roughly
10% of the full number of primitives in our scenes, but produces
small gaps in between quads at level boundaries.

Iterative image warping [YTS∗11, BMS∗12] strives to invert the
given forward flow for each of the pixels to obtain the desired
backward flow that can be used for simple texture lookups with a
cheap iterative optimization per pixel. While this algorithm works
great for small and known camera offsets it heavily relies on a
good initialization, especially for pixels with multiple solutions
(occluding objects). While for certain camera configurations simple
heuristics apply, for a generic camera motion as in our case the
initialization needs to be done i. e., using a quadtree, resulting in
a worse performance than the initialization method itself while
not significantly improving the quality. Additionally, the different
projections of our input and output views (spherical and perspective
projection) cause the unscaled iteration to diverge quickly, requiring
the correction vectors to be damped, which in turn leads to an
increase of number of iterations. For our experiments we used 10
iterations with a damping factor of 90%.

6.3. Perceptual Evaluation

We assessed the effectiveness of our approach in a perceptual ex-
periment, where it is compared to alternative approaches in terms
of visual fidelity for a remote rendering scenario. 30 subjects were
asked to compare the result of our approach and a competing ap-
proach in a two-alternative forced choice task. The results can be
seen in Figure 11 and are discussed in the supplemental material.

87%
97%

83%
93% 90%

13%
3%

17%
7% 10%

0%

20%

40%

60%

80%

100%

Homography Mesh warp Outatime Quadtree Total

Ours Competitor

Figure 11: Perceptual evaluation: Mean preference of our method
(blue) over competitors (red) in percentage (all p < .0001).

7. Discussion

As can be seen, e. g., in Figure 10 and the submission video, some
limitations and artifacts remain. Their first and main source are
remaining disocclusions not covered in either of the two views
(cf. Section 4). These disocclusions could trivially be overcome by
sending more than two views. However, making the view offset and
depth peeling parameters viewport-adaptive might provide the same
quality with no additional bandwith overhead. A second source of
remaining artifacts stems from the usage of screen-space ambient
occlusion (SSAO) [BSD08] employed to speed up our server-side
computations. SSAO varies with different screen content, i. e., for
different viewports, and the position offset of the second view (cf.
Section 4.2) leads to dissimilar SSAO in our dual views, which in
turn leads to minor but perceivable artifacts at view boundaries.

Our method shares a number of limitations with most IBR al-
gorithms. One limitation of our method is the weak support for
dynamic scenes. We implemented three different fallbacks for sup-
porting certain kinds of dynamics, each having different advantages
and drawbacks, further discussed in the supplemental material. What
is more, the client-side algorithm renders all surfaces with diffuse
shading. Strongly view-dependent effects, such as reflections or
specularities, therefore, might lead to artifacts whose severity de-
pends on the amount of view extrapolation. In practice, we found

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, H.-P. Seidel / Proxy-guided Image-based Rendering for Mobile Devices

these often acceptable, however. The last paragraph in Section 2 dis-
cusses recent advances in IBR that could potentially be incorporated
into our method to alleviate these problems. Another limitation is
that the transmitted depth maps contain only a single depth per pixel.
This causes problems with semi-transparent surfaces, such as glass
windows.

8. Conclusion

We have presented a new proxy-guided IBR architecture that runs
fast on very weak mobile devices, supports modern game engine
graphics with intricate geometric detail, and maintains high visual
quality even for large view displacements.

We propose a novel dual-view representation. The extra view is
placed at an optimal camera offset and leverages depth peeling to
avoid redundancy and equip the client with maximal surface cover-
age for filling disocclusions. We render both views directly into a
novel wide-angle projection that covers a full hemisphere, and, un-
like standard projections, concentrates resolution in the image center,
where it is most needed. We transmit the video-encoded dual-view
stream to the client, where it arrives with network delay and a lower-
than-desired frame rate. On the client we run a new proxy-guided
IBR algorithm to mask the network latency and generate novel views
at a high frame rate. Our algorithm utilizes a pre-computed and pre-
transmitted LoD representation to quickly render a 3D scene proxy.
We use a special encaging LoD simplification and a depth-carving
pixel shader to maintain highly complex silhouette details without
compromising the frame rate. The pixel shader also inpaints residual
disocclusions without extra performance cost. We have extensively
analyzed and compared our algorithm with a variety of competing
techniques. A numeric DSSIM analysis and a perceptual user study
show that our technique compares favorably.

There are numerous interesting avenues for future work. Our
base technique only supports static scenes. However, we have de-
scribed and prototyped three extensions for dynamic content, that
each have different characteristics w.r.t. what type of motions are
supported, performance, delay, and visual quality. Further analy-
sis and improvements in this area seem very valuable. It would
also be interesting to combine our method with recent advances on
supporting non-Lambertian scenes in IBR algorithms.

References

[BBM∗01] BUEHLER C., BOSSE M., MCMILLAN L., GORTLER S.,
COHEN M.: Unstructured lumigraph rendering. In Proc. SIGGRAPH
(2001), pp. 425–432. 3, 6

[BG04] BAO P., GOURLAY D.: Remote walkthrough over mobile net-
works using 3-D image warping and streaming. IEEE Proc. Vision, Image
and Signal Processing 151, 4 (2004), 329–36. 3

[BMS∗12] BOWLES H., MITCHELL K., SUMNER R. W., MOORE J.,
GROSS M.: Iterative image warping. Comp. Graph. Forum (Proc. Euro-
graphics) 31, 2pt1 (2012), 237–246. 3, 5, 9

[BP06] BOUKERCHE A., PAZZI R. W. N.: Remote rendering and stream-
ing of progressive panoramas for mobile devices. In Proc. MM ’06 (2006),
pp. 691–4. 4

[BSD08] BAVOIL L., SAINZ M., DIMITROV R.: Image-space horizon-
based ambient occlusion. In ACM SIGGRAPH 2008 Talks (New York,
NY, USA, 2008), SIGGRAPH ’08, ACM, pp. 22:1–22:1. 9

[CG02] CHANG C.-F., GER S.-H.: Enhancing 3D graphics on mobile
devices by image-based rendering. In Proc. PCM (2002). 3

[CW93] CHEN S. E., WILLIAMS L.: View interpolation for image syn-
thesis. In SIGGRAPH (1993), pp. 279–88. 2, 3, 5, 8, 9

[DFKP05] DE FLORIANI L., KOBBELT L., PUPPO E.: A survey on data
structures for level-of-detail models. Advances in Multiresolution for
Geometric Modelling (2005), 49–74. 7

[DRE∗10] DIDYK P., RITSCHEL T., EISEMANN E., MYSZKOWSKI K.,
SEIDEL H.-P.: Adaptive image-space stereo view synthesis. In Proc.
VMV (2010), pp. 299–306. 2, 3, 5, 8, 9

[DSAF∗13] DIDYK P., SITTHI-AMORN P., FREEMAN W. T., DURAND
F., MATUSIK W.: Joint view expansion and filtering for automultiscopic
3D displays. Proc. SIGGRAPH Asia 32, 6 (2013). 3

[DTM96] DEBEVEC P. E., TAYLOR C. J., MALIK J.: Modeling and
rendering architecture from photographs: A hybrid geometry- and image-
based approach. In SIGGRAPH (1996), pp. 11–20. 3, 6

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R., COHEN
M. F.: The lumigraph. Proc. SIGGRAPH (1996), 43–54. 3, 7

[Ju04] JU T.: Robust repair of polygonal models. ACM Trans. Graph.
(Proc. SIGGRAPH 2004) 23, 3 (2004), 888–895. 7

[KH13] KAZHDAN M., HOPPE H.: Screened poisson surface reconstruc-
tion. ACM Trans. Graph. 32, 3 (2013), article no. 29. 7

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high resolu-
tion 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21,
4 (1987), 163–169. 7

[LCC∗15] LEE K., CHU D., CUERVO E., KOPF J., DEGTYAREV Y.,
GRIZAN S., WOLMAN A., FLINN J.: Outatime: Using speculation to
enable low-latency continuous interaction for mobile cloud gaming. In
Proc. MobiSys (2015), pp. 151–65. 2, 3, 4, 5, 8, 9

[LH96] LEVOY M., HANRAHAN P.: Light field rendering. Proc. SIG-
GRAPH (1996), 31–42. 3

[LRR∗14] LOCHMANN G., REINERT B., RITSCHEL T., MÜLLER S.,
SEIDEL H.-P.: Real-time reflective and refractive novel-view synthesis.
In Proc. VMV (2014), pp. 9–16. 3

[Lue97] LUEBKE D.: A Survey of Polygonal Simplification Algorithms.
Tech. rep., UNC CS TR97-045, 1997. 7

[MMB97] MARK W. R., MCMILLAN L., BISHOP G.: Post-rendering
3D warping. In Proc. i3D (1997). 2, 3, 4, 5, 8, 9

[Ocu15] OCULUS VR: Oculus mobile SDK documentation, 2015. 2, 4, 8

[SGHS98] SHADE J., GORTLER S., HE L.-W., SZELISKI R.: Layered
depth images. In Proc. SIGGRAPH (1998), pp. 231–42. 3, 5

[SH15] SHI S., HSU C.-H.: A survey of interactive remote rendering
systems. ACM Comput. Surv. 47, 4 (2015), 57:1–57:29. 2

[SKG∗12] SINHA S. N., KOPF J., GOESELE M., SCHARSTEIN D.,
SZELISKI R.: Image-based rendering for scenes with reflections. ACM
Trans. Graph. 31, 4 (2012). 3

[SVJ15] SACHT L., VOUGA E., JACOBSON A.: Nested cages. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 34, 6 (2015). 7

[Wol98] WOLBERG G.: Image morphing: a survey. The visual computer
14, 8 (1998). 3

[WPS∗15] WIDMER S., PAJAK D., SCHULZ A., PULLI K., KAUTZ J.,
GOESELE M., LUEBKE D.: An adaptive acceleration structure for screen-
space ray tracing. In Proc. HPG (2015), pp. 67–76. 3

[YN00] YOON I., NEUMANN U.: Web-based remote renderingwith
IBRAC (image-based rendering acceleration and compression). In Comp.
Graph. Forum (2000), vol. 19, pp. 321–30. 3

[YTS∗11] YANG L., TSE Y.-C., SANDER P. V., LAWRENCE J., NEHAB
D., HOPPE H., WILKINS C. L.: Image-based bidirectional scene repro-
jection. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6 (2011). 3, 5,
9

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.


