
Fusing Effectful Comprehensions ∗

Olli Saarikivi
Aalto University

olli.saarikivi@aalto.fi

Margus Veanes Todd Mytkowicz
Madan Musuvathi

Microsoft Research
{margus,toddm,madanm}@microsoft.com

Abstract
List comprehensions provide a powerful abstraction mechanism for
expressing computations over ordered collections of data declara-
tively without having to use explicit iteration constructs. This paper
puts forth effectful comprehensions as an elegant way to describe
list comprehensions that incorporate loop carried state. This is mo-
tivated by operations such as compression/decompression and se-
rialization/deserialization that are common in log/data processing
pipelines and require loop-carried state when processing an input
stream of data.

We build on the underlying theory of symbolic transducers to fuse
pipelines of effectful comprehensions into a single representation,
from which efficient code can be generated. Using background
theory reasoning with an SMT solver our fusion and subsequent
reachability based branch elimination algorithms can significantly
reduce the complexity of the fused pipelines. Our implementation
shows significant speedups over reasonable hand-written code (3×,
on average) and a LINQ implementation of the pipeline (5×, on
average) for a variety of examples, including scenarios for extracting
fields with regular expressions, processing XML with XPath, and
running queries over encoded data.

Finally, we formalize the semantics of symbolic transducers
and their compositions as a transduction monad, which provides a
link between the automata-theoretic view and a monadic view of
symbolic transducers.

Categories and Subject Descriptors F.1.1 [Computation by Ab-
stract Devices]: Models of Computation—Automata; D.3.4 [Pro-
gramming Languages]: Processors—Code generation; F.3.1 [Log-
ics and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs—Mechanical verification; D.3.2 [Program-
ming Languages]: Language Classifications—Specialized applica-
tion languages

General Terms Algorithms, Languages, Performance, Verification

Keywords transducers, comprehensions, fusion, deforestation,
reachability analysis, applicative functors, monads

1. Introduction
List comprehensions provide a powerful mechanism for declara-
tively specifying a pipeline of computations on collections of data.
Programmers specify the various stages of the pipeline concisely
and modularly without using explicit iteration constructs, while the
runtime ameliorates the cost of the abstraction by performing various
optimization such as fusion/deforestation [27, 35].

This paper extends this idea to effectful comprehensions, an
elegant way to describe list comprehensions that incorporate loop-
carried state. As a motivation, consider the problem of analyzing

∗Microsoft Research Technical Report no. MSR-TR-2016-55

0010101101001010101100011101011111001011…

[Dec12, SPY, 50.13] [Dec13, SPY, 49.44] [Dec14, …

Deserialize (chars -> objects)

50.13, 49.44, 48.13, 51.32, 53.53, 49.12, 48.14, …

SelectPrice (objects -> floats)

0, 0, 0, 0, 5, 0, 0, 3, 0, 0, 0, 0, 0, 0, 7, …

FindPriceDips (floats -> ints)

b1 a9 86 a8 70 7d a3 66 01 05 3a 0f d4 51 af 83...

Serialize (ints -> bytes)

Compress (bytes -> bits)

111000100100010000101111011111101101000...

75 49 95 7d 2e 98 80 e4 3e 76 0b 3b 2e 92 18 5e...

Decompress (bits -> bytes)

“12/12/12 SPY 50.13\n 12/13/12 SPY 49.44\n …”

UTF8Decode (bytes -> chars)

Data from
disk/network

Data to
disk/network

output =
input.Decompress(. . .).Decode(. . .).Deserialize(. . .)

.SelectPrice(. . .).FindPriceDips(. . .)

.Serialize(. . .).Compress(. . .);

Figure 1. Motivating example of a log processing pipeline where an
input stream of bits goes through various stages to an output stream
of bits. This paper allows programmers to declaratively specify this
pipeline as a composition of symbolic transducers, as shown at the
bottom.

logs as shown in Figure 1. The log on the disk (or coming across
the network from a file server) is compressed, and thus the user
has to first decompress the input stream of bits into bytes which is
then deserialized into objects in a higher-level language, such as
Java. In this example, the application selects stock prices from each
object and looks for price dips — decreases followed by increases.
The output is then serialized and compressed before being written
back to disk. Such processing from input stream of bits to output
stream of bits is not uncommon today. For instance, the processing
in a single node, such as a mapper or a reducer, of data-processing
systems [2, 7, 13, 38], is similar to the one shown in Figure 1.

Note that the stages in the pipeline include both “functional”
computations that operate on each input independently, such as
SelectPrice, and “effectful” computations that iterate over the
input list while maintaining loop-carried state, such as Decompress,
Deserialize, and FindPriceDips. The goal of this paper is to
allow such pipelines to be declaratively and modularly specified
as shown at the bottom of the figure, then fuse them to a single
representation for which efficient code can be generated. We use a
variation of symbolic transducers [33] as our program representation.

In order to provide some intuition we consider a concrete but
simplified example scenario of such a pipeline, consisting of two
symbolic transducers. The situation that we consider is a fairly
typical one when the raw input data is unstructured text, for example
when parsing CSV files. Raw text is most commonly assumed to

1 2016/10/3

be UTF8 encoded. Suppose that the task is to parse and extract a
nonnegative integer from the text, assuming a decimal encoding
with ASCII digits, i.e., matching the regex ^[0-9]+$. Suppose our
sample pipeline is as follows: it first UTF8 decodes (Utf8Decode)
and then parses an integer (ToInt). Utf8Decode takes as input a
sequence of bytes and produces a sequence of integers that are the
decoded Unicode character codes. For simplicity assume that only
up to 2 byte encodings are allowed.1 Utf8Decode can be illustrated
graphically as follows:2

c∈[0xC2-0xDF]/[];r:=((c&0x3F)<<6)

c∈[0x80-0xBF]/[r|(c&0x3F)];r:=0

q1q0
r:=0

c∈[0-0x7F]/[c];r:=0

Figure 2. Utf8Decode as a flat symbolic transducer.

The following paragraphs serve also as an informal introduction
to symbolic transducers. Utf8Decode uses two control states q0
and q1, where q0 is both the initial and the final state. A transition

p
c∈α/s;r:=g−−−−−−−→ q has the following meaning: if the current state is

p and the current byte c is in the range α then enter state q, yield
the elements in the sequence s and update the register r to the value
g. Initially r has the value 0. For example, if the input sequence of
bytes is [0x61,0xC5,0x93] then the output sequence of character
codes is [0x61,((0xC5&0x3F)<<6)|(0x93&0x3F)] that is equal
to [0x61,0x153] or the string "aœ".

ToInt can be illustrated as follows:

d∈[0x30-0x39]/[];i:=(d-0x30)

d∈[0x30-0x39]/[];i:=(10*i)+d-0x30

i:=0
p0 p1

true/[i]

Figure 3. ToInt as a flat symbolic transducer.

In addition to normal transitions, ToInt also uses a finalizer (drawn
as a dashed arrow), that upon reaching the end of the input outputs
the value of its register in the singleton sequence [i]. In a finalizer,
the elements in the output sequence may only depend on the register
value and there is no register update.

Symbolic transducers can be fused into a single symbolic trans-
ducer that preserves the semantics of function composition. Consider
the fusion of Utf8Decode with ToInt, which ends up being identical
to ToInt due to ToInt only accepting ASCII digits which in turn
have a single byte UTF8 encoding. We will now work through the
steps of the fusion, which builds a product of the reachable control
states starting from the initial pair state (q0, p0). For example, fusion
of q0

c∈[0-0x7F]/[c];r:=0−−−−−−−−−−−−→ q0 with p0
d∈[0x30-0x39]/[];i:=(d-0x30)−−−−−−−−−−−−−−−−−−→ p1

produces the fused transition

(q0, p0)
c∈[0x30-0x39]/[];(r,i):=(0,(c-0x30))−−−−−−−−−−−−−−−−−−−−−−−→ (q0, p1)

where the fused register is (r, i) and the output c from Utf8Decode
has been consumed as the input of ToInt. When the producer (here

1 Up to two byte UTF8 encodings cover the full range of characters in
extended ASCII. In general there are up to four byte encodings to cover all
Unicode characters.
2 The operation ‘&’ denotes bitwise-and, the operation ‘|’ denotes bitwise-or,
and the operation ‘<<k’ denotes shift-left by k bits.

IEnumerable<int> Utf8ToInt(IEnumerable<byte> input) {
int r = 0; bool multiByte = false;
var endState = input.SelectMany(c => { // Utf8Decode

if (!multiByte) {
if (0 <= c && c <= 0x7F) yield return c;
else if (0xC2 <= c && c <= 0xDF) {

r = (c & 0x3F) << 6; multiByte = true;
} else throw new Exception();

} else {
if (0x80 <= c && c <= 0xBF) {

yield return r | (c & 0x3F); multiByte = false;
} else throw new Exception();

}
}).Aggregate(new { i = 0, defined = false },

(s, d) => { // ToInt
if (0x30 <= d && d <= 0x39)

return new { i = (10 * s.i) + d - 0x30,
defined = true };

else throw new Exception();
});
if (!endState.defined) // ToInt’s finalizer

throw new Exception();
yield return endState.i;

}

Figure 4. Utf8Decode and ToInt in LINQ.3

Utf8Decode) outputs nothing, the consumer (here ToInt) remains in
the same state. So in the fusion of Utf8Decode and ToInt there is a
product transition

(q0, p1)
c∈[0xC2-0xDF]/[];(r,i):=((c&0x3F)<<6,i)−−−−−−−−−−−−−−−−−−−−−−−−→ (q1, p1)

There is one possible fusion of transitions from (q1, p1), namely

(q1, p1)

c∈[0x80-0xBF] ∧ (r|(c&0x3F))∈[0x30-0x39]/
[];(r,i):=(0,(10*i)+(r|(c&0x3F))-0x30)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (q0, p1)

However, the state (q1, p1) is associated with the register constraint
∃x (x ∈ [0xC2-0xDF] ∧ r = ((x&0x3F)<<6)) which together
with the guard of the transition from (q1, p1) becomes unsatisfiable.
Thus the transition can be removed from the fused transducer, which
in turn implies that the state (q1, p1) has become a dead-end and the
transitions to it can be eliminated, since any execution ending up
in (q1, p1) is guaranteed to finally reject. Similar reasoning allows
us to remove (q1, p0) and thus the fusion ends up being identical to
ToInt.

Observe that the story would be quite different if ToInt accepted
non-ASCII digits. Often fusion eliminates a lot of the complexity in
the early stages in the pipeline by back-propagating the particular
constraints required by the later stages, such as, the only accepted
input characters being digits. As data moves to later stages in the
pipeline the data-types tend to become become more structured and
filtered.

The scenario that we have just illustrated gives some insight
as to what kind of analysis is used in our fusion engine. It uses
an SMT solver [12] to decide satisfiability of constraints over
the element domains and uses forward and backward reachability
techniques to prune unreachable transitions. Such analysis goes far
beyond what compilers can do today, techniques that are used in
stream fusion [10, 19] or in composition of symbolic finite state
transducers [33].

For our techniques to be widely applicable to real world programs
there must be an accessible way to specify effectful comprehensions.
One possibility is using existing libraries for writing list compre-

3 We ignore C#’s limitation that yield is not allowed in lambda functions.

2 2016/10/3

hensions. Figure 4 presents a function implementing a pipeline of
the Utf8Decode and ToInt comprehensions using C#’s LINQ [22]
library4. Utf8Decode is represented as a SelectMany, which allows
producing variable amounts of output. Since SelectMany does not
encapsulate state usage, Utf8Decode uses ad-hoc state in the form
of local variables, which complicates analyses by potentially allow-
ing different stages in the pipeline to communicate through shared
state. Because ToInt’s Update does not produce output it can be
represented with Aggregate, which does encapsulate state. However,
writing effectful comprehensions that do partial state updates with
Aggregate is cumbersome, since returning the new state disallows
specifying only the parts that change.

To address these concerns we present a C# interface (Section 5.1)
for specifying effectful comprehensions that encapsulates state usage.
The interface is similar to ones found in existing streaming libraries
(Section 8). We translate programs that implement this interface into
symbolic transducers. Additionally, we provide specialized frontends
for parsing scenarios based on regex and XPath matching.

We evaluate the efficacy of our approach on a variety of data
processing pipelines that decode, parse, compute, and then serialize
back to disk. These pipelines exhibit common real-world scenarios
of extracting data with regexes, querying XML files with XPath, and
working with (Base64) encoded data. On average, our fused code is
3× faster than reasonable hand-written code and 5× faster than a
LINQ implementation. We further demonstrate that our conservative
reachability analysis and subsequent pruning based on background
theory reasoning can significantly reduce the complexity of these
fused pipelines.

Finally, we formalize the semantics of transducers and their com-
position using applicative functors and monads in a purely functional
style. A transduction monad extends state monads with composition
mechanisms allowing us to compose transducers. We found this
connection to the functional programming world important because
it explains the problem from a very different angle and lets us formal-
ize composition unambiguously and succinctly. The functional view
also provides a way to explain composition in a more declarative
style, as opposed to automata based formulations that are mostly
operational.

The contributions of this paper are:

• A variation of symbolic transducers with branching rules, which
simplify analysis and code generation.
• An algorithm for fusing symbolic transducers.
• A branch elimination algorithm based on reachability analysis

which complements the satisfiability based branch elimination
built into the fusion algorithm.
• A frontend for specifying effectful comprehensions and a strat-

egy for translating these into symbolic transducers. Additionally,
we provide frontends for regex and XPath based parsing scenar-
ios.
• A monadic formalization of transducers and their compositions.
• A comprehensive evaluation demonstrating the efficacy of our

approach.

2. Symbolic Transducers
This section formally introduces symbolic transducers or STs, as a
generalization of symbolic finite transducers or SFTs. The definition
used here differs in the following key aspect from the original
introduction of STs [33] — it is specialized for deterministic STs.
This specialization is reflected in the way individual transitions are

4 The code for other list comprehension libraries, such as Java 8’s Streams
API, is largely similar.

q0 c∈[0-0x7F]

c∈[0xC2-0xDF][c];r:=0

false case

q1

true case

[];r:=((c&0x3F)<<6)

r:=0

c∈[0x80-0xBF][r|(c&0x3F)];r:=0

⊥

⊥

Figure 5. Utf8Decode as an ST with branching transitions.

p0 d∈[0x30-0x39]

[];i:=(d-0x30)

p1

i:=0

⊥d∈[0x30-0x39]

⊥

[];i:=(10*i)+d-0x30

[i]

⊥

Figure 6. ToInt as an ST with branching transitions.

defined. Rather than using flat transitions from a single source state
to a single target state, we use branching transitions called rules
that may have multiple target states. The two main reasons for this
specialization are:

• it makes determinism an integral part of the definition of an ST,
rather than a property of an ST;
• it preserves the original program’s structure and supports more

efficient serial code generation.

Generating good serial code from flat symbolic transitions would
be challenging as a short-circuiting evaluation scheme for shared sub-
formulas would have to be selected from a potentially large search
space. Moreover, the choices may be data-dependent, and ultimately
depend on domain knowledge from the user. The following example
exhibits an instance of such a choice.

To concretely illustrate branching transitions or rules, consider
the example transducer Utf8Decode from Figure 2. Instead of two
flat transitions from state q0 (one looping back to state q0 and
one transitioning to state q1) the ST has a single rule from each
state, as illustrated in Figure 5, where ⊥ corresponds to an implicit
rejecting state that would be added to Figure 2 after completion.5

In Utf8Decode the order of the two input byte conditions from
state q0 is important when considering inputs that mostly consists
of ASCII characters in which case the second condition is rarely
evaluated. The initial register value is 0. The basic rules are the leaf
transitions of the branches and are labeled s;r:= g where s is the
output sequence and g the updated register value.

Figure 6 illustrates the ToInt transducer with branching transi-
tions. Here the finalizers are represented as rules, since the one from
p1 it outputs the value stored in the register. In general also finalizers
could have branching rules.

Before formally defining rules we introduce some general no-
tations. Given types τ and σ, τ × σ and τ → σ stand for the

5 Completeness of a flat ST means that the disjunction of all the guards of
transitions from any given state is equivalent to true.

3 2016/10/3

standard Cartesian product and function types, respectively.6 The
type for Booleans is bool with truth values true and false. Let
T (τ) denote a given predefined set of terms t that denote values
[[t]] of type τ . In our implementation we use Z3 [12] expressions for
T (τ) but the general definition is not restricted to any fixed represen-
tation. Further, our implementation constructs no terms of the form
T ((τ → σ)→ ρ), for which there is no direct representation or de-
cision procedures in Z3. In general our theory and algorithms work
with any decidable background theory. A term in T (τ → bool) is
a τ -predicate.

Let [τ] denote the type of finite-length lists of elements of type
τ . A list of type [τ] is denoted by [t1, . . . , tn] or [ti]

n
i=1 where

n ≥ 0 and each ti is a term or value of type τ . We assume that
if τ is a Cartesian product type τ1 × τ2 then there are projection
functions first : τ → τ1 and second : τ → τ2 and a pairing
function 〈, 〉 : τ1 → τ2 → τ1 × τ2 with the intended semantics
that [[〈t1, t2〉]] = ([[t1]], [[t2]]), and [[first〈t1, t2〉]] = [[t1]], and
[[second〈t1, t2〉]] = [[t2]]. Each type τ denotes a nonempty set and
has a default element defaultτ .

The formal definition of a rule is as follows. Given types τ, o, ρ
and a finite set (or type) Q, letR(τ, o,Q, ρ) denote the smallest set
X of rules satisfying the following conditions:

• Undef ∈ X;
• for n ≥ 0 if {fi}ni=1 ⊆ T (τ → o), g ∈ T (τ → ρ), and q ∈ Q

then Base([fi]
n
i=1, q, g) ∈ X;

• if ϕ ∈ T (τ → bool) and t, f ∈ X then Ite(ϕ, t, f) ∈ X .

A rule r ∈ R(τ, o,Q, ρ) denotes a partial function [[r]] of type
τ → [o]×Q× ρ : 7

[[Undef]] v = ⊥ for all values v;

[[Base([fi]
n
i=1, q, g)]] v = ([[[fi]] v]ni=1, q, [[g]] v);

[[Ite(ϕ, t, f)]] v =

{
[[t]] v, if [[ϕ]] v = true;
[[f]] v, otherwise.

A symbolic transducer (ST) is a tuple (ι, o, ρ,Q, q0, r0, δ, $) where
the components are:

• input type ι;
• output type o;
• register type ρ;
• finite control state set Q;

• initial state (q0, r0) of state type σ def
= Q× ρ, and s0 def

= (q0, r0);
• transition function δ : Q→R(ι× ρ, o,Q, ρ);
• finalizer $: Q→R(ρ, o,Q, ρ);

We indicate the component of an ST by using the ST as a subscript,
unless the ST is clear from the context.

The finalizer is used to produce a final output list upon reaching
the end of the input list. It is a generalization of a final state.
Intuitively one may think of the finalizer as being a special case
of the transition function that is triggered by a unique end-of-input
symbol. However, unlike in the classical setting, formally such a
symbol cannot in general be treated as an element of type ι. Instead

6 As usual,→ is right-associative. We assume that× is also right-associative
and has higher precedence than→.
7 We can lift the rule type τ → [o] × Q × ρ to be the type of a total
function τ → ([o] × Q × ρ)? by using option types, but here we work
directly with partial functions f of type τ1 → τ2 as relations of type τ1×τ2
with the understanding that if (a, b), (a, b′) ∈ [[f]] then b = b′. Moreover,
[[f]](a)

def
= b if (a, b) ∈ [[f]] and [[f]](a)

def
= ⊥ if {b|(a, b) ∈ [[f]]} = ∅.

of lifting every input type ι to a sum type of ι and an end-of-input
symbol, end-of-input is handled separately by the finalizer.

We adopt the following variable naming conventions of terms
occurring in rules. In a term t occurring in a rule, variable x is of
type ι and refers to the input element and variable r is of type ρ
and refers to the register. To disambiguate between variables and
functions that appear in formulas from those used in our definitions,
proofs and algorithms, we use a mono-space font for the former.
For example in (x = ϕ) the x is a literal part of the formula, while
ϕ refers to another formula. Substitution of a variable y by a term u
in t is denoted t{y 7→ u}.

In Utf8Decode, in Figure 5, the finalizer is depicted as q0 being
accepting and q1 being non-accepting in the classical sense, meaning
that the finalizer is the function:

$Utf8Decode = {q0 7→ Base([], q0, 0), q1 7→ Undef}]
The finalizer of ToInt, in Figure 6, that is shown as the dashed arrows,
is the function:

$ToInt = {p0 7→ Undef, p1 7→ Base([r], p1, 0)},
where the final value of the register r is output upon reaching the
end of the input list in the control state p1, whereas the initial control
state p0 is not valid as a final state and the input would be rejected if
the input list terminates in this state.

An ST A denotes a transduction [[A]] that is a partial function
of type [ι] → [o]. First, we define the following partial semantic
functions δ̂ : ι→ σ → [o]× σ and $̂ : σ → [o]× σ that enable us
to provide a declarative definition of [[A]]:

δ̂ a (q, b)
def
= [[δ q]](a, b); $̂ (q, b)

def
= [[$ q]] b.

Let ā = [ai]
k
i=1 be a given input list. Let π1(a, b)

def
= a. Then

[[A]] ā
def
= π1(((δ̂ a1)⊕ (δ̂ a2)⊕ · · · ⊕ (δ̂ ak)⊕ $̂)s0) (1)

where ⊕ is a left-associative operator of type

(σ → [o]× σ)× (σ → [o]× σ)→ (σ → [o]× σ)

that composes single-input transduction steps into multi-input trans-
duction steps, with the formal definition:

F1 ⊕ F2
def
= λs. let (u1, s1) = (F1 s) in

let (u2, s2) = (F2 s1) in
(u1 + u2, s2)

where ‘+’ denotes list concatenation. For example, given ā =
[0xC5, 0x93] and A = Utf8Decode, we have that, s0 = (q0, 0),

[[A]] ā = π1(((δ̂ 0xC5)⊕ (δ̂ 0x93)⊕ $̂)s0)

= π1(((λs.([] + [‘œ’], s0))⊕ $̂)s0)
= π1((λs.([] + [‘œ’] + [], s0))s0)
= [‘œ’]

We refer to ⊕ as step composition and revisit it in Section 7. The
main intuition about⊕ is that it combines function composition with
list comprehension in the following sense. If the arguments F1 and
F2 do not depend on the state s then⊕ corresponds to concatenation,
as in a typical SelectMany list comprehension in LINQ. If, on the
other hand, F1 and F2 produce no outputs and only transform the
state, then ⊕ corresponds to function composition.

3. Fusion of STs
Consider two STs A and B such that oA = ιB . We want to fuse
A and B into a single ST A ⊗ B such that [[A ⊗ B]] is equivalent
to [[A]] ◦ [[B]], i.e., λx.[[B]]([[A]](x)). We first explain the main idea
behind the construction. We then explain the incremental algorithm
that makes the composition scale in practice. The control-state

4 2016/10/3

complexity of the algorithm is |Q|2. Typically |Q| is in the range of
100-1000. The worst-case complexity with respect to the size of the
rules is also quadratical, even when the number of control states is
small. It is therefore instrumental to prune unreachable states early
and to develop incremental algorithms.

3.1 Main idea
At a high level, the fusion algorithm of A⊗B can be described as
follows. A ⊗ B has the following components: ι = ιA, o = oB ,
ρ = ρA × ρB , Q ⊆ QA × QB , r0 = (r0A, r

0
B), q0 = (q0A, q

0
B).

The goal of the fusion algorithm is to construct δA⊗B and $A⊗B .
For each pair (p, q) of control states in QA ×QB build a fused

rule that, given the rule δA p, symbolically runs δB q treating all
of the output lists [vi]

n
i=1 that occur in the Base-subrules of δA p

as symbolic values. The symbolic values are substituted into the
register update and output functions of (δ̂Bv1) ⊕ · · · ⊕ (δ̂Bvn),
that is partially evaluated with respect to the control state q, and
finally normalized into a rule inR(ι× ρ, o,Q, ρ). The finalizer is
constructed similarly.

While such brute force approach will terminate in theory, because
the output lists have a fixed length that is independent of the input
element, it is highly impractical for several reasons. One problem is
control state space size, because |Q| = |QA||QB |. Another problem
is output-branch explosion. Just consider self-composition of an
encoder (say, with a single control state) that may output n elements
for some input element. Then the composition may potentially output
n2 elements for some input element, but most of those cases may
be infeasible due to symbolic constraints imposed by the output
functions and their guards in A when considered as inputs of B. For
example, an HTML encoder H may output a character with code
hex(x÷ 32) in one of its branches, where

hex(y) = if (0 ≤ y ≤ 9) then (y + 48) else (y + 55)

if the guard γ(x) = 0x100 ≤ x ≤ 0xFFF holds for the input
character x. However, in a double-HTML encoder H ⊗ H , the
corresponding composed guard γ(hex(x ÷ 32)) ∧ γ(x) for that
element is unsatisfiable, which requires nontrivial integer linear
constraint reasoning in order to eliminate that branch. Such pruning
requires incremental symbolic techniques outside the scope of the
brute force approach.

3.2 Incremental fusion
There are several key optimizations used in the construction of
composed rules, powered by the use of the solver for deciding sat-
isfiability and for model generation of predicates. One technique
is to incrementally check for unsatisfiability and validity of guards
of newly formed Ite-rules and to remove branches that are inacces-
sible and consequently also eliminate control states that become
inaccessible. The distinction between control states and registers is
instrumental because finiteness of control states guarantees termina-
tion and enables techniques not directly available over infinite state
spaces.

We provide a top-down view of the fusion algorithm in Figure 7
with further helper procedures in Figure 8. Fusion is implemented
using depth first search starting from (p, q) = (q0A, q

0
B). Only

satisfiable parts of composite rules are ever explored. The procedure
FUSE(γ,R, q) in Figure 7 uses an accumulating context condition
γ for a branch of an Ite-rule of A with R as the unexplored subrule
in that context, and q is a control state of B. If the condition
SAT(γ ∧R′1 6= R′2) is false then for all (x, r) ∈ [[γ]], [[R′1]](x, r) =
[[R′2]](x, r), so the branching condition is redundant. The condition
R′1 6= R′2 is itself, w.l.o.g., expressible as a ι×ρ-predicate. The
newly discovered states in the depth first search are added to the
Frontier in line 8 of the definition of PRODUCT in Figure 7. Elements

A⊗B
1 let global Frontier = {(q0A, q0B)}
2 let global Q = {(q0A, q0B)}
3 let δ = $ = ∅
4 while Frontier 6= ∅
5 remove (p, q) from Frontier
6 δ(p, q) 7→ FUSE(true, (δA p), q)
7 $(p, q) 7→ FUSE$(true, ($A p), q)
8 return (ιA, oB , ρA×ρB , Q, (q0A, q0B), 〈r0A, r0B〉, δ, $)

FUSE(γ,R, q) : (T (ι×ρ→bool)×R(ι×ρA, oA, QA, ρA)×
QB)→R(ι×ρ, o,Q, ρ)

1 let θ = {r:ρA 7→ first(r:ρ)}
2 match R
3 case Undef: return Undef
4 case Ite(ϕ,R1, R2):
5 let R′1 = FUSE(γ ∧ (ϕθ), R1, q)
6 let R′2 = FUSE(γ ∧ ¬(ϕθ), R2, q)
7 if SAT(γ ∧R′1 6= R′2)
8 return Ite(ϕθ,R′1, R

′
2)

9 else return R′1
10 case Base(v̄, p, g):
11 return PRODUCT(p, gθ,

RUN(γ, v̄θ, q, second(r:ρ)))

PRODUCT(p, g, R)

1 match R
2 case Undef: return Undef
3 case Ite(ϕ,R1, R2):
4 return Ite(ϕ, PRODUCT(p, g,R1),

PRODUCT(p, g,R2)
5 case Base(v̄, q, h):
6 if (p, q) /∈ Q
7 add (p, q) to Q
8 add (p, q) to Frontier
9 return Base(v̄, (p, q), (g, h))

Figure 7. Fusion of STsA andB with oA = ιB . Definition of RUN
is given in Figure 8.

of QA ×QB that are never added to Frontier are unreachable and
thus irrelevant.

To construct a rule, the mutually recursive RUN(γ, v̄, q, s) and
STEP(γ, v, rest, R, s) procedures shown in Figure 8 symbolically
execute the step composition operator ⊕ for B over the symbolic
value list v̄ starting from the state (q, s) of B. The satisfiability
checks in STEP on lines 6 and 10 maintain that the constructed
rules only have branches that are feasible and non-redundant. A
trivial case of redundancy is when both R′1 and R′2 are Undef, but
more complicated conditional cases may arise when R′1 and R′2
are syntactically different but semantically equivalent in the given
context γ.

Observe how the procedure FUSE uses γ on lines 5–7: γ is
included as a conjunct in every solver call to SAT and every recursive
call to FUSE. This pattern of use allows incremental SMT solving,
where the solver is used in such a way that subsequent solver
calls can reuse clauses learned during previous calls. For example,
on line 5 in FUSE this would be implemented by pushing (ϕθ)
into the solver context before the recursive call and popping the
context afterwards. In fact, both procedures FUSE and STEP use
the parameter γ in a way such that γ is included as a conjunct in
(i) each call to SAT, and (ii) each γ argument formula in recursive

5 2016/10/3

RUN(γ, v̄, q, s) : (T (ι×ρ→bool)× [T (ι×ρ→ιB)]×QB×
T (ι×ρ→ρB))→R(ι×ρ, o,QB , ρB)

1 match v̄
2 case []: return Base([], q, s)
3 case [v|rest]:
4 return STEP(γ, v, rest, (δB q), s)

STEP(γ, v, rest, R, s)
1 let θ = {r:ρB 7→ s, x:ιB 7→ v}
2 match R
3 case Undef: return Undef
4 case Ite(ϕ,R1, R2):
5 let R′1 =
6 if SAT(γ ∧ (ϕθ))
7 STEP(γ ∧ (ϕθ), v, rest, R1, s)
8 else Undef
9 let R′2 =

10 if SAT(γ ∧ ¬(ϕθ))
11 STEP(γ ∧ ¬(ϕθ), v, rest, R2, s)
12 else Undef
13 if SAT(γ ∧R′1 6= R′2)
14 return Ite(ϕθ,R′1, R

′
2)

15 else return R′1
16 case Base(ū, q, g):
17 return CONCAT(ūθ,RUN(γ, rest, q, gθ))

CONCAT(ū, R)

1 match R
2 case Undef: return Undef
3 case Ite(ϕ,R1, R2):
4 return Ite(ϕ,CONCAT(ū, R1),

CONCAT(ū, R2))
5 case Base(v̄, q, h):
6 return Base(ū+ v̄, q, h)

Figure 8. Step composition of B over a list of symbolic inputs v̄ in
the context γ.

calls.Furthermore when FUSE calls STEP on line 11 it passes its γ
as an argument. Therefore, each call to FUSE can use a single solver
context incrementally for all satisfiability checks. The structure
of pushing and popping the contexts follows the structure of the
Ite-rules. From our experience using the solver incrementally may
decrease the fusion time by an order of magnitude.

The fusion procedure for $A⊗B is omitted from the presentation,
but is similar to the construction of δA⊗B . Elements of Q that only
lead to non-final control states (control states that only have the
Undef finalizer) are also removed as “dead-ends” using the standard
dead-end elimination algorithm for finite state automata [16].

Theorem 3.1. [[A⊗B]] = [[A]] ◦ [[B]]

The proof is omitted for brevity. The main intuition for the proof
is that STEP implements a symbolic version of a single step of ⊕
and RUN is a symbolic version of a run (of multiple steps) of ⊕.
Once this connection is proved formally it can be used as a lemma
for proving that the transduction semantics given by Equation (1)
(Section 2) is preserved by A⊗B.

3.3 Implementation remarks
The incremental satisfiability checks that are performed during ST
fusion are critical for the overall feasibility of the algorithm. In
almost all of our case studies, the algorithm would not terminate oth-
erwise. Several further optimizations are possible to locally improve

the succinctness of the generated ST. One such optimization is what
we call symbolic constant propagation: applying the substitution θ to
a sub-term t of ūθ in STEP(γ, v, rest, R,) may result in t becoming
“constant valued”. This can be decided by checking unsatisfiability
of the formula γ ∧ γ′ ∧ t 6= t′ where the variables in γ′ and t′ are
fresh variants of the variables in γ and t. If the formula is unsatisfi-
able, then t has a unique value in the context γ, independent of the
variables it contains, and can thus be replaced by that value. Such a
value can be queried from the solver by considering a model for the
formula γ ∧ t = y where y is a fresh variable (a model exists since
γ is satisfiable), and extracting the value of y from that model. In
code generation, we have witnessed that symbolic constant propa-
gation may add significant performance improvements by avoiding
unnecessary expression evaluation.

4. Reachability Based Branch Elimination
Fusing already removes many unsatisfiable branches. Still, the
resulting STs may have a large number of control states and/or
rules with redundant conditions. In particular some branches may
be unreachable due to state carried constraints, i.e., even though
the branch itself is satisfiable, the conjunction of reachable register
values in the source states together with the branch is unsatisfiable.
In this section we present a reachability based branch elimination
(RBBE) algorithm, that proves the unreachability of and removes
such branches in the target ST. The algorithm is a combination of
symbolic forward reachability and backward reachability algorithms
adapted to STs.

The reachability algorithm reasons about transition rules as a
flattened set of Base-rules with their associated combined branch
constraints. Given a rule r ∈ R(τ, o,Q, ρ) let Paths(r) be defined
as follows:

Paths : R(τ, o,Q, ρ)→ {(T (τ → bool)
×T (τ → ρ)×Q)}

Paths(Undef) def
= ∅

Paths(Base([fi]
n
i=1, g, q))

def
= {(true, g, q)}

Paths(Ite(ϕ, u, v))
def
=
⋃

(ψ,g,q)∈Paths(u){(ϕ ∧ ψ, g, q)} ∪⋃
(ψ,g,q)∈Pathsv{(¬ϕ ∧ ψ, g, q)}

Since outputs do not affect reachability they are dropped from the
flattened representation. Given an ST A let there be the following:

Movesδ(A)
def
=

⋃
p∈QA

⋃
(ϕ,g,q)∈Paths(δA(p)){(p, ϕ, g, q)}

Moves$(A)
def
=

⋃
p∈QA

⋃
(ϕ,g,q)∈Paths($A(p)){(p, ϕ)}

These give a flat representation of all transitions and finalizers
(respectively) by source and target control state. We call elements of
these sets moves and final moves respectively.

The ELIMINATE procedure in Figure 9 implements the top-
level reachability algorithm. The variable w ∈ [ιA] is used to
represent a list of inputs. To check the reachability of a (final)
move it calls ISREACHABLE with a ([ιA]× ρA)-predicate such
that the (final) move is reachable if and only if the source control
state can be reached such that the predicate holds (lines 5 and 9).
If ISREACHABLE returns false then the branch is eliminated by
simplifying the corresponding Ite(ϕ, u, v), where u (or v) is the
unreachable base rule, into v (or u). Note that if ISREACHABLE
hits the bound k then it returns ⊥ and the branch can not be safely
removed.

To minimize calls to ISREACHABLE, ELIMINATE uses a more
efficient COMPUTEUNDERAPPROXIMATION procedure. It performs
a breadth-first forward-reachability analysis from the initial state and
tags moves whose path conditions from the initial state are satisfiable
as reachable. Breadth-first search increases coverage and ensures
that there are potentially several states in a breadth-first frontier for

6 2016/10/3

ELIMINATE(A)

1 let U = COMPUTEUNDERAPPROXIMATION(A)

2 let M = Movesδ(A) ∪Moves$(A) \ U
3 let k = |QA|
4 foreach move (p, ϕ, g, q) in M
5 let ϕ′ = (w 6= []) ∧ ϕ{x 7→ Head (w)}
6 if ISREACHABLE(A, p, ϕ′, k) = false
7 eliminate the corresponding branch in δA
8 foreach final move (p, ϕ) in M
9 let ϕ′ = (w = []) ∧ ϕ

10 if ISREACHABLE(A, p, ϕ′, k) = false
11 eliminate the corresponding branch in $A
12 remove control states with no path from q0A

Figure 9. Reachability based branch elimination (RBBE).

ISREACHABLE(A, qtgt, ϕtgt, k) : (ST ×QA×
T ([ιA]×ρA → bool)× int)→ bool

1 let layer = {qtgt}
2 let layer ′ = ∅
3 let Ψ′ = empty = {q 7→ false | q ∈ QA}
4 let Σ = Ψ = empty] {qtgt 7→ ϕtgt}
5 while layer 6= ∅
6 while layer 6= ∅
7 pop q from layer
8 let ψ = Ψ[q]
9 if q = q0A ∧ SAT(ψ{r 7→ r0A})

10 return true

11 foreach (p, ϕ, g, q) in Movesδ(A)
12 if (ϕ depends on r8) or (g depends on x8)
13 let update = g{x 7→ Head (w)}
14 let γ = (w 6= []) ∧ ϕ{x 7→ Head (w)}∧

ψ{w 7→ Tail (w), r 7→ update}
15 else
16 let γ = ψ{r 7→ g{x 7→ defaultιA}}
17 if SAT(γ ∧ ¬Σ[p])
18 let Σ[p] = Σ[p] ∨ γ
19 let Ψ′[p] = Ψ′[p] ∨ γ
20 add p to layer ′

21 if k = 0 ∧ layer ′ 6= ∅
22 return ⊥
23 let k = k − 1
24 let layer = layer ′

25 let layer ′ = ∅
26 let Ψ = Ψ′

27 let Ψ′ = empty
28 return false

Figure 10. Checking the reachability of a state predicate.

the same control state, hopefully capturing different ways of entering
the control state. While more sophisticated under approximations
are possible, this basic version was adequate for our experiments.

The ISREACHABLE procedure in Figure 10 performs a backward
breadth-first traversal on A, exploring the states one layer at a time.
Each layer is associated with the map Ψ from control states to
reachability conditions yet to be explored. Initially the control state
qtgt is mapped to the predicate ϕtgt. Σ maps control states to the

8 These checks can be performed with an SMT solver call. For example
∃i,r,r’ (ϕ 6= ϕ{r 7→ r’}) is satisfiable iff ϕ depends on the register.

predicates that summarize the arguments for which exploration has
already been performed or is about to be performed.

Let ∆A denote the following partial function that extends the
transition function δ̂A to input lists and omits the output part:

∆A : [ιA]× σA → σA

∆A([], s)
def
= s

∆A([i|w], s)
def
= ∆A(w, π2(δ̂A i s))

A state s is k-reachable (in A) if there exists w ∈
⋃
n∈[0,k](ιA)n

such that ∆A(w, s0A) = s. For example s0A is 0-reachable. A state
s is reachable if it is k-reachable for some k ≥ 0. Given q ∈ QA
and an ρA-predicate ϕ, we say that (q, ϕ) is (k-)reachable if there
exists a (k-)reachable state (q, r) such that r ∈ [[ϕ]]

Theorem 4.1. If ISREACHABLE(A, qtgt, ϕtgt, k) equals (a) true
then (qtgt, ϕtgt) is reachable; (b) false then (qtgt, ϕtgt) is not
reachable; (c) ⊥ then (qtgt, ϕtgt) is not k-reachable.

Proof. First, we prove the theorem with one optimization turned
off — the branch condition in line 12 always returns true. Let ψtgt

be the σA-predicate (q = qtgt) ∧ ϕtgt. The algorithm maintains
the following invariant that for all entries (q 7→ ϕ) ∈ Σ such that
ϕ 6= false:

(i) SAT(ϕ) and
(ii) for all (w, r) ∈ [[ϕ]]: ∆A(w, (q, r)) ∈ [[ψtgt]]

Property (i) follows from the observation that, other than the initial
value false, only satisfiable predicates are added to Σ[q] and that
satisfiability remains true under disjunctions. Property (ii) follows
by induction over |w| using the definition of ∆A and that the
construction of γ in line 14 is the weakest precondition with respect
to ψ and the given move from p.

Now (a) follows from the fact that if the procedure terminated in
line 10 then ∃w ((w, r0A)∈ [[Σ[q0A]]]). So, by (ii), ∃w (∆A(w, s0A)∈
[[ψtgt]]). The proof of (c) is by induction over k, showing that all
possible behaviors for input lists of up to length k that from some
state lead to ψtgt are captured in Σ. This implies that the initial
register must be captured in some layerk predicate Ψk[q0] for there
to be a path from the initial state to the target state. The satisfiability
test in line 17 ensures that [[ϕ]] 6⊆ [[Σ[p]]]. In other words, if the test
fails then [[ϕ]] ⊆ [[Σ[p]]], so no behavior is lost by excluding ϕ in that
case. Statement (b) follows from (c), because if false is returned
for k, then false is returned for any bound greater than k.

The condition in line 12 filters out input-noise: the else-case is
taken in line 16 if the input element does not affect the register
update, which is when the guard does not depend on the register
and the register update does not depend on the input element. In
this case, the summaries in Σ may accept shorter words than what
is required by ∆A, but the register part of the predicate is not
affected by omitting the input element because it does not influence
it. Here we need to assume that there is no (p, ϕ, g, q) ∈ Movesδ(A)
for which ϕ is unsatisfiable. Otherwise the definition of γ in
line 16 is unsound when ϕ is unsatisfiable. If ϕ is satisfiable then
(∃i ϕ{r 7→ defaultρA}) ∧ ψ{r 7→ g{x 7→ defaultιA}} is
equivalent to ψ{r 7→ g{x 7→ defaultιA}}.

The statement (ii) can no longer be used directly, but must be
modified to count for the omitted input elements, that become much
like input-epsilon moves. Intuitively, the ST is implicitly converted
into an εST (ST with input-epsilon moves) although the input-
epsilon moves do still count against the bound k.

In this algorithm, Σ enables a crucial subsumption checking for
predicates (line 17) — if a reachability condition ϕ for a control state
p is subsumed by Σ[p], then any search from ϕ is already covered,
so adding ϕ to the next layer would be redundant. A subtlety is to

7 2016/10/3

abstract class Transducer<I,O> {
abstract IEnumerable<O> Update(I datum);
virtual IEnumerable<O> Finish() { yield break; }

}

Figure 11. The C# abstract class users extend.

avoid the possible quantifier alternation that would arise if we treat
Σ[p] as the predicate ∃w (Σ[p]) (i.e. characterize the reachable set
of registers independent of inputs used to reach them). This could
potentially introduce undecidability. However, the test in line 17
works because it is sufficient in the the else case (when we omit ϕ).
When the else case is taken, it means that

∀w,r (ϕ⇒ Σ[p])

holds, which implies that

∀r (∃wϕ⇒ ∃wΣ[p]) (2)

holds. Condition (2) is the necessary condition needed to preserve
all register values.

5. Specifying Effectful Comprehensions
We have explored several frontends for specifying effectful com-
prehensions. In Section 5.1 we present a frontend that translates
imperative C# code to STs. This pattern matches interfaces present
in existing streaming frameworks, which we discuss in Section 8.

Some comprehensions can be more efficiently specified with a
specialized frontend. In Section 5.2 we translate regexes with named
captures into STs, while Section 5.3 presents a similar approach for
XPath queries.

5.1 Effectful Comprehensions as C#
We have implemented a translation from a subset of C# to STs. Users
extend the abstract class in Figure 11, where the Update and Finish

methods respectively define δ and $. Users may opt to not override
Finish, in which case a trivial no-op finalizer is used.

Example 5.1. The following code implements the ToInt transducer
from Figure 3:

partial class ToInt : Transducer<char,int> {
bool IsDigit(char c) {

return 0x30 <= c && c <= 0x39;
}
int i = 0; bool defined = false;
override IEnumerable<int> Update(char d) {

if (IsDigit(d)) {
var ones = d - 0x30;
i = (10 * i) + ones;

} else throw new Exception();
defined = true;
yield break;

}
override IEnumerable<int> Finish() {

if (!defined) throw new Exception();
yield return i;

}
}

Update uses instance variables i and defined for loop carried state,
and Finish outputs the final value with C#’s yield return keyword.
For invalid input an exception is thrown to indicate the input is
rejected. �

The code is parsed using the Roslyn compiler’s frontend [4].
The translation to an ST employs a symbolic exploration which
captures the state update and outputs represented by each feasible

control flow path, while infeasible paths are cut with satisfiability
checks using Z3 [12]. The exploration produces an execution tree
that corresponds to an ST with a single control state and a branching
rule such that each internal node is an Ite-rule and each leaf node is
either an Undef -rule (if the path ended with a throw statement) or a
Base-rule (otherwise).

The register type is the product of all the field types. For example
ρToInt = int × bool. Subsequently, the register type is split into
ρ × κ where κ is a product of all the types with a small set of
values (either enum or bool types). An algorithm called (finite)
exploration is used to partially evaluate the transition function so
that the new control state set Q becomes a finite set of elements
representing values of type κ and the new register type becomes ρ.
The algorithm is incremental: it starts from the initial values and
only considers reachable values of type κ. It is a variant of the
ST exploration algorithm discussed in [34, Figure 4] but without
grouping. The intent here is not to attempt to completely eliminate
registers because that is undecidable, while finite exploration is
guaranteed to terminate.

The supported C# subset includes:

• Integral types, booleans and structs; and their operators.
• All control flow constructs except try-catch.
• Calls into pure and side effect free functions.

5.2 Effectful Regex Comprehensions
We use regular expressions with captures to enable scenarios that
require custom pattern matching. A typical example is to extract
some information stored in a text file using a custom parser. Consider
a regex pattern P of the form

(S1(?<cap1>P1)S2 · · ·Sn(?<capn>Pn)Sn+1)*

where Si and Pi are regular expressions such that no Pi accepts the
empty string and there is no ambiguity about where each Si ends
or where each Pi starts. In particular, if one pattern accepts a string
ending with some character then the following pattern must reject
any string starting with the same character.

The intent is that each Si is a skip pattern and each Pi is a
parse pattern. The capture names capi are mapped to transducers
Ai that map strings matching pattern Pi to some output of type
oi. We developed an algorithm that given P and the transducers
{capi 7→ Ai}ni=1 constructs a fused transducer that parses strings
matching P into n-tuples 〈o1, . . . , on〉. The algorithm works as
follows:

1. Parse and translate the regex into a finite symbolic automa-
ton [32].

2. Keep track of which parts of the resulting automaton accept the
patterns Pi. The input values accepted inside any such part of
the automaton represents a match of the capture group (with no
ambiguity due to our assumptions).

3. Fuse each identified part of the automaton separately with the
appropriate ST Ai. The start and end of a capture group match
respectively trigger initialization and finalization of the ST.

The fusion performed in step 3 differs from that in Section 3 in that
the STs are composed in a hierarchical manner, i.e., instead of all
output being directed through another ST, a part of the transduction
is delegated to another ST. This model allows subsequences of an
effectful comprehension to be specified modularly.

Example 5.2. The following regex illustrates a case that parses a
line of a csv file in such a way that the substring in the third column
(between the second and third commas) is parsed as a non-negative

8 2016/10/3

integer in decimal notation and the substring in the fourth column is
parsed as a Boolean:

(([^,]*,){2}(?<int>\d+),(?<bool>\w+),[^\n]*\n)*

Here S1 is "([^,]*,){2}" (skip to the third column), S2 is ","
(skip to the next column), and S3 is ",[^\n]*\n" (skip remaining
columns until EOL). The capture int is mapped to the transducer
ToInt from Figure 3 and the capture bool is mapped to a transducer
ToBool, which maps the strings “true” and “false” respectively to
true and false. �

5.3 Effectful XPath Comprehensions
For extracting information from XML formatted data we use trans-
ducers constructed from XPath9 query expressions. Consider an
expression X of the form

st:trans(/tag1/tag2/tag3 · · · /tagn)

The tag names tagn specify a path to match in an XML file. trans is
a name that maps to a transducer A that maps the contents of any
matching elements to output of type o. Given X and the transducer
A, a fused transducer that parses matches of X into values of o is
constructed. The matcher for the query uses counting with an integer
register to ignore arbitrarily deep nestings of non-matching elements.
Otherwise the algorithm is similar to the one for regular expressions
in Section 5.2 (i.e. for steps 2 and 3).

Example 5.3. Consider the following XML:

<cities>
<city name=’Roslyn’>
<timezone>PST</timezone>
<population>893</population>

</city>
<city name=’Santa Barbara’>
<population>88410</population>

</city>
</cities>

A transducer based on the following XPath expression will extract
the populations in the dataset:

st:int(/cities/city/population)

int again maps to the ToInt transducer from Figure 3. �

6. Evaluation
We have implemented the techniques described above in a tool that
translates C# (and our other frontends) into STs, fuses them and
finally generates efficient C# code. For each control state a labeled
code block that implements the transition rule is generated. Given
a rule, a tree of if else statements is generated, where each leaf
consist of an appropriate sequence of outputs, state updates and
finally a goto to the code block of the target control state.

We evaluate the viability of our approach with a set of benchmark
pipelines. The experiments were run on an Intel Core i5-3570K CPU
@ 3.4 GHz with 8 GB of RAM. All reported throughputs are means
of a sufficient number of samples to obtain a confidence interval
smaller than ±0.5 MB/s at a 95% confidence level. All pipelines
were run through C#’s NGen tool, which produces native code for
C# assemblies ahead-of-time.

Figure 12 presents throughputs for three variations of each
pipeline. For LINQ the pipelines communicate with IEnumerable<T>

and yield. The Hand-written pipelines are straightforward imple-
mentations using arrays as buffers between phases. The fused and
optimized pipelines are labeled Fused. The individual pipeline stages

9 See https://en.wikipedia.org/wiki/XPath.

UTF8-lines

Base64-avg

CSV-max

Base64-delta

624.6

44.6

176.5

57.6

569.7

80.1

37.4

19.9

92.7

16.5

67.6

13

Throughput (MB/s)

LINQ
Hand-written
Fused

Figure 12. Throughputs for different pipeline versions

in the LINQ and Fused pipelines use code generated from STs by our
implementation, while the Hand-written pipelines use Hand-written
C# and .NET system libraries where available. For the Hand-written
pipelines we did not perform any manual fusion, since the aim
of this paper is to allow pipeline stages to be specified modularly
with the fusion being handled by the compiler. Four pipelines were
benchmarked:

Base64-avg calculates a running average (window of 10) for
Base6410 encoded ints and re-encodes the results in Base64.

CSV-max decodes an UTF-8 encoded CSV file to UTF-16, ex-
tracts the third column with a regular expression and finds the
maximum length of these strings. The output is a single UTF-8
encoded decimal formatted integer.

Base64-delta reads Base64 encoded ints and outputs deltas of
successive inputs as UTF-8 encoded decimal integers on separate
lines.

UTF8-lines decodes an UTF-8 encoded file to UTF-16 and counts
the number of newline characters. The output is a single UTF-8
encoded decimal formatted integer.

For Figure 12 we sampled the pipelines with 100 MB of data. For
the UTF8-lines pipeline we used Herman Melville’s “Moby Dick”
repeated a sufficient number of times, while for the others we used
randomly generated data. For all pipelines except CSV-max the
LINQ version has the lowest throughput. We believe this is due to the
overhead associated with passing values through IEnumerable<T>.

Figure 13 presents a more detailed comparison of CSV parsing
scenarios. Pipelines for three different datasets are compared:

CHSI is a dataset on health indicators from the U.S. Department
of Health & Human Services. The three pipelines produce the
average lung cancer deaths, minimum births and maximum total
deaths for counties in the dataset.

SBO is a dataset on business owners from the U.S. Census Bureau.
The three pipelines find the maximum employees, minimum
gross receipts and average payroll for businesses in the dataset.

CC is a dataset of consumer complaints received by the U.S.
Consumer Financial Protection Bureau. The pipeline produces
the maximum value for the ID column.

Each of the Fused pipelines in Figure 13 apply four effectful
comprehensions: (i) decode UTF-8 to UTF-16, (ii) parse a column
as an int using a regular expression based parser, (iii) run a query
(maximum, minimum or average), and (iv) output the result as a
sequence of bytes. The pipelines differ only in the regular expression
and query used.

10 See https://en.wikipedia.org/wiki/Base64.

9 2016/10/3

CC-id

SBO-payroll

SBO-receipts

SBO-employees

CHSI-deaths

CHSI-births

CHSI-cancer

103.2

572.7

619.2

594.1

282.4

275.1

290.6

44.6

220

211.6

234.1

81.1

80.8

94.4

34.6

86.1

85.9

86.8

83.7

84.2

84.7

Throughput (MB/s)

LINQ
Hand-written
Fused

Figure 13. Throughputs for CSV parsing pipelines

TPC-DI-SQL

PIR-proteins

DBLP-oldest

MONDIAL-pop

310.3

326

459.7

305.6

67.5

82.6

84

83.8

31.4

25.7

28.2

58.7

41.8

41.6

61.6

Throughput (MB/s)

XmlDocument
XPathReader
LINQ
Fused

Figure 14. Throughputs for XPath matching pipelines

Each version of the pipelines uses the same regular expression
for parsing the CSV file. For example, the expression (([^,]*,){5}
(?<value>\d+),[^\n]*\n)* is used in the maximum employees
pipeline for matching the sixth column on each line. In the Hand-
written tests the .NET framework’s RegexOptions.Compiled option
was used, which generates a .NET assembly for doing the matching.
This extra work is not counted against the reported throughputs. An-
other optimization we implemented for the Hand-written pipelines
is that the regular expression is matched for the whole dataset and
the values captured are then iterated. This proved to be significantly
faster than splitting the dataset into lines and running the regular
expression on each line separately.

The original SBO dataset is 744 MB, which caused the .NET
regular expression library to run out of memory. To work around
this we cut the dataset down to a 83 MB prefix. Our fused pipelines
are free of such limitations due to their incremental nature.

The fused pipelines are significantly faster for all benchmarks,
with the average speedup being over 2.9× over the Hand-written
pipelines.

Figure 14 presents throughputs for XML processing scenarios.
Four pipelines are compared:

TPC-DI-SQL The dataset was generated by a tool from the TPC-
DI benchmark [26]. The pipeline extracts ids of accounts from
customer records and for each outputs an SQL insert statement.

Pipeline Eliminated Left Pipeline Eliminated Left

Base64-delta 0 77 SBO-employees 7 78
CSV-max 6 65 SBO-receipts 11 117
Base64-avg 0 163 SBO-payroll 10 107
UTF8-lines 1 10 TPC-DI-SQL 238 936
CC-id 1301 5274 PIR-proteins 198 758
CHSI-cancer 113 1134 DBLP-oldest 104 456
CHSI-births 143 1434 MONDIAL-pop 162 662
CHSI-deaths 144 1444

Figure 15. Branches eliminated by RBBE and branches left.

PIR-proteins The dataset is a protein dataset from the U.S. based
National Biomedical Research Foundation. The pipeline extracts
the lengths of all proteins in the dataset and outputs the average
length.

DBLP-oldest The dataset is bibliographic information from the
Digital Bibliography Library Project. The pipeline extracts the
publication year of each article and outputs the earliest year.

MONDIAL-pop Mondial is a dataset extracted from various geo-
graphical Web data sources. The pipeline extracts the population
of each city in the dataset and outputs the highest population.

All of the Fused pipelines in Figure 14 use an XPath based transducer
for extracting the relevant data. The XmlDocument pipelines use
the the XPath matching implemented in C#’s standard libraries.
The throughput for the XmlDocument version of the PIR-proteins
pipeline is not reported due the library running out of memory with
the 700 MB dataset. The XPathReader pipelines use Microsoft’s
XPathReader library, which allows evaluating a subset of XPath in a
streaming manner. Due to its streaming nature it is able to process
the PIR-proteins dataset.

The Fused versions have the highest throughput on all of the
XPath benchmarks, with an average speedup of 11× over the
streaming XPathReader library. The fact that in the Fused pipelines
the XPath matching code is specialized to the query is likely to give
it a significant advantage over the XmlDocument and XPathReader
versions, which do not perform any code generation. This also holds
for the LINQ pipelines, which were second on all XML benchmarks.
For queries over large XML datasets using our approach over a
general purpose XPath library makes sense, as the speedup will
make up for the compilation time.

Figure 15 presents the number of branches in rules removed
by RBBE (Section 4) for each pipeline. The numbers are sums of
removals after all fusions that contribute to the complete pipeline.

We can see that for most pipelines applying RBBE resulted in
branches being removed. Thus RBBE is helpful for allowing bigger
pipelines to be practically fused.

7. Symbolic Transducers and Monads
This section provides redefinitions of the ⊕ and ⊗ operators in
terms of applicative functors and monads. In addition to being
concise, these definitions provide a link between an automata-
theoretic view and a functional view of symbolic transducers. This is
to our knowledge the first time transductions have been successfully
related to monads, which has been unsuccessfully attempted before.
For more discussion and the exact connection to LINQ’s list monad
see Section 8.

Given types σ and τ we define TMστ as the type σ → (τ×σ)?11,
which as we will later show is a transduction monad. We use the
higher order applicative functor [21] operators pure and ?, defined

11 ? is the option type. We write a wrapped value x as �x and no value as ⊥.

10 2016/10/3

as follows:
pure : τ → TMστ

pure f def
= λs.�(f, s)

? : TMσ(τ → τ ′)→ TMστ → TMστ ′

F ? X
def
= λs.let �(f, s1) = (F s) in

let �(x, s2) = (X s1) in
�((f x), s2)

The intuition is that ? captures side-effects of F in s1 and propagates
them to X which produces side-effects s2 while the output is (f x).

Now the step composition operator ⊕ can also be defined as

⊕ : TMστ → TMστ → TMστ

f ⊕ g def
= (pure +) ? f ? g

where + denotes list concatenation, although other operators, such
as addition, maximum, and minimum, could be used. One reason
why such operators are interesting is that they allow us to define
aggregation operations without explicitly using state for accumu-
lating the intermediate result. Regardless of the operator used as
+, the purpose of ⊕ is to compose together output results while
propagating the effects of the computations “from left to right” as
loop carried state.

The type of ⊕ in this definition (assuming + is concatenation) is

(σ → ([o]× σ)?)→ (σ → ([o]× σ)?)→ (σ → ([o]× σ)?)

Note that the original definition in Section 2 did not wrap the
transition functions inside the option type and instead defined them
as partial functions. For the functional view we make the functions
total by representing rejection with ⊥.

The bind operator for TMστ is

�= : TMστ1 → (τ1 → TMστ2)→ TMστ2

F �= G
def
= λs.let �(a, s′) = (F s) in (Gas′)

We may now view TMστ as a transduction monad with the given
bind operator and whose unit operator is pure. It follows from the
definitions that the monad laws hold. One can view this monad as a
combination of the state monad and the option monad.

The fusion composition operator ⊗ (Section 3) can be defined
using the bind operator. First let there be:

fuse : ([ι]→ TMσA [τ])→ ([τ]→ TMσB [o])→
([ι]→ TMσA×σB [o])

fuse A B
def
= λx̄. (A′ x̄)�= B′ where

A′ ā
def
= λ(s1, s2).let �(b̄, s′1) = (A ā s1) in �(b̄, (s′1, s2))

B′ b̄
def
= λ(s′1, s2).let �(c̄, s′2) = (B b̄ s2) in �(c̄, (s′1, s

′
2))

Note how in fuse the ST A uses its own state that is disjoint from
the state of B, and the function builds the disjoint sum of the states.
Further, notice that the output b̄ of A may depend on the state s1,
so the state s′2 may, through b̄, depend on s1, whereas s′1 does not
depend on s2. The latter property is integral to the fusion algorithm
in Section 3. Now ⊗ can be defined as:

(A, s0A)⊗ (B, s0B)
def
= (fuse A B, (s0A, s

0
B))

Note that here we represent an ST A as a pair of a function of type
([ιA] → TMσA [oA]) and the initial state of A. To run transducers
represented like this the following can be used:

runST : ([ι]→ TMσ[o])× σ → [ι]→ [o]

runST (A, s)
def
= λx̄.let �(ȳ, s′) = (A x̄ s) in ȳ

Effectively, given an ST A, (runST (A, s0A)) is its denotation [[A]].
In functional languages the state monad is typically implemented

using lazy evaluation and fuse could in principle be implemented

similarly. In contrast to these languages wherein unfeasible paths
are never explored by virtue of lazy evaluation, the fusion algorithm
in Section 3 implements a statically optimized binding operator for
the transduction monad which statically prunes unfeasible paths. We
believe similar static fusion techniques could also be applied to code
written using the state monad.

8. Related Work
Symbolic transducers: were originally defined in flat form in [33].
The main focus of the work in [33] is on symbolic finite transducers
or SFTs, for analysis of string sanitizers. It is noted in [33] that STs
are closed under composition, but, to the best of our knowledge,
no algorithm for fusing STs has been studied prior to our work.
Prior work on STs has focused on register exploration and input
grouping that are orthogonal problems [11, 34]. Register exploration
attempts to project the register type ρ into a Cartesian product type
ρ1 × ρ2 where ρ1 is a finite type, the primary goal is to reduce
register dependency by migrating ρ1 into the set of control states.
Input grouping tries to take advantage of grouping characters into
larger tokens in order to avoid intermediate register usage, that
has applications in decoder analysis [11] and parallelization [34].
Efficient fusion of STs has, to the best of our knowledge, not been
studied prior to our work.

Streaming: There is a large body of work on stream-process-
ing [14, 20, 23, 24, 30]. There is also recent work on a domain
specific language DReX [8] for expressing regular string transfor-
mations. Stream computations with internal state have been studied
before. The work in [10] defines a Stream data-type with internal
state that yields elements and allows operations such as map, fold,
and zip. These operations are functional and operate on one ele-
ment at a time with no operation-state carried across elements. The
state in the Stream allows one to represent the current position,
and bundling in the case of generalized stream fusion [19], in the
stream. In contrast, our focus is on applying transformations that
have operation-state carried across elements (as opposed to streams
having state). This allows us to represent effectful functions such as
UTF decoding/encoding.

Some libraries for streams provide APIs for expressing state-
ful operations. The Apache Flink [7] and Spark Streaming [5] dis-
tributed streaming engines both provide support for using state in
stream operations and an associated framework for implementing
fault tolerance in the presence of state. The Highland.js [3] and Con-
duit [1] are traditional stream libraries, which both provide a way to
express stateful operations. However, in these libraries the stateful
operations are treated as black boxes, as opposed to our approach
that fuses operations in compositions of STs. Implementing fron-
tends similar to the C# one (Section 5.1) for these libraries would
allow code written for them to use our backend.

StreamIt [31] is a programming language and compiler for
signal processing applications. StreamIt composes pipelines of
stateless filters with the aim of reducing communication overhead.
In [6] composition is extended to filters with a linear state space
representation, i.e., ones where the outputs and state updates are
linear operations. The composition retains the linear state space
representation with a linear increase in size.

In contrast to StreamIt, we can compose any stateful filters where
the state update is over a decidable theory, and instead of linear
algebra we use SMT solvers for our analysis. We view the work done
by the StreamIt group as complimentary to ours: the composition
and optimization techniques for symbolic transducers could be used
as an additional backend module in the StreamIt compiler for stateful
filters which are not amenable to a linear state space representation.

Monads: have had a huge impact on programming paradigms
and techniques in general after they were introduced into the func-

11 2016/10/3

tional programming world by Wadler [36]. One of the core contribu-
tions of monads is that they provide a type discipline by which one
can enforce a separation of computational concerns in a clean func-
tional style. A prime example is the state monad [37]. Another very
useful monad is the maybe monad [36]. Our transduction monad
type TMστ is more-or-less the type for the maybe state monad pa-
rameterized with the state type σ and the output type τ , and extended
with extra composition operations for step and fusion composition.
The fusion composition operator ⊗ is based on the monad binding
operator �= but is itself not a binding operator because it uses
different monad state types. The “maybe” part in the transduction
monad reflects the fact that (deterministic) transducers are typically
partial functions and their composition (that corresponds exactly
to fusion composition here) is often treated as a special case of
relational composition.

LINQ [22] uses the list monad (or list comprehension [36])
as its primary construct for query processing and (unlike SQL)
also supports nested lists. The list comprehension construct is in
LINQ expressed with the Select or, more generally, SelectMany
extension method of the IEnumerable<T> class. The exact relation
to the transduction monad is that the list comprehension in LINQ
corresponds to iterating the step composition operator ⊕ (Section 2)
over the input list. Step composition handles loop carried state. The
LINQ query

"Man".SelectMany(A.Update)

corresponds to the following transduction or effectful comprehension,
provided that we apply it to the initial state of A:

(δ̂A ‘M’)⊕ (δ̂A ‘a’)⊕ (δ̂A ‘n’)

The state of the computation (δ̂A ‘M’) is threaded through into the
computation (δ̂A ‘a’), etc. For example, if we take A to be the
Base64 encoder, and we start from the initial state (at the point
when no characters have been read so far) then the output would be
the string "TWFu". This is consistent with the existing semantics of
LINQ.

In Figure 4 in Section 1 the finalizer for ToInt can be imple-
mented as a separate piece of code after the state has been ag-
gregated. However, for transducers whose Update function pro-
duces output the following pattern would be natural: SelectMany(i
=> Update()).Concat(Finalize()), where Finalize returns an
IEnumerable<T>. This pattern is semantically correct, but relies on
the fact that Concat evaluates its parameter lazily. With eager eval-
uation Finalize would access state before Update had been called
for all inputs. We feel this reliance on subtle semantics makes LINQ
a poor match for writing effectful comprehensions. This is another
concern we address with our C# frontend.

Fusion: For fusion of symbolic transducers there is related work
on filter fusion [27] and deforestation [35]. Fusion of symbolic
transducers can be viewed as an extended form of filter fusion that
incorporates loop carried state and advanced constraint satisfaction
techniques into the classical framework.

The Steno library in [25] implements deforestation for LINQ
queries and achieves speedups from removing the IEnumerable

abstraction similar to what we report in Section 6. In contrast
with our work, Steno treats filters as black boxes, although the
deforestation can expose some optimization opportunities to the
compiler. Additionally, some of Steno’s optimizations assume that
filters are stateless.

Filter fusion has also been extended to network fusion [15] that
uses the product of labeled transition systems, to merge a network
of interconnecting components. Synchronous product of automata
and fusion of symbolic transducers have different semantics and
computational complexities.

The work in [29] is related to our work regarding motivation. The
difference is in the execution, we use an automata based definition
of transducers with an explicit control flow graph and use an SMT
solver as an oracle in our algorithms. This leads to a different set of
algorithms and opens up a different set of optimization techniques.
We build on some of the work in [33] by extending it with an
incremental fusion algorithm and reachability analysis. The authors
of [29] were not able to relate their work to monads but use the
SML type system in general. In our case the definition of the step
composition operator ⊕ uses applicative functors or idioms [18, 21]
— it does not require full monad functionality.

Regex: Our construction of symbolic transducers from regexes is
related to the work in [28]. On one hand our algorithm only handles
a special class of regexes, but on the other hand it supports full
Unicode by using the .NET regex parser and represents guards by
predicates over 16-bit bit-vectors (i.e., the char type). Regexes are
very handy for capturing custom patterns, for example for some
specific CSV file or some specific alphabet (such as the emoticon
alphabet12.). This is reminiscent to handling hierarchical data, such
as XML, but with more relaxed rules, e.g., a line in a custom CSV
file may (or may not) end with a comma.

To handle XML data we use transducers generated from a subset
of the XPath query language. For a full automata theoretic treatment
of XPath see [9], where an approach for evaluating and reasoning
about XPath expressions (extended with regular expressions) based
on two-way weak alternating tree automata is presented.

List comprehensions have also been extended with ORDER BY
and GROUP BY constructs [17] that are also supported in LINQ. It
is an ongoing research topic for us to investigate whether symbolic
transducers can be extended similarly and, if so, to understand what
the potential payoffs are.

9. Conclusion
Good abstractions let a programmer easily express their intent as a
program and at the same time let a runtime system compile that
program for efficient execution. This paper puts forth effectful
comprehensions as an abstraction for expressing possibly-stateful
data-processing pipelines. We present fusion and branch elimination
algorithms for these effectful comprehensions, which allow us to
compile large pipelines into efficient code.

We use symbolic transducers to represent individual and fused
stages in a data-processing pipeline, which we additionally formalize
with transduction monads. The monadic view provides very concise
semantics for transductions and their compositions. On the other
hand, our fusion and branch elimination algorithms use an automata-
theoretic view, which allows them to exploit the separation of control-
state from other state.

We have built a compiler that ingests pipelines written in C#
and produces fused code that runs, on average, 3× faster than a
hand-written baseline and 5× faster than LINQ on a variety of data
processing programs. In the future we will explore more extensive
optimizations that rely on background theory reasoning to prove
program properties. One such optimization we excluded from this
paper due to space constraints exploits minimization of symbolic
finite automata to simplify control flow.

In the future we intend to explore hierarchical compositions,
i.e., parts of an effectful comprehension being specified in terms
of another. In Sections 5.2 and 5.3 we use a specific pattern of
hierarchical composition for which fusion is straightforward. We
aim to expand this work to allow hierarchical compositions in our
general C# frontend (Section 5.1).

12 See http://unicode.org/charts/PDF/U1F600.pdf

12 2016/10/3

References
[1] Conduit (Haskell library).

https://github.com/snoyberg/conduit.

[2] Apache Hadoop.
http://hadoop.apache.org/.

[3] Highland.js.
http://highlandjs.org/.

[4] The .NET compiler platform “Roslyn”.
https://github.com/dotnet/roslyn.

[5] Spark Streaming.
http://spark.apache.org/streaming/.

[6] S. Agrawal, W. Thies, and S. Amarasinghe. Optimizing stream
programs using linear state space analysis. In Proceedings of the 2005
International Conference on Compilers, Architectures and Synthesis
for Embedded Systems (CASES’05), pages 126–136. ACM, 2005.
doi:10.1145/1086297.1086315.

[7] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters,
A. Rheinländer, M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and
D. Warneke. The Stratosphere platform for big data analytics. The
VLDB Journal, 23(6):939–964, Dec. 2014. doi:10.1007/s00778-014-
0357-y.

[8] R. Alur, L. D’Antoni, and M. Raghothaman. DReX: A declarative
language for efficiently evaluating regular string transformations. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’15), pages 125–137.
ACM, 2015. doi:10.1145/2676726.2676981.

[9] D. Calvanese, G. Giacomo, M. Lenzerini, and M. Y. Vardi. An
automata-theoretic approach to regular XPath. In Proceedings of the
12th International Symposium on Database Programming Languages
(DBPL’09), volume 5708 of LNCS, pages 18–35. Springer, 2009.
doi:10.1007/978-3-642-03793-1 2.

[10] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists
to streams to nothing at all. In Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming (ICFP’07),
pages 315–326. ACM, 2007. doi:10.1145/1291151.1291199.

[11] L. D’antoni and M. Veanes. Extended symbolic finite automata and
transducers. Formal Methods in System Design, 47(1):93–119, Aug.
2015. doi:10.1007/s10703-015-0233-4.

[12] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Proceed-
ings of the 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’08), volume 4963 of
LNCS, pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-
3 24.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified data process-
ing on large clusters. Commun. ACM, 51(1):107–113, Jan. 2008.
doi:10.1145/1327452.1327492.

[14] D. Debarbieux, O. Gauwin, J. Niehren, T. Sebastian, and M. Zergaoui.
Early nested word automata for XPath query answering on XML
streams. Theoretical Computer Science, 578:100–125, May 2015.
doi:10.1016/j.tcs.2015.01.017.

[15] P. Fradet and S. H. T. Ha. Network fusion. In Proceedings of
Programming Languages and Systems: Second Asian Symposium
(APLAS’04), volume 3302 of LNCS, pages 21–40. Springer, 2004.
doi:10.1007/978-3-540-30477-7 3.

[16] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979. ISBN 0321455363.

[17] S. P. Jones and P. Wadler. Comprehensive comprehensions. In
Proceedings of the ACM SIGPLAN Workshop on Haskell (Haskell’07),
pages 61–72. ACM, 2007. doi:10.1145/1291201.1291209.

[18] S. Lindley, P. Wadler, and J. Yallop. Idioms are oblivious, arrows are
meticulous, monads are promiscuous. In Proceedings of the Second
Workshop on Mathematically Structured Functional Programming
(MSFP’08), volume 229 of ENTCS, pages 97–117. Elsevier, 2011.
doi:10.1016/j.entcs.2011.02.018.

[19] G. Mainland, R. Leshchinskiy, and S. Peyton Jones. Exploiting vector
instructions with generalized stream fusion. In Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Programming
(ICFP’13), pages 37–48. ACM, 2013. doi:10.1145/2500365.2500601.

[20] A. Maletti, J. Graehl, M. Hopkins, and K. Knight. The power of
extended top-down tree transducers. SIAM J. Comput., 39(2):410–430,
June 2009. doi:10.1137/070699160.

[21] C. Mcbride and R. Paterson. Applicative programming with ef-
fects. Journal of Functional Programming, 18(1):1–13, Jan. 2008.
doi:10.1017/S0956796807006326.

[22] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling object,
relations and XML in the .NET framework. In Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data (SIG-
MOD’06), pages 706–706. ACM, 2006. doi:10.1145/1142473.1142552.

[23] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers.
In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS’00), pages 11–
22. ACM, 2000. doi:10.1145/335168.335171.

[24] B. Mozafari, K. Zeng, L. D’antoni, and C. Zaniolo. High-performance
complex event processing over hierarchical data. ACM Trans. Database
Syst., 38(4):21:1–21:39, Dec. 2013. doi:10.1145/2536779.

[25] D. G. Murray, M. Isard, and Y. Yu. Steno: Automatic opti-
mization of declarative queries. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’11), pages 121–131. ACM, 2011.
doi:10.1145/1993498.1993513.

[26] M. Poess, T. Rabl, H.-A. Jacobsen, and B. Caufield. TPC-
DI: The first industry benchmark for data integration. Pro-
ceedings of the VLDB Endowment, 7(13):1367–1378, Aug. 2014.
doi:10.14778/2733004.2733009.

[27] T. A. Proebsting and S. A. Watterson. Filter fusion. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’96), pages 119–130. ACM, 1996.
doi:10.1145/237721.237760.

[28] Y. Sakuma, Y. Minamide, and A. Voronkov. Translating regular
expression matching into transducers. Journal of Applied Logic, 10(1):
32–51, Mar. 2012. doi:10.1016/j.jal.2011.11.003.

[29] O. Shivers and M. Might. Continuations and transducer composition. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’06), pages 295–307.
ACM, 2006. doi:10.1145/1133981.1134016.

[30] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. StreamFlex: High-
throughput stream programming in Java. In Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems and Applications (OOPSLA’07), pages 211–228. ACM, 2007.
doi:10.1145/1297027.1297043.

[31] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language
for streaming applications. In Proceedings of the 11th International
Conference on Compiler Construction (CC’02), volume 2304 of LNCS,
pages 179–196. Springer, 2002. doi:10.1007/3-540-45937-5 14.

[32] M. Veanes, P. d. Halleux, and N. Tillmann. Rex: Symbolic reg-
ular expression explorer. In Proceedings of the 2010 Third In-
ternational Conference on Software Testing, Verification and Vali-
dation (ICST’10), pages 498–507. IEEE Computer Society, 2010.
doi:10.1109/ICST.2010.15.

[33] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner.
Symbolic finite state transducers: Algorithms and applications. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’12), pages 137–150.
ACM, 2012. doi:10.1145/2103656.2103674.

[34] M. Veanes, T. Mytkowicz, D. Molnar, and B. Livshits. Data-
parallel string-manipulating programs. In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’15), pages 139–152. ACM, 2015.
doi:10.1145/2676726.2677014.

13 2016/10/3

https://github.com/snoyberg/conduit
http://hadoop.apache.org/
http://highlandjs.org/
https://github.com/dotnet/roslyn
http://spark.apache.org/streaming/
http://dx.doi.org/10.1145/1086297.1086315
http://dx.doi.org/10.1007/s00778-014-0357-y
http://dx.doi.org/10.1007/s00778-014-0357-y
http://dx.doi.org/10.1145/2676726.2676981
http://dx.doi.org/10.1007/978-3-642-03793-1_2
http://dx.doi.org/10.1145/1291151.1291199
http://dx.doi.org/10.1007/s10703-015-0233-4
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1016/j.tcs.2015.01.017
http://dx.doi.org/10.1007/978-3-540-30477-7_3
http://dx.doi.org/10.1145/1291201.1291209
http://dx.doi.org/10.1016/j.entcs.2011.02.018
http://dx.doi.org/10.1145/2500365.2500601
http://dx.doi.org/10.1137/070699160
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1145/1142473.1142552
http://dx.doi.org/10.1145/335168.335171
http://dx.doi.org/10.1145/2536779
http://dx.doi.org/10.1145/1993498.1993513
http://dx.doi.org/10.14778/2733004.2733009
http://dx.doi.org/10.1145/237721.237760
http://dx.doi.org/10.1016/j.jal.2011.11.003
http://dx.doi.org/10.1145/1133981.1134016
http://dx.doi.org/10.1145/1297027.1297043
http://dx.doi.org/10.1007/3-540-45937-5_14
http://dx.doi.org/10.1109/ICST.2010.15
http://dx.doi.org/10.1145/2103656.2103674
http://dx.doi.org/10.1145/2676726.2677014

[35] P. Wadler. Deforestation: Transforming programs to eliminate
trees. Theoretical Computer Science, 73(2):231–248, Jan. 1988.
doi:10.1016/0304-3975(90)90147-A.

[36] P. Wadler. Comprehending monads. In Proceedings of the 1990 ACM
Conference on LISP and Functional Programming (LFP’90), pages
61–78. ACM, 1990. doi:10.1145/91556.91592.

[37] P. Wadler. Monads for functional programming. In Advanced Func-
tional Programming: First International Spring School on Advanced
Functional Programming Techniques, Tutorial Text, volume 925 of
LNCS, pages 24–52. Springer, 1995. doi:10.1007/3-540-59451-5 2.

[38] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing (HotCloud’10),
pages 10–10. USENIX Association, 2010.

14 2016/10/3

http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://dx.doi.org/10.1145/91556.91592
http://dx.doi.org/10.1007/3-540-59451-5_2

	Introduction
	Symbolic Transducers
	Fusion of STs
	Main idea
	Incremental fusion
	Implementation remarks

	Reachability Based Branch Elimination
	Specifying Effectful Comprehensions
	Effectful Comprehensions as C#
	Effectful Regex Comprehensions
	Effectful XPath Comprehensions

	Evaluation
	Symbolic Transducers and Monads
	Related Work
	Conclusion

