
ITS 2010: Devices & Algorithms November 7-10, 2010, Saarbrücken, Germany

69

Using a Depth Camera as a Touch Sensor

Andrew D. Wilson
Microsoft Research

Redmond, WA 98052 USA
awilson@microsoft.com

ABSTRACT
We explore the application of depth-sensing cameras to
detect touch on a tabletop. Limits of depth estimate resolu-
tion and line of sight requirements dictate that the determi-
nation of the moment of touch will not be as precise as that
of more direct sensing techniques such as capacitive touch
screens. However, using a depth-sensing camera to detect
touch has significant advantages: first, the interactive sur-
face need not be instrumented. Secondly, this approach
allows touch sensing on non-flat surfaces. Finally, infor-
mation about the shape of the users and their arms and
hands above the surface may be exploited in useful ways,
such as determining hover state, or that multiple touches
are from same hand or from the same user. We present
techniques and findings using Microsoft Kinect.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Human Factors
Keywords: Depth-sensing cameras, touchscreen interfaces.
INTRODUCTION
Depth-sensing cameras report distance to the nearest sur-
face at each pixel. The depth camera included with Mi-
crosoft Kinect [1], based on a PrimeSense design, projects
a fixed pattern of infrared light [2]. An offset infrared cam-
era is used to calculate the precise manner in which this
pattern is distorted as a function of the depth of the nearest
physical surface. Because the depth calculations are based
on triangulating features in the image, depth precision de-
creases as the distance from the camera to subject increas-
es. Public PrimeSense documents claim per-pixel depth
resolution of 1cm when the camera is 2m away.
The Kinect software development kit exploits depth infor-
mation to provide game developers with skeletal models of
Xbox players. Such models are useful for animating a play-
er’s avatar in a game, for example. Here instead we consid-
er the use of the same depth-sensing camera to emulate
touchscreen sensor technology. In particular, our goal is to
deduce a useful touch signal when the camera is mounted
well above a surface such as a desk or table.

In comparison with more traditional techniques, such as
capacitive sensors, the use of depth cameras to sense touch
has the following advantages:
• The interactive surface need not be instrumented.
• The interactive surface need not be flat.
• Information about the shape of the users and users’

arms and hands above the surface may be exploited in
useful ways, such as determining hover state, or that
multiple touches are from the same hand or user.

However, given the depth estimate resolution of today’s
depth-sensing cameras, and the various limitations imposed
by viewing the user and table from above, we expect that
relying exclusively on the depth camera will not give as
precise determination of the moment of touch as more tra-
ditional touchscreen technologies.
After reviewing related work, we discuss some considera-
tions in sensing touch from depth cameras and then present
a simple technique to achieve a useable touch signal.
RELATED WORK
Among the earliest applications of overhead video cameras
to track fingers and detect touch on a tabletop are Wellner’s
Digital Desk [15] and Kruger’s VIDEODESK [10]. Well-
ner discusses the difficulty of accurately determining touch,
and proposes using a microphone to detect when the user’s
finger taps the surface. More recent attempts using a single
camera exploit more refined models of the shape of finger-
tips [9,11], and possibly use dwell-time to signal clicking.
Marshall et al [13] detect touch from the change in color of
the fingernail when the finger is pressed against a surface.
The use of range information to determine when the user
touches an un-instrumented surface has been explored in a
variety of ways. Wren et al [20] used two cameras to detect
touch using a “fixed disparity” technique which finds ob-
jects at a particular depth rather than computing depth gen-
erally over the scene. Wilson’s TouchLight [16] similarly
uses two cameras and looks only for objects at the depth of
a transparent display. Malik’s Visual Touchpad [12] uses
two cameras and binocular disparity calculations to deter-
mine when a fingertip is touching the surface. Agarwal et al
[3] use two cameras and machine learning techniques to
detect fingertips touching a display. Wilson’s PlayAny-
where [17] single camera system exploits the shadow cast
by the finger to determine range of the finger to the surface.
Depth-sensing cameras have been used in various interac-
tive surface applications. Wilson’s Micromotocross game
[18] explored the use of depth cameras to inform a physics
simulation about objects on the surface. Benko et al’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ITS’10, November 7–10, 2010, Saarbrücken, Germany.
Copyright 2010 ACM 978-1-4503-0399-6/10/11...$10.00.

ITS 2010: Devices & Algorithms November 7-10, 2010, Saarbrücken, Germany

70

DepthTouch [4] applied a depth camera to TouchLight’s
display, to more easily detect touch.
One motivation for using depth cameras to detect touch is
the various other capabilities that they afford beyond touch,
such as enabling “above the surface interaction” [4,7]. An-
other useful capability is the ability to attribute each touch
to specific users. While such ability was first built into Di-
amondTouch [6], there have been a number of vision-based
approaches to exploit more sophisticated models of contact
orientation and shape with similar goals [5,14].
SENSING TOUCH FROM DEPTH
Assuming a clear line of sight, a natural approach to detect
touch using a depth camera is to compare the current input
depth image against some model of the touch surface. Pix-
els corresponding to the finger or hand will appear to be
closer to the camera than the corresponding part of the
known touch surface.
Taking all pixels closer than some threshold representing
the depth of the surface will also include pixels belonging
to the user’s arm and potentially other objects that are not
in contact with the tabletop. A second threshold may be
used to eliminate pixels that are too far from the surface to
be considered part of object in contact (see Figure 1): ݀max > ݀௫,௬ > 	݀min (1)

This relation establishes a “shell” around surface area of
interest (similar to [20]) (see Figure 1). In the following, we
discuss how to set ݀max and ݀min.

Figure 1: Thresholds ݀max and ݀min are used to
segment fingers touching a surface at depth ݀surface.

Modeling the surface
The approach outlined above relies on good estimates of
the distance to the surface at every pixel in the image. The
value of ݀max should be as great as possible without mis-
classifying too many non-touch pixels. The value can be
chosen to match the known distance ݀surface to the surface,
with some margin to accommodate any noise in the depth
image values. Setting this value too loosely risks cutting
the tips of fingers off, which will cause an undesirable shift
in contact position in later stages of processing.
For flat surfaces, such as a table, it may suffice to model
the 3D position and orientation of the surface and compute ݀surface at given image coordinates from this model (this is
the approach used in [19]).
Unfortunately, this idealized model does not account for
the deviations due to noise in the depth image, slight varia-
tions in surface flatness or uncorrected lens distortion ef-
fects. Thus it will be necessary to place ݀max some distance
above ݀surface to account for deviations from the model. In

order to provide the best touch signal, we would like to
minimize ݀surface −	݀max.
A better approach may be to find ݀surface for every pixel
location by taking a “snapshot” of the depth image when
the surface is empty. This non-parametric approach can
model surfaces that are not flat, with the usual caveat the
sensed surface must have a line of sight to the camera.
In our experience, depth image noise at a given pixel loca-
tion is not normal nor is it the same at every pixel location.
Depth is reported in millimeters as 16-bit integer values;
these real world values are calculated from raw shift values,
also 16-bit integers. A per-pixel histogram of raw shift val-
ues over several hundred frames of a motionless scene re-
veals that depth estimates are remarkably stable at many
pixel locations, taking on only one value, but at other loca-
tions can vacillate between two adjacent values. In our ex-
periments, ݀max is determined at each pixel location by
inspecting this histogram and, considering depth values
from least depth to greatest depth, finding the first depth
value for which histogram exceeds some small threshold
value. We note that rather than build a full 16-bit histogram
over the image, it is convenient to first take a “snapshot” of
the scene and compute a histogram over a small range of
deviations from the snapshot at each pixel location.
Setting the near threshold
Setting ݀min is less straightforward: too low of a value (too
near) will cause contacts to be generated well before there
is an actual touch. Too great of a value (too far) may make
the resulting image of classified pixels difficult to group
into distinct contacts. Setting ݀min too low or too high will
cause a shift in contact position.
More generally, it is impossible to say whether an observed
object is in contact from the depth image alone. We might
be observing an object resting on the table, or it may be
thinner than we expect and is instead hovering over the
table. In particular, camera line of sight and the posture of
the hand may make it impossible to detect touch. Consider,
for example, an outstretched index finger lying along the
ray from the camera to the hand, or the hand completely
obscuring the touching finger.
In practice, we must make some assumptions about the
anthropometry of fingers and hands, and their posture dur-
ing touch. We choose ݀min to match the typical thickness ߬
of the finger resting on the surface, and assume that the
finger lies flat on the surface at least along the area of con-
tact: ݀min	 = ݀max − ߬.
Forming contacts
After computing the surface histogram, the values ݀max
may be stored as an image of thresholds, used in a single
pass to classify all pixels in the input depth image accord-
ing to Equation 1.
The resulting binary image shows significant edge effects
around the contour of the hand, even when the hand is well
above ݀min (see Figure 2c). These artifacts may be removed
by low-pass filtering the image; we use a separable boxcar

݀surface
݀min ݀max

ITS 2010: Devices & Algorithms November 7-10, 2010, Saarbrücken, Germany

71

filter (9×9 pixels) followed by thresholding to obtain re-
gions where there is good support for full contacts (Figure
2d). Discrete points of contact may be found in this final
image by techniques common to imaging interactive touch
screens. For example, connected components analysis may
be used to discover groups of pixels corresponding to con-
tacts. These may be tracked over time to implement famil-
iar multi-touch interactions.

(a) (b)

(c) (d)
Figure 2: (a) Experimental setup (camera height
0.75m above tabletop) (b) Depth image (note:
banding is due to 16 to 8 bit conversion), (c) touch
image, (d) final touch image after low pass filter.

EVALUATION
For experimentation we mounted a pre-release Microsoft
Kinect camera above a flat tabletop surface (Figure 2a).
Because the depth sensing camera computes depth at each
pixel by triangulating features, the resolution of the depth
information decreases with camera distance. Thus we tested
our system at two different heights above the surface:
0.75m and 1.5m. With a 70 degree field of view, the Kinect
camera can observe a 1.05m and 2.1m diagonal surface at
these heights, respectively. In terms of the size of the inter-
active surface, the shorter system compares favorably to
much of the related work, while the taller configuration
yields an interactive surface that is quite large, possibly
appropriate for a smaller conference table.
We configured the camera to report depth shift data in a
640×480 16 bit image at 30Hz. The threshold ݀max was set
automatically as described earlier by collecting a histogram
of depth values of the empty surface over a few hundred
frames. After some experimentation, it was determined that ߬ = 4 and ߬ = 7 (depth shift values, not mm) gives a good
value for ݀min	 = 	 ݀max − ߬, for the 0.75m height and 1.5m
height configurations, respectively. These values result in
good contact formation, as well as the ability to pick up
much of the hand when it is flat on the surface.
In evaluating the performance of our technique, we are
interested in the reliability of touch determination, and in
the accuracy of touch position. Because of the limitations

of depth resolution and choosing thresholds ݀max and ݀min,
we expect touch to be less reliable than that of more direct
means of sensing touch (e.g., capacitive touch screens).
To verify ݀max and ݀min in the actual setup and also give an
idea of the limits of touch reliability, we observed where
the thresholds lie in terms of actual height above the sur-
face by stacking physical objects of varying height and
observing changes in the output image. We used Post-it®
note pads, because they can easily be stacked and split to
achieve a particular height (Figure 3). For the 0.75m height, ݀max and ݀min are observed to lie at 3mm and 14mm above ݀surface, respectively. For the 1.5m height, ݀max and ݀min
lies 6mm and 30mm above ݀surface, respectively. The halv-
ing of precision when doubling camera distance is expected
given that depth calculations are based on triangulation.

Figure 3: Observing touch fidelity. Left: The near
and far pads of paper measure 3mm and 14mm,
respectively. Right: corresponding binary image.

To get a sense of the accuracy of the spatial position of the
contacts, we first drew a target point on the surface, then
placed a small (40mm tall, 25mm diameter) object over the
target point. This object was used to sight the drawn target
point in the depth image. We then clicked on the center of
the object in the depth image to provide ground truth target
position. After removing the object, the target was touched
a number of times, from a variety of angles. It is important
to note that calculating the position of the target was very
simplistic, and did not incorporate adjustments to more
closely match users’ expectations (see [8]). In each case the
contact position (centroid) was compared to the ground
truth target position. Informal observations indicate that the
worst case error was about 6 pixels (about 15mm at the
surface) (1.5m height) and 3 pixels (7mm) (0.75m height).
To demonstrate that the system can work with non-flat sur-
faces, we placed a book on the table, and re-ran the surface
calibration. Figure 4 illustrates contacts recovered when
touching the book.

Figure 4: Detecting touch on a non-flat surface.
Left: touching a book. Middle: depth image. Right:
detected contacts.

ITS 2010: Devices & Algorithms November 7-10, 2010, Saarbrücken, Germany

72

BEYOND TOUCH
The focus of the present work is on enabling touch on an
un-instrumented surface. While the touch performance us-
ing a depth camera alone may never approach that of touch
sensors such as capacitive touch screens, depth cameras
enable a wide variety of interactions that go beyond any
conventional touch screen sensor. In particular to interac-
tive surface applications, it is easy to see how depth camer-
as can provide more information about the user doing the
touching. Figure 5 illustrates a simple segmentation of the
user above the calibrated surface. For example, depth cam-
eras are well suited to enable “above the surface” interac-
tions [18,4,7,19], such as picking up a virtual object, “hold-
ing” it in the air above the surface, and dropping it else-
where.
One particularly basic calculation that seems especially
useful in considering touch interfaces is the ability to de-
termine that multiple touch contacts are from the same
hand, or that multiple contacts are from the same user. Such
connectivity information is easily calculated by noting that
two contacts made by the same user will index into the
same “above the surface” component (as in Figure 5).

Figure 5: Simple depth threshold shows user’s body
as a single connected component (camera at 1.5m
height above tabletop, for 2.1m diagonal area of in-
teraction).

EXTENSIONS
The limitations of the very simple approach proposed in
this paper suggest a number of items for future work. First,
we note that further processing would be required to recog-
nize physical objects placed and possibly moved on the
surface, as distinct from touch contacts. To then detect
touching these objects (such as the book in Figure 4), the
surface calibration must be updated appropriately. Dynamic
calibration may also be useful when the surface itself is
moved.
Secondly, the calculation of contact position could be made
more accurate by exploiting shape or posture information
available in the depth camera. This could even include cor-
rections based on the user’s eye-point (as in [8]), which
may be approximated directly from the depth image by
finding the user’s head position. Note that, as discussed
above, it is easy to match a particular contact to that user’s
body.
Finally, some changes may be required to work with other
depth-sensing camera technologies. Time-of-flight based
depth cameras, for example, have different noise character-
istics than the PrimeSense camera and may require more

than a simple histogram of depth values at each pixel loca-
tion.
CONCLUSION
We demonstrate how a depth-sensing camera may be used
to detect touch on an un-instrumented surface. While the
performance of this approach is less than that of more con-
ventional touch screen technologies, we believe the per-
formance is good enough to be useful in a variety of appli-
cations. Additionally, the approach offers certain interest-
ing advantages, such as working on non-flat surfaces and in
concert with “above the surface” interaction techniques.
REFERENCES
1. http://www.xbox.com/kinect, last accessed Sep. 28, 2010.
2. http://www.primesense.com, last accessed Sep. 28, 2010.
3. Agarwal, A., Izadi, S., Chandraker M., Blake, A. High preci-

sion multi-touch sensing on surfaces using overhead cameras.
Proc. IEEE Tabletop 2007, 197-200.

4. Benko, H., and Wilson, A.D. DepthTouch: using depth-
sensing camera to enable freehand interactions on and above
the interactive surface. Microsoft Research Technical Report
MSR-TR-2009-23. March, 2009.

5. Dang, C. T., Straub, M., and André, E. Hand distinction for
multi-touch tabletop interaction. Proc. ACM ITS 2009, 101-
108.

6. Dietz, P. and Leigh, D. DiamondTouch: a multi-user touch
technology. Proc. ACM UIST 2001, 219-226.

7. Hilliges, O., Izadi, S., Wilson, A. D., Hodges, S., Garcia-
Mendoza, A., and Butz, A. 2009. Interactions in the air: add-
ing further depth to interactive tabletops. Proc. ACM UIST
2009, 139-148.

8. Holz, C. and Baudisch, P. The generalized perceived input
point model and how to double touch accuracy by extracting
fingerprints. Proc. ACM CHI 2010. 581-590.

9. Kjeldsen, R., Pinhanez, C., Pingali, G., Jacob Hartman, J.,
Tony Levas, T., Podlaseck, M. Interacting with steerable pro-
jected displays. Proc. International Conference on Automatic
Face and Gesture Recognition, 2002.

10. Krueger, M. Artificial Reality 2, Addison-Wesley, 1991.
11. Letessier, J. and Bérard, F. Visual tracking of bare fingers for

interactive surfaces. Proc. ACM UIST 2004, 119-122.
12. Malik, S. and Laszlo, J. Visual touchpad: a two-handed ges-

tural input device. Proc. ICMI 2004. 289-296.
13. Marshall, J., Pridmore, T., Pound, M., Benford, S., and

Koleva, B. Pressing the Flesh: Sensing Multiple Touch and
Finger Pressure on Arbitrary Surfaces. Proc. Pervasive 2008,
38-55.

14. Wang, F., Cao, X., Ren, X., and Irani, P. Detecting and lever-
aging finger orientation for interaction with direct-touch sur-
faces. Proc. ACM UIST 2009, 23-32.

15. Wellner, P. The DigitalDesk calculator: tangible manipulation
on a desk top display. Proc. ACM UIST 1991. 27-33.

16. Wilson, A. D. TouchLight: an imaging touch screen and dis-
play for gesture-based interaction. Proc. ICMI 2004, 69-76.

17. Wilson, A. D. PlayAnywhere: a compact interactive tabletop
projection-vision system. Proc. ACM UIST 2005. 83-92.

18. Wilson, A.D. Depth sensing video cameras for 3D tangible
tabletop interaction. Proc. IEEE Tabletop 2007. 201-204.

19. Wilson, A.D., and Benko, H. Combing multiple depth camer-
as and projectors for interactions, on, above and between sur-
faces. Proc. ACM UIST 2010.

20. Wren, C., and Ivanov, Y. Volumetric operations with surface
margins. In CVPR: Technical Sketches, 2001.

