B

Pie Chart @ Bar Chart

lterating Between Tools to Create and Edit Visualizations

Alex Bigelow, Steven Drucker, Danyel Fisher, and Miriah Meyer

visualization in
a generative
visualization
toolkit

’

Changes through
interaction

B

N

.
A

Fig. 1: An example combining edits to a visualization from two different tools. (Left) A visualization — initially a pie chart —
is edited with a generative visualization toolkit on the left, such as D3, as well as with a drawing program on the right, such as
lustrator. Changes from both tools are merged into the final visualization. (Right) For such a process to be possible, we propose
a bridge model that describes out edits from two tools can be combined. This model identifies edits that can be shared, as well as
those that cannot, and merges them together with a careful consideration of potential conflicts. The resulting visualization can then
reintegrated into the two tools, supporting further iterations.

Non-transferable Non-transferable
elements (code,

Ul components, etc.)

‘

Changes through
drawing

blends, etc.)

Non-transferable
changes

Non-transferable
changes

' Merged

Visualization

Abstract—A common workflow for visualization designers begins with a generative tool, like D3 or Processing, to create the initial
visualization; and proceeds to a drawing tool, like Adobe lllustrator or Inkscape, for editing and cleaning. Unfortunately, this is typically
a one-way process: once a visualization is exported from the generative tool into a drawing tool, it is difficult to make further, data-
driven changes. In this paper, we propose a bridge model to allow designers to bring their work back from the drawing tool to re-edit
in the generative tool. Our key insight is to recast this iteration challenge as a merge problem - similar to when two people are editing
a document and changes between them need to reconciled. We also present a specific instantiation of this model, a tool called
Hanpuku, which bridges between D3 scripts and lllustrator. We show several examples of visualizations that are iteratively created
using Hanpuku in order to illustrate the flexibility of the approach. We further describe several hypothetical tools that bridge between
other visualization tools to emphasize the generality of the model.

Index Terms—Visualization, iteration, illustration

<+

INTRODUCTION

visualization in
a drawing tool

elements (swatches,

Visualization designers use a variety of tools in the practice of their
craft, particularly when creating infographics and telling stories with
data. Designers will often transition between tools, first making use
of tools like Tableau, ggplot, and D3 to automatically encode data into
a chart. Then, they make stylistic changes and add embellishments
in a tool like Illustrator [3]. This workflow, however, limits iteration:
once a visualization is exported from the D3 script into Illustrator, the
graphical elements are merely shapes, and are no longer linked to data;
a designer cannot easily go back to modify the D3 script without los-
ing their Illustrator work. The result of this disconnect between tools

o Alex Bigelow and Miriah Meyer are with the University of Utah. E-mail:
(abigelow,miriah)@cs.utah.edu.

o Steven Drucker and Danyel Fisher are with Microsoft Research. E-mail:
(sdrucker,danyelf) @ microsoft.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x.

For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.

Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

is that designers explore fewer design variations and have trouble han-
dling changes to the underlying data [3].

We see an example of how this manifests in a visualization created
by designer Craig Robinson and shown in Figure 2, which describes
the actors employed by HBO and the TV shows in which they are
cast[19]. The actors are sorted alphabetically based on their first name,
with the exception of the last actor — the asterisk next to this actor’s
name is an apology for not placing him in the correct, sorted order. The
likely scenario that resulted in this problem was that the designer per-
formed significant manual work, placing nodes and connecting them
with edges, in a drawing tool like Illustrator before realizing that one
actor had been left out. He would need to do much more manual work
to insert this name in the right place, moving many nodes and edges
manually. In a generative tool like D3, however, adding the new name
would be trivial — but it would come at the expense of losing the
stylistic work done to the image in Illustrator such as color selection,
font choices, and text layout.

This laborious rework [8] is slow and frustrating: rather then ex-
ploring a creative space, the designer must manually re-implement a
design, or component of the design, that they have already created.
Creative visualization designers encounter this form of repetition very
frequently [3]. This rework can be alleviated by allowing designers to

The HBO Recycling Program
e,

* Apologies that J.0. Williams is out of alphabetical order.

Fig. 2: The HBO Recycling Program infographic [19], showing actors
alphabetized by first name, linked to shows that they performed in.
The final actor, J. D. Williams, is listed out of order.

make changes in the tools that best support the types of changes they
wish to make.

Generative tools, such as D3, Processing, Tableau, Microsoft Ex-
cel, and VTK are those in which a visualization is created, based on
a dataset, through a series of computational steps; they support plac-
ing data marks, sorting data items, and exploring layout strategies.
Grammel et al. [11], articulate a taxonomy of generative tools, which
all create visual objects based on data and an underlying generative
model.

In drawing tools, like Photoshop, Illustrator, and Inkscape, a user
creates and manipulates graphics; they support tasks like modifying
color palettes, select fonts, and lay out text and annotations. Figure 3
shows a cross-tool design iteration of the HBO infographic where each
part of the design process is conducted in a tool most appropriate for
the task, specifically using D3 for generative, computational tasks, and
Tllustrator for manual drawing ones. To support workflows like this we
propose building bridges between tools. A bridge is software that al-
lows visualizations made in one tool to migrate and coexist in another;
and to bring edits and updates back and forth. In this paper we focus
on articulating the design space, requirements, and considerations for
building bridges between generative and drawing tools.

This paper contributes, first, a model that supports bridging between
generative and drawing tools for visualization design. The model
supports design iteration and reduces rework by recasting the itera-
tion problem as one of merging. This bridge model is general, and
works across many tools; it describes a large space of design possi-
bilities, trade-offs, and considerations. The second contribution is a
single instance of the bridge model, an open-source tool called Han-
puku (Japanese: iterate). Hanpuku allows a designer to programmat-
ically generate visualizations by writing or reusing D3 code, to then
edit those visualizations in Illustrator, and to bring the edited visual-
ization back into D3 for further generative modifications. This editing
cycle can be repeated over and over, supporting iteration on the visual
representation, the style, and the data itself. We illustrate the rich-
ness that Hanpuku affords to the design process in several examples.
Hanpuku, along with high-level descriptions of several other possible
bridges, validate the efficacy of the underlying bridge model for sup-
porting visualization design iteration across a range of existing tools.

2 RELATED WORK

Increasingly, software systems are beginning to support designers in
the endeavor of bridging generative and drawing tools using one of

two dominant strategies. The first strategy is to create all-in-one tools
that support both data and drawing operations in the same interface.
There is a second, growing strategy which involves creating one-way
bridges between generative and drawing tools.

The first approach is to create a single tool that accommodates a
broad spectrum of needs, combining the efficiency and accuracy of
generative generation of charts with the richness and flexibility of
drawing tools. To some extent, contemporary generative tools attempt
to provide some of these features: Tableau and Microsoft Excel allow
users to make a variety of design choices within the tool such as font
choice and mark color. The expressiveness of these tools, however, is
limited: common functions in drawing tools, such as controlling pa-
per size, precise alignment, and adding textual annotations, are only
weakly supported in these generative tools. Conversely, while Adobe
Ilustrator allows users to create basic chart types within the drawing,
editing the chart in Illustrator breaks the connection to the underlying
data, and so updating the visualization still requires rework.

Building a tool to unify these approaches has a long history, from
early efforts like RBE [14] and SageBrush [20] to more recent ap-
proaches like iVisDesigner [18]. Some systems, such as Lyra [22], go
further and support interactive visualization creation in the context of a
larger, more modular software stack [4, 23, 32]. Such tools, however,
must address the underlying question of how to merge the stylistic
changes and embellishments into the results of generative execution,
as well as how to recreate the extensive features and techniques already
present in industry-hardened software.

The second approach represents a different kind of modularity in
that it bridges existing, disparate tools, easing the transition between
generative tools and drawing programs. Tools such as D3 Decon-
structor [12] and SVG Crowbar [6] help smooth the transition from
generativity-generated visualizations to drawing environments. Some
generative visualization systems, such as Raw [7], are designed en-
tirely with this end in mind. These programs, however, can only oper-
ate one way. There is no way to iterate on the generative aspects of a
visualization after drawing aspects have been considered without en-
gaging in rework. The bridge model that we present enables designers
to operate in either direction.

The bridge model depends on the idea of bringing together distinct
sets of modifications from multiple sources, making it similar to both
revision control systems [28] and collaborative editing systems. Each
of these has mechanisms for merging changes disparate authors. Re-
vision control concepts have been applied to design contexts, such as
CAD tools [10] and collaborative editing of 3D models [9, 26]. One
important difference is that the bridge model focuses on iteration be-
tween different classes of tools, rather than different people using the
same tool.

Designers have created visualizations with a variety of tools, from
paper [29, 30] to tangible blocks [13]. Our bridge tool approaches
visualizations that are natively digital: created in software. In contrast,
digital sketches that are linked to data [15] do fit comfortably within
the bridge model.

3 THE CHALLENGE OF ITERATION

Design iteration refers to the creative exploration of the many aspects
of a design. Designers are more successful when they can explore the
parts of a design in any order [27]; conversely, serial design workflows
present fewer opportunities to weed out poor designs and discover cre-
ative opportunities [16]. The ability to go back and make changes at
any level of the design is the meaning of iteration that we use through-
out this work.

Visualization designers use a variety of tools because the creation
of compelling, engaging, and accurate infographics, based on increas-
ingly large and complex data, implies two sets of software require-
ments. Many of the requirements are addressed by traditional visual-
ization tools: handling large amounts of data, updating a visualization
based on changes to the data, changing the visual representation, and
algorithmic generation of certain graphical representations such as the
placement of marks and creation of complex layouts. Tools like Excel,
Tableau, and ggplot, as well as programming languages and environ-

The HBO Recycling Program

Big Love.
Boardwalk Empire

Bored to Death

=y,

27 T %
TN
X ff','/%l/%ﬁ”—-f
%

Entourage
Fight of the Conchords
Game of Thrones

How to Make Itin America
Hung

InTreatment

The HBO Recycling Program

Fig. 3: Extended recreation of Figure 2. Blue steps are done in a generative tool; green steps in a drawing tool. (A) An initial graphic is
produced using a D3 script. (B) Illustrator’s tools are used to adjust typefaces and font sizes, add a title, a subtitle, and color to each TV
show, with its corresponding edges. (C) A change is added to the D3 script to reorder the actors by last name—then the script is re-run on the
existing document. (D) The aspect ratio of the page is changed with I[llustrator’s tools. (E) The layout algorithm in the D3 script is modified to
accommodate the new aspect ratio. (F) The title is adjusted using Illustrator’s tools.

ments like D3, Processing, and VTK are proficient at these sorts of
generative tasks that a visualization creator would want to define ab-
stractly and repeat automatically.

Conversely, designers also make use of flexible, manual controls
for quick, visual iteration on stylistic elements and visual embellish-
ments, such as color palettes, fonts, annotations, overall sizing, and
placement of text. Exploring these detailed aesthetic choices can be
tedious with generative controls — a designer might need to restart
execution to test a different shade of blue — and instead benefit from
the immediate visual feedback available in tools like Illustrator and
Inkscape. Furthermore, drawing tools focus on supporting a very rich
set of manual controls as well as intuitive ways of showing design op-
tions and saving iteration provenance. The flexibility of drawing tools
is important for allowing a designer to style and individualize a visu-
alization [3].

Designers often work their way from one tool to another. An exam-
ple is a visualization that designer Bang Wong created for a scientific
publication ([21], Figure 2). He is quoted as saying about his design
process: “I created a plot in Tableau and then exported it to Illustra-
tor to put the labels on. I had to add the specific tick-marks by hand.
[For the labels], Tableau does labels, but it isn’t very smart... I had to
manually pull them apart when they overlapped. I did the donut chart
in Excel because Tableau doesn’t have them. I then changed the col-
ors [in Illustrator] to greyscale to get rid of the Microsoft colors.”[3]
This workflow, which begins in generative tools to create a first cut on
a visualization and then moves to a drawing tool for refinements, is

common.

Unfortunately, this process can severely limit flexibility. Once a vi-
sualization has been brought over from a generative tool to a drawing
one, it loses its connection to data: exporting is a one-way process. If a
designer wants to modify the visualization later — perhaps to accom-
modate new data, or to correct algorithmic errors — he or she needs
to make a difficult decision. The changes made in drawing tools can-
not be transferred backed into the generative tool, and so changing a
visualization entails redoing any graphical revisions.

The challenge with iteration is that the original image generated in
generative visualization software embodies a mapping from underly-
ing data into an image. The core algorithm behind many visualization
programs is a simple loop: for each data item, compute the location
and rendering for the corresponding mark and plot the mark. Once
the marks are plotted as shapes, and the resulting visualization is pro-
duced and exported, however, the underlying mapping to the data is
lost. When the designer manipulates the marks in a drawing tool there
is no longer a connection between the data and the visualization.

4 THE BRIDGE MODEL

Our solution to this problem is the bridge model, so called because
it maintains a bridge between the generative tool and the drawing
tool. The bridge model is general across multiple platforms, gener-
ative tools, and drawing tools. In Section 5 we present a specific
implementation of the bridge model, a tool called Hanpuku, which
bridges D3 code and Adobe Illustrator. The design decisions we made

in Hanpuku help illustrate the virtues and challenges of this model. We
discuss high-level design decisions for several other possible bridges
in Section 6.

The key insight in the model is to recast the iteration problem into
a merge problem. We formulate the problem in terms of isolating the
changes made in each tool—splitting the set of serial edits into parallel
sets of edits—and then merging these changes. Under this approach,
iteration becomes a process of repeated merges. This merging can be
viewed as a kind of visual join, in the sense of the word used both by
the database community and the D3 tool: each shape is associated with
an identity, known as a key; the merger then decides how to integrate
the changes to the shapes on each key, made by each side. The bridge
model articulates the considerations necessary for merging changes
from two different tools.

The bridge model starts from a shared representation of a visualiza-
tion. Specifically, the visualization must have a representation both in
the generative tool and the drawing tool. The model also requires a
way to uniquely identify each graphical element within the visualiza-
tion and to maintain those identities across the tools.

Each tool may imbue the visualization with non-transferable ele-
ments: parts of the visualization that do not translate to the other tool.
For example, in a generative tool the non-transferable elements might
include the source code, interactive slider bars and filter buttons, or
interactive components like roll-over highlighting or user-influenced
force-directed layout. Conversely, in a drawing tool there might be
color palettes, layering effects, or text layout features such as kerning
and drop caps that do not easily translate to standard generative tool
features.

visualization

. in first tool
1. Transfer
visualization
in second tool
changes changes i
in first tool in second tool

2. Edit

9

3. Identify
Changes

2 =
AD
.

e | .

v v

P and/or . and/or ‘

Fig. 4: An abstract representation of each stage of the bridge model,
showing how changes to the visualization in one tool can propagate
to the other. Note that, while it is impossible for tool-specific, non-
transferable elements to exist as part of the visualization at the same
time, they can still continue to contribute to the visualization’s design
throughout the workflow.

y
'
’
(4. Merge

5. Reintegrate

6. Output

The full model is illustrated in Figure 4. In this figure the left side
represents work done in a generative tool and the right side represents
work done in a drawing tool. (1) A visualization is generated in a gen-
erative tool consisting of shared elements in grey and non-transferable
elements in dark blue. The shared portion of the visualization is trans-
ferred to the drawing tool. (2) Edits to the visualization are made
in either tool, shown as an intersecting light blue region for changes
made in the generative tool and an intersecting light green region in the
drawing tool. These changes may include non-transferable elements.
(3) Changes to the visualization are identified by the bridge, along with

an identification of changes that may be in conflict. (4) The changes
are merged and the conflicts resolved, shown as a teal region. (5) The
merged changes are reintegrated into the representations of the visu-
alization in both the generative and drawing tools. At this point the
process repeats as the designer iterates on the visualization. (6) The
final visualization is output, either directly by one of the tools or as
some other representation.

We believe there is no single right way to build an effective bridge;
instead, bridge creators must carefully consider the design space and
choose a set of strategies that balance flexibility, richness, and im-
plementation difficulty. This design space is large. The goal of the
remainder of this section is to lay out the strategies for implementing
each component in order to allow bridge creators to carefully consider
the multitude of options in a structured way. In Section 5 we will dis-
cuss our specific decisions with respect to our D3-Illustrator bridge,
Hanpuku. We note that this design space is not only relevant for creat-
ing bridges between tools, but also for building internal bridges within
a single tool that supports both generative and manual changes to a
visualization, such as I'VisDesigner [18].

Within this paper, such as in the sections on Hanpuku and Figures
5-6, we show two different paths being carried out simultaneously. In
this paper changes are seen not as simultaneous, but happening in par-
allel on two different tools. Even in cases where the designer simply
merges the newer changes in one tool into the other tool, the edits must
be consolidated together — and in many scenarios, the changes made
in one tool are not reflected in the other. For example, in Hanpuku
changes that the designer makes to the visualization in Illustrator do
not alter the D3 script, and so the changed D3 script’s output must be
merged with the Illustrator changes.

4.1 Identifying Changes

In the bridge model, an image consists of three types of content: data-
bound graphical elements, non-bound graphical elements, and non-
transferable elements. Data-bound graphical elements are the visual
marks that have a clear association with specific data items. The non-
bound graphical elements are those elements of the image that do not
correspond directly to individual data points, such as legends in a gen-
erative tool, or titles and background images in a drawing tool. These
elements need to be transferred between the tools as well, so the bridge
must also provide them with unique identities. Finally, there are non-
transferable elements which have no meaning on the other side, such
as the source code in a generative tool, or the paper size in a drawing
tool.

An implementation of the bridge must have both some mechanism
to share the original visualization between tools, and to communicate
what changes each tool made to the visualization. Communicating
the changes requires that the bridge maintain a notion of the identity
of graphic elements within the visualization. All shared elements, in-
cluding data-bound and non-bound elements, must be identifiable on
either side of the bridge. Additionally, data-bound elements must be
linked back to the original data points to which they correspond. Non-
transferable elements, however, are not shared, and therefore do not
need to be identified.

A bridge must maintain a link between the data items, and the rep-
resentation in each tool — we call these links data bindings. These
data bindings can exist in application-specific forms. In the simplest
case many data formats such as the HTML DOM (Document Object
Model) and PDF allow arbitrary user tags to be attached to graphi-
cal elements. Those tags can be used to hold data binding identities.
Tagging data items as they are transformed into shapes for a visualiza-
tion is a common approach; the technique is used in VisTrails [25, 5]
to track provenance, and in Weave [2] and Improvise [31] to enable
brushing and linking. In D3 Deconstructor [12], data tags are used to
reconstruct the original data mappings from the visualization. We take
advantage of that same approach.

In Figure 5 we illustrate the role of the data bindings. A pie chart
is created in a generative tool; each element includes an ID tag. This
visualization is then modified twice: in a generative tool, the designer
changes from drawing a pie chart to a bar chart; in a drawing tool, the

designer highlights wedge “A” in a unique color. The merger is able
to recognize the changes made on each side: because it can detect that
the new bar #2 corresponds to the wedge #2, it can apply the fill of
the wedge to the bar. Maintaining data bindings in both tools allows a
merger to appropriately track the changes made to the same elements.

Pie Chart

<Node Text=A
<Node Text=8
<Node Text=C

Fill=Light Grey ID=1
Fill=Medium Grey ID=2
Fill=Dark Grey ID=3

Shape=Arc(...)/>
Shape=Arc(...)/>
Shape=Arc(...)/>

<Node Text=B Fill=Medium Grey ID=2 Shape=Rect(...)/>
<Node Text=C Fill=Dark Grey ID=3 Shape=Rect(...)/>
B <Node Text=A Fill=Light Grey ID=1 Shape=Rect (...)/>
<Node stroke=Black ID=Axes Shape=Lines(...)/>
- BN\ After Drawn Change
<Node Text=A D=1 Shape=Arc(...)/>
<Node Text=B D=2 Shape=Arc(...)/>
<Node Text=C Fill=Dark Grey ID=3 Shape=Arc(...)/>
<Node Text=B Fill=Green 10=2 Shape=Rect(...)/>
<Node Text=C Fill=Dark Grey ID=3 Shape=Rect(...)/>
B <Node Text=A Fill=Light Grey ID=1 Shape=Rect(...)/>
<Node stroke=Black ID=Axes Shape=Lines(...)/>

Fig. 5: Merging changes together. On the left, the visual effect: two
different changes are merged. On the right, the element IDs render the
merge unambiguous.

4.2 Merging Changes

The goal of the merge process is to bring the edits made in each tool
into a single representation of the visualization. In revision control
merge algorithms, the merge attempts to choose an output that incor-
porates non-conflicting changes to source code. In the bridge model, a
merge similarly starts with a representation of the edits made in each
tool, and attempts to reconcile them into one version, possibly with
human assistance.

When two modifications of the visualization have no conflicts, it is
easy to merge them together. For example, if there were no graphical
elements changed by both tools, merging is straightforward process
of taking the newest version from each. The process becomes more
challenging when there are conflicts. Conflicts are changes that cannot
be implemented at the same time; conflict can occur when both tools
make changes to the same graphical element that effects the same, or
similar, encoding channels, such as both tools modifying an element’s
color.

The easiest way to deal with conflicts is to avoid them. One way
to do this is to track and identify changes in as fine-grained a way as
possible. For example, consider the refinements made to a pie chart
in Figure 5. In this example each tool carries out a set of changes:
in the generative tool we change the shape of the graphical elements
from pie-slices to bars and move their positions; in the drawing tool we
recolor one graphical element. Because we track changes at the fine-
grained level of color, shape, and position the changes are straightfor-
ward to merge as they operate on different parts of the encoding. If
we looked at the graphical elements in a more coarse way — treating
elements as atomic, for example — then this situation would turn out
to be a conflict.

The refinements shown in Figure 6 are an example of conflicting
changes. Starting with a bar chart, the two different tools each refine
the visualization: in the drawing tool, a designer highlights one mark
of interest; in the generative tool, he or she adds a texture to all of the
marks. In this situation, it is not obvious what the bridge model should
do; the result is ill-defined. Valid mergers might choose from a variety
of strategies: one refinement might trump another; the system might
compute a combination of the refinements; or the system might ask for
human input to resolve the difficulty.

Another strategy for minimizing conflict is to provide as much con-
text as possible for each change. In the fine-grained example above,
the bridge was able to look inside the graphical element to merge on
its attributes. One way to help ensure that these attributes are available
is to place related graphical elements into groups, and label the group
with the data key. This ensures that groups will move together. This is
useful when the system renders the label, the fill area, and the outline
for a bar as three separate shapes. This allows great flexibility: the

*
Fig. 6: Three possible ways to handle a conflict.

user can use the illustration tool to remove the label, or replace the bar
with an image; the existence of the group helps point to what changes
were made, and the shapes will be moved relative to the group.

4.3 Capturing Intent

So far we have talked about well-defined changes that a designer
makes to a visualization. In many types of refinements, however, the
designer has a broader intent for the way the visualization as a whole is
being changed. These types of ill-defined changes are difficult, if not
impossible, to accurately capture. In this section we discuss two types
of ill-defined, but common, changes — annotations and manually de-
fined algorithmic rules — and explain why they pose a challenge for
the bridge model.

To illustrate the challenges around intent, we can begin by looking
at one problematic case, annotation. One convenience of drawing tools
is that it is easy to annotate objects to call out specific aspects of the
data. For example, a designer might place a textual annotation over the
teal bar in Figure 7. In merging this change, the bridge implementation
must decide what the location of this new annotation means. Is its
position meant to be absolute on the page, or relative to the bar? Is it
meant to be three pixels higher than the teal bar, or the highest bar? If
the highest bar changes, or the order of the bars change, or the designer
changes back to a pie chart, where should the annotation go?

' N
ACME
!

ACME ACME

2 Lika L

Fig. 7: It can be difficult to automatically infer a designer’s intent in
placing a label.

Some of the mechanisms we outlined above can help here: putting
the annotation into a group signals that if the bar is moved, the anno-
tation moves with it; keeping the annotation disconnected from data
signals that the annotation should sit at an absolute position.

Alternately, adding a constraint system into drawing tools could
help disambiguate user intent here. The constraints would help show

which items are meant to correspond to each other. This need not be a
heavyweight process. In Microsoft’s PowerPoint, for example, when
a user places an object, the system shows guidelines that help align it
with existing objects on the slide; it is not hard to imagine using this
mechanism to store constraints.

Another form of intent appears when the designer has a sense of
an algorithmic rule, but implements the rule manually in the drawing
tool and not in the generative representation. For example, consider
a visualization with a color map that runs from red to blue. If the
designer uses a drawing tool to change one end of the color map to
green, it would be difficult under the bridge model to automatically
infer their intent, and recolor the rest of the color map to fit.

We encounter this uncaptured intent in the example shown in Fig-
ure 3. The designer manually defined a color map by explicitly setting
the colors of each TV show node in an ordered fashion. These colors
are then applied to edges that emanate from each show. When an ad-
ditional actor node is added using a generative tool, shown in Figure
8, the nodes are moved appropriately, but the color of the edges is not
encoded in the generative representation. These colors must therefore
be manually edited.

Fig. 8: An additional actor is added to the example in Figure 3. Note
that the text and lines do not reflect the designer’s manual color and
typography assignments.

A viewer of this visualization can identify the color algorithm: edge
colors should be the same as the node they are attached to. Maintaining
that sort of constraint — as well as constraints like color maps — is
easy to do generatively, but challenging to articulate within a drawing
tool.

4.4 Reintegration and Output

After the merge stage of the bridge model, the process is not yet com-
plete; the reintegration step brings the merged representation back into
each tool. The previous stages of the merge process have stripped the
common elements in both tools away from any non-transferable ele-
ments that may be a part of the visualization in each environment, such
as scripts or interactive Ul elements like buttons and menus in the gen-
erative environment, or color swatch and layer compositing settings in
the drawing environment. Reintegration brings the merged result back
into the tools at each side, allowing the user to make further edits that
build on the merged results without losing their previous work. Rein-
tegration, therefore, enables the iterative loop.

Reintegration need not be a two-way process. While in Hanpuku
changes can be propagated from the design back into the generative
tool, that is not strictly necessary. A one-way merger would mean that
integration steps would only be pushed forward into the drawing tool.
The merger would still need to make sure that changes created on both
sides be brought together. In an extreme design, it might be possible
that neither tool sees the merged results; instead, the merged output
might be in a form that neither tool can view.

One result of reintegration is output: if only a static image is the
intended result, it may be appropriate to only support one-way rein-
tegration into the drawing tool. Or, if an interactive visualization is
the intended result, it may be appropriate to only support one-way
reintegration into the generative environment. In some cases it may be

sufficient to allow the user to make a series of changes in each tool, fol-
lowed by one large merge at the end, skipping reintegration altogether.
This final approach can still support an iterative workflow—changes
can still be made in each respective environment, and the merged out-
put can be regenerated.

Though non-transferable elements do not necessarily need to be
identified in the bridge model, identifying and considering such ele-
ments can still be useful. As we saw in Figure 4, non-transferable
elements from two different tools can never exist together in the visu-
alization at any point. A bridge, however, can employ various strate-
gies regarding non-transferable elements to facilitate seamless reinte-
gration.

The simplest strategy for handling non-transferable elements is to
simply ignore any aspects of the representation that cannot be shared,
leaving them in their source environments until the merge is reinte-
grated. The drawback to this approach is that any refinements made to
these aspects of the representation will not be mergeable. This solution
may be appropriate if very little of the visualization is affected, or if we
expect the output to be in the tool that contains this non-transferable
information.

The other strategy is to build in translations and approximations as
proxies for non-transferable elements. These proxies become shared
elements that can participate in the merge. For example, the merger
could decide that when it sees a gradient shade applied in a drawing
tool it will fall back to a solid color instead if the generative tool does
not have an equivalent feature. In more sophisticated implementations
the merger might include more sophisticated computational approxi-
mations: Adobe Illustrator cannot represent a circle directly, so any
SVG elements with circles become four bezier curves instead. The
reintegration step must then decide how to apply changes that affect
the proxy element to the original non-transferable element in its native
environment.

5 HANPUKU: AN EXAMPLE OF A BRIDGE

‘We have built an example of a bridge between a generative tool and a
drawing tool in the form of Hanpuku, an Adobe Illustrator extension
that merges changes made by a D3 script into an Illustrator document.
Here we discuss Hanpuku, highlighting the various strategies from the
bridge model.

Fig. 9: Hanpuku includes (A) a web view that mirrors the illustrator
document, (B) javascript and (C) CSS code editors, and (D) a raw text
data editor with an interactive preview of how D3 will parse the raw
data.

As shown in Figure 9, Hanpuku provides a programming environ-
ment for editing and running D3 code. Fundamentally, Hanpuku in-
corporates two different kinds of merges, each triggered by a button
click. Clicking the “To D3” button merges changes from the Illustrator

document into the programming environment, and clicking the “To II-
lustrator” button merges changes from the programming environment
into the Illustrator document.

5.1 Identify Strategies

To use Hanpuku, a designer creates an empty document in Illustrator.
They drop javascript code into Hanpuku’s D3 view (Figure 9B), and
possibly a CSS declaration (9C).

To match visual elements across tools and identify the correspond-
ing changes, Hanpuku takes advantage of D3’s existing patterns: D3
scripts output an HTML DOM hierarchy; every item in the DOM that
was created from data also has a data binding associated with it [4].
Ilustrator uses an in-memory document hierarchy that is similar to the
HTML DOM. The similarities in document structure make establish-
ing identities between graphical elements straightforward.

D3 manages bindings between visual elements and data. D3 uses
a concept of a data join to manage changes in data. When the main
loop is executed, D3 calls a user-specified “Add” function on new data
points, and an “Update” function on existing data points. D3 uses
a user-defined key function to identify each object to be updated, or
created.

When a user runs the D3 code for the first time by pressing “To
Illustrator,” the D3 code calls these ”Add” functions to create a DOM
hierarchy; Hanpuku then translates that into an Illustrator in-memory
model, and integrates the new elements into the Illustrator document.
Like the D3 Deconstructor [12], Hanpuku takes advantage of the data
bindings in the DOM; it translates those bindings into metadata in the
Ilustrator model.

After a designer has modified the visualization in Illustrator, a “To
D3” merge translates the Illustrator document into an HTML DOM
for D3. The data bindings from the Illustrator side are conserved back
through the merge process. With the merged DOM now live in D3, the
designer can modify the D3 script. When the D3 code is executed, the
system executes a data join against the current dataset and the visual-
ization. If the data has changed, new objects can be created with Add
functions; Update methods are called for pre-existing element. Good
D3 coding style calls for Update methods not to modify anything that
does not need to be edited. As such, any changes made in Illustrator
are preserved, unless the coding has changed, and the Update function
must overwrite them.

5.2 Merge and Reintegrate Strategies

Merge conflicts occur in Hanpuku when a user’s D3 code overwrites
the same fields as were edited in Illustrator. At this time, Hanpuku
employs the simplest strategy outlined in Section 4.2 — the “To Il-
lustrator” merge always incorporates the differences from the D3 side,
and the “To D3” merge always incorporates the differences from the I1-
lustrator side. If the Update function in the D3 code overwrites a field
that was edited in Illustrator, it will be lost. In practice, this simple
strategy works well. For example, a user can interact with a node-
link diagram layout in the “Update” loop, and radical representational
changes such as that shown in Figure 5 can be maintained.

Hanpuku is designed to support a workflow that produces an Illus-
trator document, and thus the tool is particularly careful to leave non-
transferable elements in the I[llustrator document intact unless the D3
script has directly changed them. A “To Illustrator” merge updates el-
ements in place in the document hierarchy, leaving Illustrator-specific
non-transferable elements untouched. In contrast, much of the non-
transferable information in a D3 visualization is usually encapsulated
in the D3 script itself. To avoid complications with interactive call-
backs that may already exist, Hanpuku creates a fresh DOM with each
“To D3” merge, only containing elements from the Illustrator docu-
ment, with any data bindings attached. This way, the script can cleanly
reattach its non-transferable interactive callback events.

5.3 Examples

In this section we demonstrate how Hanpuku supports visualization
iteration through several examples based on real-world, published in-
fographics. In Figure 3, we recreate the infographic shown in Figure 2.

Notably, the original infographic contains a name out of alphabetical
order — without a bridge between a generative and a drawing tool it
is difficult to fix this problem. With Hanpuku as a bridge, however, it
is straight-forward to re-order the names, or to even experiment with
different layouts, without discarding manual effort.

It is important to note in this example the difference between gen-
erative encodings and manual encodings. In the workflow in Figure 3,
colors and typefaces are applied manually in Illustrator, rather than
generativity using D3. Therefore, while additional data can be placed
appropriately in the middle of the design process — as the layout is
defined generativity — any new elements will have the default color
and typeface from the D3 script. While other bridging tools, employ-
ing some of the strategies outlined above, might be able to infer the
designer’s intent, Hanpuku’s simple, proof-of-concept design does not
have this capability. Instead, the designer can choose to continue to
manually enforce color and typeface patterns for any new elements,
or they can formalize those decisions in the D3 script. In either case,
previous work is preserved.

As a second example we recreated part of a diagram from the ACM
SIGGRAPH 2010 Conference [17], designed by Isabel Meirelles. In
this case we were given permission to review the designer’s original
process and design artifacts. Notably, she implemented much of the
design using Processing code, creating new PDF files each time a gen-
erative change was made. Each generative change consequently lost
any previous design work in Illustrator, requiring significant amounts
of rework to re-apply the manual aspects of the diagram.

We have attempted to follow her process as closely as possible in
Figure 10 using Hanpuku (and D3 instead of Processing). Hanpuku
made the iterative process far less difficult by removing the rework
incurred in the original design process — generative adjustments, such
as tweaking the scale in Figure 10(e), were straight-forward to perform
without having to repeat previous manual effort. Consequently, our
version took very little time to create, and we were able to skip many
of the steps that she was forced to take.

6 OTHER USES OF THE MODEL

The bridge model is meant to generalize beyond the specific technical
considerations of bridging D3 and Illustrator. We made some strate-
gic decisions in implementing the bridge model in Hanpuku; bridges
between other environments will similarly need other considerations.
In this section we briefly outline a hypothetical Processing-Illustrator
bridge and a Processing-Photoshop bridge to discuss different instan-
tiations of the bridge model, as well as to emphasize its generality.

6.1 Bridging Processing and lllustrator

Processing is a programming language that has gained currency among
designers to create visualizations. Some designers employ a one-
way workflow between Processing and Illustrator, such as the origi-
nal workflow used to create the SIGGRAPH infographic in Figure 10.
Here we describe a possible bridge between the two tools, illustrated
in Figure 11.

The first issue to be resolved is maintaining data bindings. While
Processing can emit PDFs, it does not ordinarily maintain ID tags with
the graphical objects. One workaround would be to insert ID tags
into the metadata fields in the PDF output through an extension of
Processing’s PDF export library. Illustrator would then edit the PDF.

For Hanpuku, we were able to use D3’s update function to use parts
of existing graphics. Processing’s drawing commands do not provide
this functionality. Therefore, we would use one-way integration: when
a designer modified the Processing code, the bridge would propagate
the changes forward to Illustrator, merging their changes on each side.

The bridge software for this scenario would then merge based on
the following files: 1) an initial visualization in PDF format produced
by Processing; 2) a modified PDF of the original visualization, edited
in [lustrator; and 3) a modified PDF produced by Processing with ad-
ditional generative edits. The bridge would then identify differences
between the PDFs in 1 and 2, and merge those differences on 3, pro-
ducing a PDF containing changes from both the drawing and gener-
ative tools. Rather than comparing artifact differences directly, this

e

Fig. 10: Partial recreation of an ACM SIGGRAPH 2010 Conference Diagram [17]. Blue steps are done in the generative tool; green steps in
the drawing tool. (A) A graphic is produced using a D3 script, encoding conference participant numbers for each group (student volunteers,
conference chair, etc) with bar width, and months of participant involvement as the curved bar length. (B) Ilustrator’s tools are used to adjust
the colors. (C) The direction of the bars is reversed, and the width of each bar is changed to encode total hours spent by the group. (D) Colors
are again adjusted in Illustrator, this time identifying appropriate PANTONE colors, and labels are added. (E) As most of the bars happen to
nearly achieve right angles, the scale is increased in D3 to achieve that effect. (F) Scale labels are drawn using Illustrator’s tools.

approach attempts to reconstruct and replay the user’s actions, similar
to the way provenance mechanisms work in VisTrails [25, 5].

6.2 Bridging Processing and Photoshop

Another potential instantiation of the bridge model is between Pro-
cessing and Photoshop, shown in Figure 12. A challenge with this
bridge is that the common representation of the visualization between
the two programs is a bitmap — there is no way to attach metadata
directly to graphical elements as there is with PDF. A basic approach
takes two files from Processing: a bitmap file of the visualization, and
an additional text, log file containing a many-to-many mapping be-
tween graphical element identities and related pixels. The bridge also
requires a Photoshop extension that augments the tool’s existing abil-
ity to export a text history log with a one-to-many mapping between
Photoshop actions and the affected pixels in a given bitmap image.
Given both log files and both images, the merge program — as either
a Photoshop extension or an independent program — would extend or
adjust the relevant Photoshop actions so that the effects are still applied
to data-bound pixels, even if those locations have changed.

Bridging tools through a bitmap presents a different set of chal-
lenges similar to those that Savva et al address in the Revision sys-
tem [24]. While unambiguous operations could be supported, such as
a drawing operation affecting only pixels associated with data, oper-
ations on pixels that correspond to multiple occluding marks present
identification and conflict resolution problems, as shown in Figure 12.

The bridge model makes the problem in this particular design clear
— this bridge does not adequately provide for maintaining graphical
element identities, or, more specifically, data bindings.

This is not to say that bridges cannot be constructed between
bitmap-based tools, or that such bridges are not useful. For example,
the bridge model describes how it may be possible to perform data-
aware merges between 3D volume renderings and post-processing ef-
fects performed on 2D rasterized graphics. In the case of this basic
model, improvements might include more intelligent drawing tools
that use the associated data IDs to constrain painting effects, limiting
their influence to only the relevant pixels. A different approach would
be to utilize layers instead of pixel maps to keep element identities
distinct.

7 DiscussiON AND FUTURE WORK

The bridge model describes how different modes of work can be used
in the same workflow, fitting the best tool to the best task. For exam-
ple, it is completely possible to perform typography and label place-
ment adjustments with D3, or to manually draw data-driven marks in
a chart with Illustrator — we commonly see examples of each of these
in practice. Generative visualization tools and drawing tools overlap
in some of their technical capabilities, but, as we have shown, using
both modes of work in the same workflow can constrain the ability
to iterate. The bridge model helps identify what is common between
each way of working, what is distinct, and how these differences can

Processing = llustrator
beginMark(datatd); . ®- Data IDs embedded _—
.. drawing code ... — PDF tadat ransfer

endMark(dat;Id); : ..‘ \35 netadata

{ \ a

| B o 6
- x . " —: _. . Edit
@ @ Q@ @&
diff:
to Data IDs Identify
+ color change to Data IDs Changcs
replay diff
. D
. 4 - Merge

Fig. 11: A hypothetical bridge between Processing and Illustrator. Ad-
ditional syntax is added to Processing’s language to associate drawing
commands with data IDs (1), that are preserved in an exported PDF
file. The exported file is edited in a drawing program (2). Two nodes
are then deleted in the Processing sketch (3). An external merge pro-
gram compares (1) and (2), identifying any changes made by a draw-
ing program, and replays these changes on (3), producing a PDF file
with both the drawing and generative changes.

Processing B Photoshop
L
.’ “ , Transfer
K
Data IDs <-> Affected Pixels List l -
Y
- & i
X ‘ . ¥ ", . Edit
iy =t
Data IDs <-> Affected Pixels List Affected Pixels <-> Photoshop Log

N\ 4

Data IDs <-> Affected Pixels List <-> Photoshop Log Ic%entlfy
L Changes
‘ . . Merge

Data IDs <-> Affected Pixels List

Fig. 12: A hypothetical bridge between Processing and Photoshop. As
before, additional syntax is added to Processing’s language to asso-
ciate drawing commands with data IDs (1), that are preserved in an
external file that maps data IDs to their affected pixels. The exported
bitmap is edited in a drawing program (2), and a log is created, match-
ing the drawing program’s actions to the affected pixels. Two nodes
are then deleted in the Processing sketch (3). A merge program re-
plays the drawing program’s log on the updated bitmap, adjusting the
effects where data pixels are missing or have moved (4). Note that, in
this naive bridge, an artifact has been left on node D because a painting
action meant for node E also affected it.

be managed through the design workflow. The model is not a panacea
— it does not make all tools come together. Rather, we propose the
bridge model as a different way to think about how we create visual-
ization tools that are rich, flexible, and efficient across the broad range
of tasks performed throughout the design process.

Though we have mainly discussed bridges between distinct soft-
ware tools, the concepts are still important for all-in-one tools that
attempt to encompass both generative and drawing modes of working
such as iVisDesigner [18]. Internally, such tools must still consider
the effects of generative operations on existing drawings, as well as
the effects of drawing operations on existing generative specifications.

The model does not, however, encompass approaches like CSS that
seek to separate out design tasks, albeit it in a generative way. While
stylesheets separate the stylistic and functional aspects of a visualiza-
tion, a stylesheet does not contain an independent representation —
there is nothing to merge. The model instead describes workflows that
include a variety of tools, each of which operates independently on the
visualization.

With any bridge, some sacrifices are likely unavoidable. As we
discussed in Section 6.2, a hypothetical Processing-Photoshop bridge
is likely to be constrained by the technical limitations of each tool,
including what aspects of the visualization can be shared and what
kinds of changes can be merged. Both hypothetical bridges, as well
as Hanpuku itself, each enable a more iterative workflow, but limita-
tions remain. In all the bridges we have discussed, users likely need
to understand each tools’ underlying document structure in order to
effectively prepare for merging.

The bridge model exposes ways that visualization toolkits and
drawing programs can make themselves more interoperable. Our
choice of specific tools is not an accident: we repeatedly use Illustrator
as an example throughout this paper because it is a widely-used draw-
ing program that preserves arbitrary metadata attached to elements in
its documents — data bindings can be preserved when visualizations
are edited. We also focus heavily on D3 because it can perform data
joins with existing graphical elements such that manual changes done
in a drawing program can survive generative updates. For now, the
pass-through relationship between these two tools makes interoper-
ability straight-forward.

There are, however, additional benefits that can come from their
flexibility. For example, Illustrator currently allows users to select el-
ements by color and other visual properties. Because our system now
adds metadata and identify information to visual objects, it would be
straightforward to support user selections based on data, similar to the
GUESS system [1].

Going forward we are interested in instantiating other bridges, such
as those we describe in Section 6. We believe these, and other vari-
ations, will become easier to design and implement as the inputs and
outputs of proprietary tools become more easily accessible. Another
interesting line of future work is to consider a format standard for vi-
sualizations that explicitly supports metadata attached to graphical el-
ements. This standard would support writing these files, reading these
files, editing the files, as well as explicitly making use of the metadata
in visualization tools.

REFERENCES

[1] E. Adar. Guess: A language and interface for graph exploration. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI °06, pages 791-800, New York, NY, USA, 2006. ACM.

[2] A. Baumann. The Design and Implementation of Weave: A Session
State Driven, Web-based Visualization Framework. PhD thesis, 2011.
AAI3459174.

[3] A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Reflections on how
designers design with data. In Proceedings of the 2014 International
Working Conference on Advanced Visual Interfaces, AVI ’14, pages 17—
24, New York, NY, USA, 2014. ACM.

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3; data-driven documents. Visu-
alization and Computer Graphics, IEEE Transactions on, 17(12):2301—
2309, Dec 2011.

[5] S. P. Callahan, J. Freire, C. E. Scheidegger, C. T. Silva, and H. T.
Vo. Provenance and annotation of data and processes. chapter Towards

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Provenance-Enabling ParaView, pages 120-127. Springer-Verlag, Berlin,
Heidelberg, 2008.

S. Carter, G. Aisch, and M. Bostock. Svg crowbar, 2015. Available:
http://nytimes.github.io/svg-crowbar/. [Accessed: 13-
Feb-2016].

G. Caviglia, M. Mauri, M. Azzi, and G. Uboldi. Raw: The missing link
between spreadsheets and vector graphics, 2013. Available: http://
raw.densitydesign.org/. [Accessed: 13-Feb-2016].

R. Costa and D. K. Sobek. Iteration in engineering design: inherent and
unavoidable or product of choices made? In ASME 2003 International
design engineering technical conferences and Computers and informa-
tion in engineering conference, pages 669—674. American Society of Me-
chanical Engineers, 2003.

J. D. Denning and F. Pellacini. Meshgit: Diffing and merging meshes for
polygonal modeling. ACM Trans. Graph., 32(4):35:1-35:10, July 2013.
H. Fa-Zhi, W. Shao-Mei, and S. Guo-Zheng. From wysiwyg to wysiwis:
research on cscw based cad. In Communications, 1999. APCC/OECC
'99. Fifth Asia-Pacific Conference on ... and Fourth Optoelectronics and
Communications Conference, volume 2, pages 1095-1096 vol.2, Oct
1999.

L. Grammel, C. Bennett, M. Tory, and M.-A. Storey. A Survey of Visual-
ization Construction User Interfaces. In M. Hlawitschka and T. Weinkauf,
editors, EuroVis - Short Papers. The Eurographics Association, 2013.

J. Harper and M. Agrawala. Deconstructing and restyling d3 visualiza-
tions. In Proceedings of the 27th Annual ACM Symposium on User In-
terface Software and Technology, UIST 14, pages 253-262, New York,
NY, USA, 2014. ACM.

S. Huron, Y. Jansen, and S. Carpendale. Constructing visual represen-
tations: Investigating the use of tangible tokens. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2102-2111, Dec 2014.

R. Krishnamurthy and M. Zloof. Rbe: Rendering by example. In Data
Engineering, 1995. Proceedings of the Eleventh International Conference
on, pages 288-297, Mar 1995.

B. Lee, G. Smith, N. H. Riche, A. Karlson, and S. Carpendale. Sketchin-
sight: Natural data exploration on interactive whiteboards leveraging pen
and touch interaction. In 2015 IEEE Pacific Visualization Symposium
(PacificVis), pages 199-206, April 2015.

D. Lloyd and J. Dykes. Human-centered approaches in geovisualiza-
tion design: Investigating multiple methods through a long-term case
study. IEEE Transactions on Visualization and Computer Graphics,
17(12):2498-2507, Dec 2011.

1. Meirelles. Diagram: Acm siggraph 2010 conference, 2010. Available:
http://isabelmeirelles.com/acm-siggraph-2010/.
[Accessed: 13-Feb-2016].

D. Ren, T. Hollerer, and X. Yuan. ivisdesigner: Expressive interactive de-
sign of information visualizations. Visualization and Computer Graphics,
IEEE Transactions on, 20(12):2092-2101, Dec 2014.

C. Robinson, S. Schube, and D. Savitzky. The HBO recy-
cling program. Available: http://grantland.com/features/
the-hbo-recycling-program/. [Accessed: 13-Feb-2016].

S. F. Roth, J. Kolojejchick, J. Mattis, and J. Goldstein. Interactive graphic
design using automatic presentation knowledge. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI 94,
pages 112—117, New York, NY, USA, 1994. ACM.

S. Santagata, M. L. Mendillo, Y.-c. Tang, A. Subramanian, C. C. Perley,
S. P. Roche, B. Wong, R. Narayan, H. Kwon, M. Koeva, A. Amon, T. R.
Golub, J. A. Porco, L. Whitesell, and S. Lindquist. Tight coordination
of protein translation and hsf1 activation supports the anabolic malignant
state. Science, 341(6143), 2013.

A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Comput. Graph. Forum, 33(3):351-360, June 2014.

A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega: A
streaming dataflow architecture for declarative interactive visualization.
Visualization and Computer Graphics, IEEE Transactions on, 22(1):659—
668, Jan 2016.

M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer.
Revision: automated classification, analysis and redesign of chart images.
In Proceedings of the 24th annual ACM symposium on User interface
software and technology, pages 393-402. ACM, 2011.

C. Scheidegger, H. Vo, D. Koop, J. Freire, and C. Silva. Querying and
creating visualizations by analogy. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1560—-1567, Nov. 2007.

C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai. Transparent adap-

[27]

(28]

(29]

[30]

[31]

[32]

tation of single-user applications for multi-user real-time collaboration.
ACM Trans. Comput.-Hum. Interact., 13(4):531-582, Dec. 2006.

R. Teal. Developing a (non-linear) practice of design thinking. Interna-
tional Journal of Art —& Design Education, 29(3):294-302, 2010.

W. E. Tichy. Design, implementation, and evaluation of a revision control
system. In Proceedings of the 6th International Conference on Software
Engineering, ICSE 82, pages 58-67, Los Alamitos, CA, USA, 1982.
IEEE Computer Society Press.

J. Walny, J. Haber, M. Dork, J. Sillito, and S. Carpendale. Follow that
sketch: Lifecycles of diagrams and sketches in software development. In
Visualizing Software for Understanding and Analysis (VISSOFT), 2011
6th IEEE International Workshop on, pages 1-8, Sept 2011.

J. Walny, S. Huron, and S. Carpendale. An Exploratory Study of Data
Sketching for Visual Representation. Computer Graphics Forum, 2015.
C. Weaver. Building highly-coordinated visualizations in improvise. In
Proceedings of the IEEE Symposium on Information Visualization, INFO-
VIS ’04, pages 159-166, Washington, DC, USA, 2004. IEEE Computer
Society.

K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Voyager: Exploratory analysis via faceted browsing of visual-
ization recommendations. Visualization and Computer Graphics, IEEE
Transactions on, 22(1):649-658, Jan 2016.

http://nytimes.github.io/svg-crowbar/
http://raw.densitydesign.org/
http://raw.densitydesign.org/
http://isabelmeirelles.com/acm-siggraph-2010/
http://grantland.com/features/the-hbo-recycling-program/
http://grantland.com/features/the-hbo-recycling-program/

	Introduction
	Related Work
	The Challenge of Iteration
	The Bridge Model
	Identifying Changes
	Merging Changes
	Capturing Intent
	Reintegration and Output

	Hanpuku: an Example of a Bridge
	Identify Strategies
	Merge and Reintegrate Strategies
	Examples

	Other Uses of the Model
	Bridging Processing and Illustrator
	Bridging Processing and Photoshop

	Discussion and Future Work

