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Figure 1: Luxomatic is a performance animation system that uses
information derived from computer vision processes to drive the
animation of a graphical character (a Luxo lamp).

Abstract

In this tech note we describe the Luxomatic per-
formance animation system, a computer vision
system that tracks a puppeteer’s hand to map
hand position and shape to an animated graph-
ical model. An eigenvector decomposition of
typical hand images are used to both track the
hand and extract two-dimensional pose informa-
tion in real time. Luxomatic was constructed as
a class project in 1997.

1 Introduction
In this paper we describe a realtime performance anima-

tion system that is driven by computer vision input. The
goal of the system is to drive a computer graphics ani-
mation by the movement and configuration of the user’s
hand. Inspired by the Luxo Jr. short by John Lasseter
and Pixar [2], we decided to map the user’s hand to an
animated Luxo lamp model. Figure 1 illustrates the input
and the graphical output. Animating a graphical charac-
ter via a like human performance is called performance
animation. A video of the system running located at
http://www.media.mit.edu/˜drew/movies.

The choice of mapping the hand to the Luxo lamp is

motivated by two observations. First, Luxo Jr. demon-
strates that even a desk lamp may be animated to convey
convincing human movement. Much of this impression is
due to the precise movement of the head of the lamp, which
mimics the movement of a human head. Second, the con-
figuration of the head can be specified by a small number
of parameters that may be extracted using computer vision
techniques. Extraction of more than a few parameters re-
lating to the coarse pose of the hand is beyond the state of
the art in computer vision, particularly for realtime systems
driven by low resolution images (though see [5]).

The following sections detail the algorithm used to map
the user’s hand shape and hand position to the graphical
Luxo model. The Luxomatic system illustrates the power
of representations that encode constraints in a way that
permits simultaneous recognition and parameter-extraction
processes.

1.1 Eigenvector decomposition of images
The Luxomatic system must encode the appearance of

the hand under various poses for later recognition. In partic-
ular, the algorithm must know if an image under question
looks like a hand image, and furthermore, determine the
pose of the hand. Rather than attempt a geometric model-
based recovery of the hand parameters (for example, joint
angles), we opted for a strictly appearance-based approach.

One appearance-based approach would be store some
number of hand images and compare the image in question
to each of the hand prototype images in turn. The drawback
of this approach is that it does not take into account the fact
that most hand images are similar to one another. Thus a
potentially large number of hand images may be required
to cover the space of all hand images. See [1] for a related
approach.

The approach used in Luxomatic is to compute some
small number of eigenimages (eigenvectors) from a collec-
tion of hand images, as in [6]. These eigenimages span a
low-dimensional linear subspace of the total image space.
Because the collection of training hand images are similar
to one another, only a small number of eigenimages are
necessary to closely approximate any one of the training
hand images.

We can use the eigenvectors to test if a given image is
among the set of hand images without checking against all
images by simply projecting the test image into the linear
subspace to produce a set of eigenvector coefficients, com-
bining these coefficients with the eigenvectors to produce
a reconstruction of the image, and lastly, comparing this
reconstructed image against the original. If the reconstruc-
tion is a close facsimile of the input image, the input likely



Figure 2: The set of training images of the hand used in computing
a basis set for hand images. Each image is 30 x 30 pixels.

belongs to the set of hand images. We similarly use an
eigenvector decomposition to match hand images in [7].

For Luxomatic, 100 images of the hand were segmented
manually from an image sequence. These images were
used in the computation of an eigenvector basis set; the five
eigenvectors accounting for most of the variance were kept.
The training images are shown in Figure 2.

1.2 Radial Basis Functions for mapping
The set of eigenvector projection coefficients calculated

in the reconstruction process encode information about
hand pose. In Luxomatic, the projection coefficients are
mapped to meaningful hand pose parameters by a radial
basis function (RBF) function approximation [4] which is
trained offline by the designer.

In our case, the function x to be approximated maps
eigenvector coefficients x to two-dimensional pose pa-
rameters f(x). The designer supplies a number of pairs
(xi; f(xi) = y) to train the approximation of f(x). RBF
approximations take the form:

f(x) =
X

i

ciG(kx� xik) (1)

wherex is a vector of eigenvector projectioncoefficients, xi

are the example projection coefficients used in training the
mapping, G(r) is a radial function, and the ci are derived
via a least squares procedure. In this work we use the linear
function G(r) = r.

A simple linear RBF approximation of the mapping from
eigenspace coefficients to pose parameters is appropriate
when the pose parameters are continuous in the space of
eigenvector coefficients. With the images and pose param-
eters in Luxomatic, we find this continuity. Figure 4 shows
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Figure 4: The manifold of hand images in eigenspace, projected
onto the first two eigenvectors. The X examples used in comput-
ing the mapping from eigenspace coefficients to pose parameters
are indicated by circles. The full image associated with each ex-
ample is also shown. Note how continuous changes in eigenspace
correspond to continuous changes in pose.

the examples used in forming the RBF mapping, their po-
sition in the space of the first two eigenvector coefficients,
and the source image associated with each.

The RBF mapping is also useful in modeling the nonlin-
earity in the image-to-pose mapping. Any linear transfor-
mation, such as an eigenvector projection, will not be able to
capture this nonlinearity. The combination of an eigenvec-
tor projection for dimensionalitydimension and subsequent
RBF mapping is computationally efficient, while capturing
the nonlinearity in mapping to pose variables. The alterna-
tive approach of mapping the images themselves directly
to pose parameters using only an RBF would involve a
great deal more of computation than the combination of
eigenvector projection and subsequent RBF mapping.

We find that with a very limited number of examples an
RBF is able to model the nonlinear mapping from eigen-
vector projection coefficients to the two-dimensional pose
parameters of hand yaw and pitch. Figure 4 illustrates the
manifold of hand images in eigenspace, and the images
used in mapping from eigenspace coefficients to hand pose
parameters.

1.3 The Luxomatic Algorithm
Once the combined eigenimage and RBF mapping is

computed from training data, Luxomatic uses this mapping
to find the hand and extract the pose parameters. The loca-
tion and pose parameters are then passed to the computer
graphics system that complete the performance animation
loop.

The hand is located in the image by computing the (x; y)
location in the image which minimize the reconstruction er-
ror given the eigenvectors computed in training. This test
is performed only in the areas of the image that exhibit mo-
tion, as determined by a simple image differencing. Once
localized, the pose parameters of the hand are computed by
the eigenvector to pose RBF approximation.



Figure 3: The mean image (leftmost) and top five eigenimages (left to right) computed from the training images.

On an R4400 Indy, this process runs near full frame rate
(30Hz) when there is minimal motion in the image.

2 Manifolds as a Constraint on Search
Together, the eigenvectors and RBF mapping approx-

imate the manifold of hand images under a simple pose
parameterization. The search and classification stages are
relatively efficient, easily running in realtime on a mod-
est processor, for two reasons. First, the manifold serves to
constrain the search to the subspace of hands, and secondly,
the extraction of the pose parameters occurs simultaneously
with search. The Luxomatic system is similar to the object
recognition system in Murase and Nayar [3], which uses a
manifold representation in eigenspace to recognize objects
under various viewing angle and illumination conditions.
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