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Abstract

A method for the recovery of the temporal structure and
phases in natural gesture is presented. The work is moti-
vated by recent developments in the theory of natural gesture
which have identified several key aspects of gesture impor-
tant to communication. In particular, gesticulation during
conversation can be coarsely characterized as periods of
bi-phasic or tri-phasic gesture separated by a rest state.
We first present an automatic procedure for hypothesizing
plausible rest state configurations of a speaker; the method
uses the repetition of subsequences to indicate potential rest
states. Second, we develop a state-based parsing algorithm
used to both select among candidate rest states and to parse
an incoming video stream into bi-phasic and multi-phasic
gestures. We present results from examples of story-telling
speakers.

1. Introduction

The traditional paradigm for hand gesture recognition
involves the construction of a model for each gesture to be
recognized. This usually proceeds by collecting a number
of examples of the gesture, computing the “mean gesture”
and quantifying the variance seen in the examples. The hope
is that this description will generalize to the actual test data.
Examples of this approach include [9, 1, 13, 4, 10].

This typical pattern recognition approach may be well
suited to the recognition of stylized or literal gesture, such
as the gestures made by a user navigating aeronautical data
in a virtual reality system by contorting their hands. These
actions are less gestures than particular literal movements.
Others examples are the emblematic gestures substituting
for simple linguistic constructs: the ubiquitous OK sign or
“giving someone the finger.” These situations lend them-
selves to the construction of sophisticated models capable
of representing the variations between people; in the case of

the VR-controller, one might even alter the gesture vocabu-
lary to make the recognition more robust.

However, as an approach to natural gesture understand-
ing, this methodology seems inappropriate. By “natural
gesture” we mean the types of gestures spontaneously gen-
erated by a person telling a story, speaking in public, or
holding a conversation. The reasons for this skepticism are
clear. First, the particular configurations and motions ob-
served in natural gesture are inherently speaker dependent,
influenced by cultural, educational, and situational factors
[5]. An approach employing fixed, physical descriptions of
gesture might find no cross-speaker invariances.

Second, and more important, is that the literal representa-
tion of the gesture assumes that the spatial configuration is in
fact the most significant aspect of the signal to be extracted.
Given that we are observing a sequence, it is plausible that
more abstract temporal properties are the important elements
of a gesture.

In this paper we develop a method for the detection of
the important temporal structure — the gestural phases —
in natural gesture. We begin by briefly relating some recent
developments in the theory of natural gesture which have
identified several key temporal aspects of gesture important
to communication. We next present an automatic procedure
for hypothesizing plausible rest state configurations of a
speaker; the method uses the repetition of subsequences
to indicate potential rest states. Lastly, we develop a state-
based parsing algorithm used to both select among candidate
rest states and to parse an incoming video stream into bi-
phasic and multi-phasic gestures. We present results from
two extended examples of story-telling speakers.

2. Gesture in Communication

Recent research in the field of natural gesture generation
and parsing has identified four basic types of gesture gener-
ated during discourse [6, 3]. Three of these are considered
to have meaning in a dialog: iconic, where the motion or



configuration of the hands physically match the object or sit-
uation of narration; deictic, a pointing gesture; metaphoric,
where the motion or shape of the hands is somehow sug-
gestive of the situation. The fourth gesture type, beats, is
generated to show emphasis or to repair mis-spoken seg-
ments.

Characteristic of these gesture types are particular tem-
poral signatures. For example, each is typically bracketed
by the hands being in a “rest state.” Beat gestures — the
simplest — consist only of a small baton-like movement
away from the rest state and then back again; these gestures
may be termed “bi-phasic.” The iconic, metaphoric, and
deictic gestures are executed by first “transitioning” from
the rest phase into gesture space (the space in front of the
speaker), then executing a smaller movement (the “stroke”),
remaining at that configuration for a short duration, and then
transitioningback to the rest state. Thus, these gestures may
be termed “tri-phasic.” What it means for a movement of the
hands to be a “natural gesture” is defined, at least in part, by
these temporal characteristics. The bi-phasic and tri-phasic
distinction is introduced in [2]. The distinction between
beats and representational gestures (iconic and metaphoric)
is also discussed in [11].

In this paper we employ the above descriptions to derive
a parsing mechanism sensitive to the temporal structure of
natural gesture. Our initial goal is to find possible instances
of bi- and tri-phasic gestures in a video sequence of some-
one telling a story. The motivation is that the tri-phasic
gestures encode meaning and need to be segmented from
the input gesture stream if they are to be incorporated into
any additional interpretation processes.

3. Detecting candidate rest states

3.1. Gesture data

The data presented in this paper are extracted from video
of naive subjects relating a story. The subject was led into
a closed room and asked to think of a time in which they
believed they were in grave danger. The subject was then
asked to tell a story of this event. The subject was instructed
to look at the experimenter and not the camera, and was also
warned that the experimenter would only provide minimal
(nonverbal) feedback. Recording proceeded for as long as
it took the subject to recount the story.

To reduce the size of recorded imagery, the video was
digitized at low spatial (120�160 pixels), temporal (10Hz),
and photometric (8-bit gray scale) resolutions. The two
sequences used to illustrate the results of this paper are
3min38sec and 4min10sec long, for a total of 4700 frames
or 90MB of data. A few frames of the first sequence are
shown in Figure 1.

a)

b)

c)

d)

Figure 1. Three consecutive frames of the se-
quence used to illustrate this paper are shown in
(a). (c) is the result of computing at each pixel
the absolute value of the difference between the
images in (a) and the mean image (b) computed
from all frames of the sequence. (d) The first 3
eigenvectors of the image sequence.

3.2. Feature extraction

To analyze and compare subsequences we require a com-
pact representation for the imagery. Because the focus of our
analysis is on the temporal characteristics of the sequences
we select the rather aggressive approach of representing
each frame by a small number of coefficients derived from
an eigenvector decomposition of the images [12].

We apply the technique to image sequences by randomly
selecting a few hundred frames, computing the eigenvec-
tor decomposition of these frames, and then projecting all
frames of the image sequence onto the resulting basis set.
Next, the basis set vectors are ordered by how much vari-
ance each accounts for in the training frames. Because there
is not tremendous variation in imagery of a person telling
a story, and since it can be shown that two points that are
nearby in the original image space are also nearby in the
resulting low-dimensional space [7], we only need retain a
small number of coefficients for this work. In the exper-
iments reported here, we use only n = 10 coefficients to
represent each frame; on average the 10 coefficients account
for 55% of the variance. These coefficients are the entire
representation used for all further processing.



3.3. Subsequence distance matrix

Let xi be the n-vector of the eigenvector projection co-
efficients representing the ith frame of the image sequence.
We define di;j to be the difference between two frames xi
and xj using a distance metric such as the Euclidean norm.
Denoting the length L subsequence beginning at frame i

and ending with frame (i + L � 1) as xLi , we can define
the difference between two subsequences xLi and xLj as the
total Euclidean distance:

d
L
i;j =

"
L�1X
k=0

d
2
i+k;j+k

# 1
2

By computing d
L
i;j for all pairs of i, j we can construct a

matrix for all the subsequences.
Figure 2 presents the subsequence distance matrix for a

central part of one of the test sequences. The diagonal is
black, indicating perfect correlation. Black regions off the
diagonal indicate points in time where a particular length
L subsequence is repeated. For example, beat gestures,
which appear in the video as short repeated motions, show
up as dark, short parallel lines. Subsequences that are fairly
generic (e.g., hands are near the rest position) are likely to
have several regions of high similarity. Conversely, motions
or configurations that are highly unusual in the sense that
they are unlike any other subsequences manifest themselves
in the matrix as a row (and corresponding column) in which
the mean distance is much greater than the overall mean.

The nature of the distance matrix is sensitive to the sub-
sequence length L. If L is small, we may see spurious
similarities. If L is too big, then the matching of “atomic”
or primitive subsequences may be prevented. For the results
reported here we have set L = 5 (one half second at 10Hz);
we have not systematically experimented with varying L.

3.4. Selecting candidate rest states

Because rest states start and end each bi-phasic and tri-
phasic gesture, and because rest states involve little or no
motion for a reasonable duration of time, one expects a
subsequence corresponding to a rest state to be repeated
often. Furthermore, if one were to reconstruct a sequence
using only a small collection of primitive subsequences, then
one would want to use the rest state subsequence(s) as one
of the primitives since it would well describe the imagery.

Our approach to finding candidate rest states is to use
the reconstruction idea and to select a small set of subse-
quences which when repeated and assembled in the right
order would reconstruct the original sequence as best pos-
sible. Of course, finding the optimal set of k subsequences
for reconstruction is an exponential problem since the best k
does not necessarily contain the best k�1 set. However, we
expect the reconstruction to be dominated by a few rest states
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Figure 2. Distance matrix of subsequences of
length 5, for a 300 frame section of the original
video sequence. Dark parallel diagonal lines in-
dicate repeated motions, possibly by “beat” ges-
tures. An interesting sequence in which the sub-
ject repeatedly waves her arm at her side in a circu-
lar fashion begins at i = 130. The white bar around
i = 415 indicates atypical movement; the subject
is waving both arms high above her head.

plus many unrelated motions. Therefore we use a “greedy”
algorithm to select a set of reconstructing subsequences.

LetM be the set of all subsequences (call these models).
Let M �M be a set of subsequences, where each m 2 M

specifies the length L subsequence beginning at xm (frame
m in the original sequence). For each xi define

yi = arg min
m2M

d
L
m;i

That is, the sequence yi is the best reconstruction of the
sequence xi given the models M . The approximation error
at frame i is ei = minm2M d

L
m;i.

The “greedy” procedure is as follows: given the previ-
ously selected models M , pick the new subsequence model
to add to M such that the decrease in

P
i ei is maximized.

The algorithm is initialized by choosing the best single sub-
sequence, M = fig where i = arg minj

P
k d

L
j;k.

The algorithm can be iterated as many times as there
are frames; at that point

P
i ei = 0. However, each addi-

tional decrease in approximation error becomes quite small
after a small number of models are included. For the 2200
frame sequence of Figure 1 we select only the first 40 sub-
sequences; an additional 60 subsequence would be required
to reduce the error only by one half.
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Figure 3. The top six ranked (length 5) subse-
quences for reconstruction. This selection illus-
trates the variety of candidate rest states. The last
candidate (6) will be rejected by the temporal pars-
ing.
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Figure 4. The top four ranked subsequences for
reconstruction for a second subject.

Figure 3 illustrates the top six ranked (length 5) subse-
quences. Notice the variety of candidate rest states. The
last example (6) is one which will later be rejected by our
parsing mechanism: although the subsequence can be used
to reconstruct a significant part of the original video, it does
not have the right temporal properties to be considered a rest
state. Figure 4 illustrates the top four candidates from a sec-
ond example sequence. In this example, notice the radically
different rest states recovered.

We note that we have begun to develop a “personality
sensitive” video coding system based upon this technique.
The resulting sequence is a reconstruction using the ges-
ture primitives that well represent a person’s style and thus
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Figure 5. The three state machine describing the
possible gestures. Below each state is a descrip-
tion of the gamma-density pdf for the given vari-
ables. The transitions are unlabeled because we
do not use transition probabilities in generating a
parse; rather, the duration models drive the tem-
poral relationships.

feel less temporally aliased than that produced by standard
systems that use a fixed low frame rate.

4. Detecting gesture phases

Given candidate rest states, we can now simultaneously
evaluate them and parse the gesture stream into bi-phasic
and tri-phasic gestures. The approach is to use a Markovian
state description, but with the traditional use of transition
probabilities replaced with an explicit model of duration.

4.1. Markovian states with duration modeling

Although Hidden Markov Models have been a popular
technique for the recognition of gesture (see [14, 9, 10, 13])
we note that in our system the states are not hidden. In
particular, our analysis of natural gesture types in section 2
identifies rest (R), transition (T), and stroke (S) states. The
properties of these states are known and can be character-
ized by similarity in appearance to a rest state, amount of
motion exhibited, and the duration during which the state
is maintained. Probabilistic densities for these descriptions
can be derived directly from training data.

Furthermore, the temporal structure of gesture can be
described a priori using these states. Beat gestures corre-
spond to moving from R to T and back to R: <R-T-R>;
tri-phasic gestures traverse from R to T to S to T and back to
R: <R-T-S-T-R>.1 The a priori knowledge of the structure
and properties of the states distinguishes our work from the
typical HMM techniques.

Figure 5 graphically depicts a gesture phase finite state
machine (FSM) and the associated properties of each state.

1We can also define multi-phasic gestures to be tri-phasic gesture which
cycles through the T-S-T sequencemore than once: <R-T-[S-T]+ -R>; this
is sometimes seen when tri-phasic gestures are tightly repeated or overlap.



While the exact form and values of the probability densities
are not critical (each are modeled by gamma densities) it
is important to understand their qualitative nature. The rest
state R is modeled as tending to be “near” the rest state’s
position in eigen-space (using, say, the Euclidean norm), to
have “low” motion as measured by the average traversal in
eigen-space of the coefficients used to describe each frame,
and of “long” duration. Likewise the T state is “far”, “high”,
and “short” while the S state is “far”, “low”, and “short.”

Given these descriptions, one might be tempted to just
cluster and classify the image frames using appearance and
velocity as features, and ignore any notion of transition.
The difficulty with this is the idea of duration, which is well
modeled using a Markovian system ([8]) where a modified
Viterbi algorithm exists for parsing input streams with re-
spect to duration models. Duration is fundamental to the
idea of being a rest, transition, or stroke phase. The prop-
erty of duration is much more critical to the gesture-parsing
than is the probability of a transition occurring between any
two states.

In traditional Markov systems, loopback transitions and
their associated probabilities are manipulated in an attempt
to alter the duration that a traversal remains in a given state.
Formally, a fixed loopback transition probability is equiva-
lent to an exponential density on duration, favoring shorter
stays within a state. With such systems it is difficult if not
impossible to disallow short durations.

To incorporate duration models and to use the Viterbi
algorithm to generate the best possible parse, we adopt the
framework of a Markov system, but with no cost for a tran-
sition. The result is a FSM where only the state-output
probabilities and the duration the system remains in each
state affect the parse. The effect is that instead of using
transition probabilities to drive the temporal structure, we
use the duration model. Proposing a traversal from state i
to state j at time t requires accepting the cost of ending the
duration in the first state and starting that of the next.

4.2. Identifying rest states

The verification of rest states is accomplished by se-
lecting a candidate subsequence, defining a gesture-phase-
FSM using that candidate to define the rest state location in
eigenspace, and then parsing the input data. If the tested
subsequence is indeed a rest state, then the parsed input
should spend a significant amount of time in the rest state
R. If it is not, then most of the parse will oscillate between
states T and S.

This verification process was applied to each of 40 can-
didate subsequences, ordered by the reconstruction method
of section 3. Two points are of interest. First, many of
the initial candidates (e.g. those ranked 6, 7, and 9) do not
satisfy the rest state criteria when considered in a temporal
context; their elimination validates the need for the temporal

analysis beyond clustering.
Second, many candidate subsequences exhibit good rest

state behavior, confirming the idea that there may be several
rest states for a given speaker in a given situation. To select
a set of rest states adequate to parse the gesture, we again
construct a greedy algorithm; here we accumulate rest states
according to how many new time-steps are now parsed as
rest states if a new candidate is included. For the example
of Figure 3 we use 20 rest states.2 Manual thresholding
selected this number. However, for the method of detecting
the gesture states detailed in the next section, overestimating
the number of rest states is much less of a problem than
underestimating.

4.3. Results: detecting bi-phasic and multi-phasic
gestures

To detect gesture phases, we need to construct a gesture
phase FSM with the necessary rest states, and then parse
the input sequence. To incorporate multiple rest states, we
redefine distance to the rest state feature as the minimum
distance to all of the chosen subsequences. To then detect
the relevant gestures we simply parse the incoming video
stream with respect to the gesture-phase-FSM; the parsing
algorithm is a duration-modified Viterbi optimization [8].

Figure 6 illustrates the results for a 100 second long
subsequence of one of the two video sequences tested; the
other sections have similar results. The top two traces indi-
cate the manually annotated labeling of tri-phasic and beat
gestures. These labels were generated by the third author
before seeing any of the results. The bottom trace depicts the
state-based parse of the incoming video. Notice the overall
similarity in the detection. The extent of agreement is diffi-
cult to measure quantitatively, and perhaps a bit premature
as the gesture community still has difficulties agreeing as
to what movements are gestures. Our contribution is the
demonstration that the temporal structure coupled with an a
priori state-based description is adequate to recover most of
the gestures present.

We also note that we have tested this procedure on the
4min10sec sequence of a different speaker illustrated in Fig-
ure 4. Only one parameter of the model needed to be ad-
justed to generate similar results, and the parsing agrees with
the authors’ observations of the gesture. As mentioned, this
sequence is interesting because of the radically different rest
states recovered; a system must be sensitive to multiple rest
states if it is to segment the gestures properly. However, we
do not yet have independentlygenerated manual annotations
with which to compare descriptions.

2A few of the images of the different rest states are very similar in
appearance. Under the eigenspace distance metric, however, they are quite
disparate. This is because eigenspace coefficients are sensitive to global
changes (e.g. a shift of the body) which should be abstracted for this
domain. A more “hand-centered” or “body-centered” image description
could substantially reduce the empirically determinednumber of rest states.



(a) Manual annotation of tri−phasic gestures

(b) Manual annotation of beat gestures

(c) Automatic state parse using FSM

(d) Automatic annotation of bi−phasic and tri−phasic gestures
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Figure 6. Example results of parsing the gesture video. (a) and (b) Visual encoding of a manual annotation
of the presence of gesture. The annotation was produced by an expert in gesture communication who had
not seen any of the results before viewing the video. (c) The state parse of our gesture-state-FSM and (d) the
automatically derived labelling from the state parse (dark grey indicates bi-phasic beats, light grey tri-phasic
gestures).

5. Conclusion: Gesture and meaning

The gesture research community has identified funda-
mental types of natural gesture. In particular the tri-phasic
gestures assist in conveying meaning in dialog. We have
shown how the temporal structure of a video sequence of
someone relating a story can be parsed into states that seg-
ment many of the tri-phasic gestures. We view this work as
an initial step toward incorporating gesture sensitivity into
dialog understanding.

We note that there is an immediate application of this
technology to the summarization of video. Consider dis-
tilling a 3 minute sequence of someone telling a story to
just a few frames or a few subsequences accompanying the
text. The tri-phasic gestures contain meaning in the mind of
the speaker, and are often used to disambiguate sections of
narration where words alone do not easily express the idea
(in general, gesture is thought to complement speech). The
automatic extraction of these gestures should enhance the
intelligibility of the summary.
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