
Measurement and Analysis of Mobile Web Cache Performance
Yun Ma1, Xuanzhe Liu1*, Shuhui Zhang1, Ruirui Xiang1, Yunxin Liu2, Tao Xie3
1 School of Electronics Engineering and Computer Science, Peking University, Beijing, China

2 Microsoft Research, Beijing, China
3 University of Illinois at Urbana-Champaign, Urbana, USA

{mayun, liuxuanzhe, zhangshuhui, xiangrr0512}@pku.edu.cn; yunxin.liu@microsoft.com; taoxie@illinois.edu

ABSTRACT
The Web browser is a killer app on mobile devices such as
smartphones. However, the user experience of mobile Web
browsing is undesirable because of the slow resource loading. To
improve the performance of Web resource loading, caching has
been adopted as a key mechanism. However, the existing passive
measurement studies cannot comprehensively characterize the
performance of mobile Web caching. For example, most of these
studies mainly focus on client-side implementations but not
server-side configurations, suffer from biased user behaviors, and
fail to study “miscached” resources. To address these issues, in
this paper, we present a proactive approach for a comprehensive
measurement study on mobile Web cache performance. The key
idea of our approach is to proactively crawl resources from
hundreds of websites periodically with a fine-grained time
interval. Thus, we are able to uncover the resource update history
and cache configurations at the server side, and analyze the cache
performance in various time granularities. Based on our collected
data, we build a new cache analysis model and study the upper
bound of how high percentage of resources could potentially be
cached and how effective the caching works in practice. We
report detailed analysis results of different websites and various
types of Web resources, and identify the problems caused by
unsatisfactory cache performance. In particular, we identify two
major problems – Redundant Transfer and Miscached Resource,
which lead to unsatisfactory cache performance. We investigate
three main root causes: Same Content, Heuristic Expiration, and
Conservative Expiration Time, and discuss what mobile Web
developers can do to mitigate those problems.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems
— Design studies

Keywords
Mobile Web; Cache; Measurement

1. INTRODUCTION
The Web browser is a killer and arguably the most frequently
used app on mobile devices such as smartphones and tablet
computers. According to a study [26], Web browsers occupy 63%
of the window focus time on the subjects’ mobile devices.
However, the user experience of mobile Web browsing is far from
satisfaction. Resource loading is one of the key factors influencing
Web browsing performance. It is reported that 65% of page load

time is spent on resource loading [21]. Such problem becomes
even worse on mobile devices because of the unreliable network
conditions, particularly when the network is congested or the user
is moving around. Furthermore, more resource downloading may
consume more energy, which is the scarcest resource on battery-
powered mobile devices.

Caching is a widely adopted mechanism to accelerate Web
resource loading1. By saving the resources of visited webpages
into the local storage (memory or disk), these webpages may be
served from the local storage rather than being re-fetched from the
Web servers when the webpages are visited again. As a result,
caching reduces the quantity of downloaded resources and thus
can improve Web browsing performance. Caching is particularly
beneficial to mobile devices because it not only reduces page load
time, but also reduces network traffic and energy consumption.

It is critical to understand how mobile Web browsing could
benefit from caching and how well caching takes effect in practice.
To this end, several measurement studies have been made by
analyzing user access traces gathered from ISPs or instrumented
client devices [11][15][16][17][24]. These studies have already
revealed the performance problems of mobile Web caching
caused by imperfect client-side implementations. However, they
cannot comprehensively characterize the end-to-end Web cache
performance involving not only Web clients but also Web servers
and user behaviors. In particular, existing measurement studies on
mobile Web cache have the following three main limitations.

 These existing studies suffer from biased user behaviors.
The traces collected from ISPs or instrumented client devices
are passive observations on users’ Web access behaviors.
These traces are just fragmented snapshots of the websites and
thus cannot cover the full resource update history of these
websites. As a result, measurements based on these traces
could imply only how caching works on the sampled access of
the sampled users, but cannot reflect how the websites
themselves can essentially benefit from caching.

 These existing studies do not investigate the influences of
server-side caching configurations on cache performance.
Similar to the first issue, as the passively collected data traces
cannot cover the full resource update history of the websites,
these studies concentrate on client-side implementations but
not server-side configurations. Although how the browsers
support caching on mobile devices is important, Web cache
performance is largely determined by the cache configurations
at the server side. For example, if resources are configured as

1 “Caching” and “cache” are often used interchangeably. Usually,

“caching” denotes the mechanism defined by specifications, and “cache”
represents the browser component that could store resources temporally.
“Cache” is also used as a verb, denoting putting something in the cache.
In this paper, caching and cache have the same meaning if not
specifically stated.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to
the author's site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741114

———————————————————
* Corresponding author

no-cache (indicating that they should not be cached), client-
side caching cannot help at all. It is desirable to examine how
server-side configurations may impact Web caching.

 These existing studies do not investigate the problem of
miscached resources. Miscached resources are those that
have already been updated on the server, but the browser
wrongly uses the expired resources from the cache rather than
fetching the updated ones from the server. The passive data
collection approaches cannot capture miscached resources
because the passive approaches collect only the resources
actually fetched by browsers. However, miscached resources
may significantly affect user experience. In particular, if the
functional resources (e.g., JavaScript or CSS) are miscached,
the corresponding website may not work correctly. Therefore,
there is a strong need of studying miscached resources.

To address the preceding issues faced by the existing studies, in
this paper, we present a proactive approach for comprehensive
measurement and analysis of mobile Web cache performance. In
our approach, we proactively crawl resources from hundreds of
websites periodically with a fine-grained time interval for a long
time duration. In this way, we are able to uncover the resource
update history and cache configurations at the server side, and
analyze the cache performance in various time granularities,
without bias caused by limited samples of users’ behaviors.
Furthermore, we build an analysis model to answer three research
questions. The first one is how much of a website can be cached,
giving an upper bound of how caching could help improve mobile
Web browsing experience. More cacheable resources indicate
more performance improvements that the website can benefit
from caching. The second question is how well caching has been
supported to reach the upper bound, providing comprehensive
characterization of the state-of-the-art of mobile Web caching.
The third question is what causes the gap between the upper
bound and the actual performance. For various reasons, resources
that can be cached may not be actually cached and there exist
miscached resources.

To make a quantitative study, we measure the performance of
Web caching in both the resource size and resource number.
Larger size of resources loaded from the cache indicates less data
traffic that needs downloading from the network. However, the
resource size itself cannot fully quantify the performance of Web
caching. Given the same total size of resources, a larger number
of small resources loaded from the cache indicates fewer network
connections to the server and less energy consumption, compared
to a small number of large resources. Therefore, we consider both
the resource size and resource number as the evaluation metrics
on how caching influences mobile Web browsing experience in
terms of page load time, data traffic, and energy consumption.

This paper makes the following main contributions:

 A proactive approach to acquire resource update history. We
choose two sets of websites for a comparative study to
uncover both the state-of-the-art and ordinary status of mobile
Web cache performance. One set (Top) comes from Alexa
Top 100 list. The other set (Random) comes from 100
websites randomly chosen from Alexa Top 1,000,000 list. We
periodically crawl their resource update history for one week,
forming the basis of our analysis.

 An analysis model for cache performance. Based on the
resource update history, we formally define the metrics to
quantitatively measure cache performance. We then build a
cache behavior taxonomy to correlate cache configurations to
resource updates. Such taxonomy maps each possible case to

one of the four behavior patterns: Positive Hit (PH), Negative
Hit (NH), Positive Miss (PM), and Negative Miss (NM).

 Empirical results for showing the gap between ideal and
actual mobile Web cache performance. On average, more
than half of the total resources can be cached and the Random
websites are more cacheable than the Top ones. However, in
practice, only a limited portion of the cacheable resources are
cached, not more than 50% for the Random websites.
Different types of resources have different cacheabilities.

 Empirical results for highlighting two main problems caused
by undesirable cache performance. The Redundant Transfer
problem comes from NM resources (the resources that can be
served from the cache but are actually downloaded from the
network). The median Negative Miss Ratios in terms of the
resource size of Top and Random websites are 10% and 52%
for one-day revisiting interval, respectively. The Miscached
Resource problem comes from NH resources (the resources
that have been updated on the server but are actually served
from the cache). NH resources have a similar proportion in
both Top and Random websites.

 Root causes for undesirable mobile Web cache performance.
Three main root causes are identified: Same Content (the
same resources that have different URLs when requested at
different times), Heuristic Expiration (the caching policy is
not explicitly defined by the server and thus it depends on
browsers to infer an expiration time), and Conservative
Expiration Time (the expiration time is set to be too short).

 Implications and recommendations on how to improve cache
performance by better cache policies. For example, the
Application Cache of HTML 5 can be used to make the
resource updates visible to clients.

The remainder of this paper is organized as follows. Section 2
motivates our study by analyzing how caching works and
identifying three research questions. Section 3 describes our data
set and data-collection approach. Section 4 presents the analysis
methodology and Section 5 presents the detailed measurement
results. Based on the findings, we provide implications and
recommendations for Web developers in Section 6. Section 7
surveys related work and Section 8 concludes this paper.

2. BACKGROUND AND GOAL
In this section, we first describe the background on how Web
caching works and then present the three research questions that
we seek to answer, as the goal of this paper.

2.1 How Web Caching Works
Figure 1 shows a simplified procedure to illustrate how Web
caching works. A webpage consists of a set of resources, such as

Figure 1. Architecture of Web caching

Browser

Resource
Loader

Cache Manager

CacheDB

CDN

Reverse
Proxy

Proxy

Server

Resources

protocol :// host : port / path ? query # fragment

HTML, CSS, JavaScript, and images. When users type in a URL
and press the “Go” button or click through a hyperlink, the
browser will load the target webpage by acquiring the
corresponding resources from the Resource Loader module.

The Resource Loader will first try to load resources from the local
cache through the Cache Manager module. According to RFC
2616 [9], HTTP/1.1 defines a cache expiration model and a cache
validation model. The cache expiration model allows a Web
server to set an expiration time for each resource, indicating how
long the resource can be cached by a client device. Setting
expiration time is not mandatory. If a resource does not have an
expiration time explicitly set by the server, browsers may apply
their own heuristic algorithms to decide the cache expiration time
of the resource. Such mechanism is called Heuristic Expiration.

The Cache Manager checks whether the requested resource
(identified by its URL’s protocol, host, port, path, and query) can
be found in the Cache Database. If not, the browser will set up a
HTTP connection to fetch the resource from the remote Web
server. If the resource is found and not expired according to the
cache expiration model, it will be returned directly from the
cache. If the resource is expired, the HTTP/1.1 cache validation
model requires the browser to check with the server whether the
resource is changed or not (via the last modified time or Etag
identifier). If the server decides the corresponding resource has
not changed, it responds with a "304 Not Modified" message and
the resource will be fetched from the cache of the client.
Otherwise, the server sends the updated resource back to the
browser.

It is worth mentioning that a website may be much more complex
than a single Web server. A large website (e.g., Google) may have
many backend Web servers. There may also be Content Delivery
Network (CDN) servers to enable scalability and geographical
distributions. In such a case, a URL’s query part often contains a
hash code to indicate which CDN server should process the
request, and thus the same resource may have different URLs
served by different CDN servers. Furthermore, proxy servers and
reverse proxies often act in the middle to route the requests to
different backend servers for workload balance. Different backend
servers could also attach different URLs to the same resource. As
discussed in Section 5.3, this “multiple URLs of the same
resource” problem causes undesirable Web cache performance
and should be investigated.

2.2 Research Questions to Answer
Our goal is to conduct a comprehensive study on the performance
of mobile Web caching. Specifically, we intend to answer the
following three research questions.

RQ1: What percentage of Web resources can be cached ideally?
By answering this question, we study the upper bound of the
benefit of Web caching. We consider not only the redundant
transmission of the same resource (identified by its unique URL),
but also the redundancy of the resources with different URLs.

RQ2: What percentage of the cacheable Web resources are
actually cached if the client is perfectly implemented according to
the specification? By answering this question, we uncover how
well developers leverage the caching mechanism in practice, and
reveal the gap between the ideal and actual performance of mobile
Web caching.

RQ3: What causes the gap between ideal and actual performance?
By answering this question, we investigate the root causes of the
undesirable actual performance of Web caching, and give Web

developers recommendations on how to improve the performance
of mobile Web caching.

Answering these questions requires tracking the whole resource
update history of websites. This requirement cannot be met by
existing passive data collection approaches. Therefore, we
propose a new proactive data collection approach and next present
how it works.

3. DATA COLLECTION
In this section, we describe how we proactively crawl Web
resources and what data sets are used to conduct our study.

3.1 Proactive Data Collection Approach
We propose a proactive approach to capture the resource update
history of a specific website. For a given URL, we periodically
visit the corresponding webpage with a short time interval and for
a long time duration. For each visit, we first clean the cache and
then record all the returned resources. The short revisiting interval
not only makes it possible to obtain the complete resource update
history, but also enables us to make flexible analysis with various
time granularities. The long data-collection time duration ensures
enough samples and lowers the bias. We develop a tool to realize
our approach and Figure 2 shows its architecture.

Our tool runs on a PC using the Chrome browser. We enable the
Chrome browser’s emulation mode to make it act as a mobile
browser (Android 4.2 native browser in our case) so that a website
will return its mobile-version webpages (if the website has a
mobile version). It is important to use a real browser to crawl data.
The reason is that many websites embed JavaScript, and more
resources may be loaded by the JavaScript execution. Only when
the webpage is actually rendered by a browser, can we obtain the
whole set of resources. Furthermore, using a PC-version browser
helps us leverage the programmability of the browser, which is
not easy on Android smartphones.

We use the Charles proxy [3], a commercial product, to act as the
middle tier for data collection. Charles can record each TCP
connection passed through it and save HTTP traces in structured
data. The data structures split HTTP protocol elements into
different fields, making it easy to perform further analysis. In
addition, Charles has a programming interface to ease the data
recording and saving. We install Charles on the same PC and
configure the Chrome browser to use Charles as the proxy.

We build a Chrome extension to automate our data collection. The
extension takes a list of URLs and controls the Chrome browser to
visit the URLs one by one. Before each visit, the browser cache is
cleaned in order to ensure that all the resources are loaded from
the network. When a Chrome TabComplete event is detected, the
extension will regard that the website has finished loading. Note
that some websites utilize lazy loading, and thus there will still be
resource requests after TabComplete is fired. To mitigate such
resource incompleteness, the extension is set to wait for two

Figure 2. Data collection tool

Internet

Browser
(Chrome)

Emulated to Android
Native browser

HTTP Proxy
(Charles) HTTPHTTP

Browser
Extension Storage

Log filescontrol control

URL

PC

seconds after a TabComplete event. Finally, the extension invokes
the Charles programming interface to save all the resource request
records on the disk. We can also configure the extension to
periodically crawl a list of URLs with a given time interval.

3.2 Data Sets
For a comparative study, we choose two sets of websites from
Alexa [1] ranking list in January 2014. The first set (Top) contains
Alexa top 100 websites. We expect that their cache performance
is highly optimized and regard them as the state-of-the-art of Web
caching. The other set (Random) contains 100 websites randomly
selected from Alexa top 1,000,000 list. We assume that their
cache performance is not fully optimized and regard them as the
average level of cache performance.

We manually checked each website in the two sets and filtered out
the following ones.

 Unreachable websites. Some websites were not reachable
because they were shut down at the time that we visited.
Unreachable websites occurred in only the Random data set.

 Same websites with different domain names. For example, in
the Top data set, Google appears 16 times such as google.in,
google.de, and google.jp. Since they have the same function
and appearance, we keep only google.com in our Top data set.
However, we treat yahoo and yahoo.jp as two different
websites because their contents are totally different.

 HTTPS-only websites. As HTTPS prevents us from capturing
the Web resources transmitted over the encrypted network
connection, we exclude those websites that support only the
HTTPS protocol.

After the filtering, 146 websites remain in total, 55 in the Top data
set, and 91 in the Random data set. Note that not all of the 146
websites have a mobile version customized for mobile browsing.
According to our manual checking, 7 of the 55 Top websites and
56 of the 91 Random websites do not have their mobile versions.
However, the goal of our measurement is to study how Web
caching performs on mobile devices for all websites, not only the
ones with a mobile version. Therefore, we do not distinguish
mobile or non-mobile websites.

For these 146 websites, we used our data-collection tool to
periodically crawl their homepages for one week. The crawling
time interval was 30 minutes, being short enough to capture all the
resource changes. One week means that we visited each website
for more than 300 times. In total we crawled 157 GB data, 73 GB
for the Top websites, and 84 GB for the Random websites.

4. MEASUREMENT METHODOLOGY
In this section, we formally define the measurement metrics used
to study Web cache performance. We also design a taxonomy to
map the relationship between cache specifications and actual
resource updates.

4.1 Metrics Definition
Cache only works when a website is revisited. So we consider two
visits. At the first visit, the browser cache is empty and all the
resources needed to render the website have to be loaded from the
network. After a given Revisiting Interval (RI) ݐ߂ , the same
website is visited for the second time, where some of the
resources are loaded from the browser cache while others are
loaded from the network. We examine how the browser cache
behaves for the second visit.

Define ௧ܵ ൌ ሼݎ௧ሽ as the resource set fetched by the browser at time
ݐ under the condition that the browser cache is empty.

௧ݎ ൏א ,ܮܴܷ ݐ݊݁ݐ݊݋ܥ ൐ is a resource entry, where ܷܴܮ (including
the domain, port, path, and query) identifies the resource, and
 is its actual entity. A resource can be updated when time ݐ݊݁ݐ݊݋ܥ
goes on. ௧ܵ represents the up-to-date resources of the website at
time ݐ.

Define
ሻݐ߂௧ሺܣܥ ൌ ሼݎ௧ א ௧ܵ|ݎ׌௧ି௱௧ א ௧ܵି௱௧, .௧ݎ ݐ݊݁ݐ݊݋ܥ ൌ .௧ି௱௧ݎ ሽݐ݊݁ݐ݊݋ܥ
as the resources (at time ݐ) that have already been loaded from the
network at the previous visit before ݐ߂ . Note that we do not
enforce whether the resource’s URL is the same or not. We
consider only the resource’s content that is actually used by
browsers to render websites. In fact, ܣܥ௧ሺݐ߂ሻ are the resources
that can benefit from caching.

Based on the preceding definitions, cacheablity Ψሺݐ߂ሻ can be
formulated as the proportion of ܣܥ௧ሺݐ߂ሻ in ௧ܵ:

Ψሺݐ߂ሻ ൌ
ሻݐ߂௧ሺܣܥ

௧ܵ

Ψሺݐ߂ሻ measures what percentage of a website can be cached after
 ሻ means more resources are cacheable. It shouldݐ߂Larger Ψሺ .ݐ߂
be pointed out that cacheablity depends on ݐ߂ because resource
updates are different when a website is revisited after different ݐ߂.

Define
ሻݐ߂௧ሺܥ ൌ ሼݎ௧ି௱௧ א ௧ܵି௱௧|ݎ௧ି௱௧ ݅݋ݐ ݀݁ݎݑ݂݃݅݊݋ܿ ݏ ܾ݁ ݄ܿܽܿ݁݀ሽ

as the resource set in the browser cache at time ݐ ሻݐ߂௧ሺܥ .
represents the resources stored into the cache on the previous visit
at time ݐ െ ሻݐ߂௧ሺܥ Note that .ݐ߂ ك ௧ܵି௱௧ because some resources
in ௧ܵି௱௧may be configured not to be stored in the browser cache.

According to the cache mechanism, ሻݐ߂௧ሺܥ ൌ ௧ܺܧ ׫ ௧ܴܨ ,
indicates that some of the cached resources are expired (denoted
as ܺܧ௧) while others are still fresh (denoted as ܴܨ௧). The browser
will first load a resource from the cache if its URL is found in
௧ܪ ௧, in which case we say the resource is hit. Defineܴܨ ൌ ሼݎ௧ א

௧ܵ|ݎ׌ א ,௧ܴܨ .௧ݎ ܮܴܷ ൌ .ݎ ሽ as the resource set loaded fromܮܴܷ
the cache. Otherwise, no matter when the resource URL is found
in ܺܧ௧ or cannot be found in ܥ௧ሺݐ߂ሻ, the browser will load it from
the network, in which case we say the resource is miss. Define
௧ܯ ൌ ሼݎ௧ א ௧ܵ|ሺݎ׌ א ,௧ܺܧ .௧ݎ ܮܴܷ ൌ .ݎ ሻܮܴܷ ש ሺݎ׊ א ,ሻݐ߂௧ሺܥ
.௧ݎ ܮܴܷ ് .ݎ .ሻሽ as the resource set loaded from the networkܮܴܷ

However, the cache policy may not be set properly so that expired
resources could still be up-to-date. In addition, only considering
the resource URL can bring mistakes as the content is what
actually matters for rendering websites. Therefore, we further
define positive and negative patterns for ܪ௧ and ܯ௧, respectively.

Positive Hit (ሻ࢚ࢤሺ࢚ࡴࡼ). Given ݎ௧ א ௧ܪ ௧ݎ , א ሻݐ߂௧ሺܪܲ ֞
௧ି௱௧ݎ׌ א ௧ܵି௱௧, .௧ݎ ܮܴܷ ൌ .௧ି௱௧ݎ ܮܴܷ ר .௧ݎ ݐ݊݁ݐ݊݋ܥ ൌ
.௧ି௱௧ݎ which means that the resource is loaded from the ,ݐ݊݁ݐ݊݋ܥ
cache and it is the same with the up-to-date version on the server.
Larger ܲܪ௧ሺݐ߂ሻ means more resources are correctly served from
the cache.

Negative Hit (ሻ࢚ࢤሺ࢚ࡴࡺ). Given ݎ௧ א ௧ܪ ௧ݎ , א ሻݐ߂௧ሺܪܰ ֞
௧ି௱௧ݎ׌ א ௧ܵି௱௧, .௧ݎ ܮܴܷ ൌ .௧ି௱௧ݎ ܮܴܷ ר .௧ݎ ݐ݊݁ݐ݊݋ܥ ്
.௧ି௱௧ݎ which means that the resource is loaded from the ,ݐ݊݁ݐ݊݋ܥ
cache but its content has already been updated on the server. In
this case, the browser should acquire the updated resource. Larger
ሻݐ߂௧ሺܪܰ means more stale resources are used to render the
website, and wrong behaviors are more likely to happen.

Positive Miss (ሻ࢚ࢤሺ࢚ࡹࡼ). Given ݎ௧ א ௧ܯ ௧ݎ , א ሻݐ߂௧ሺܯܲ ֞
௧ି௱௧ݎ׊ א ௧ܵି௱௧, .௧ݎ ݐ݊݁ݐ݊݋ܥ ് .௧ି௱௧ݎ ݐ݊݁ݐ݊݋ܥ , which means that
the resource is loaded from the network and its content has never
occurred in ௧ܵି௱௧. It is either a new resource or an update of a

cached resource. Larger ܲܯ௧ሺݐ߂ሻ indicates more resources are
newly involved by the website or changed during the time.

Negative Miss (ሻ࢚ࢤሺ࢚ࡹࡺ). Given ݎ௧ א ௧ܯ ௧ݎ , א ሻݐ߂௧ሺܯܰ
֞ ௧ି௱௧ݎ׌ א ௧ܵି௱௧, .௧ݎ ݐ݊݁ݐ݊݋ܥ ൌ .௧ି௱௧ݎ ݐ݊݁ݐ݊݋ܥ , which means
that the resource is loaded from the network but its content has
ever been loaded by the browser before. It is either stored in the
cache or configured not to be cached. In this case, the browser
should directly use the previously loaded resource. Larger
 .ሻ indicates more redundant transfersݐ߂௧ሺܯܰ

Based on the preceding definitions, we can formulate the actual
cache performance Φሺݐ߂ሻ as the proportion of ܲܪ௧ሺݐ߂ሻ in
ሻݐ߂௧ሺܪܲ ׫ :ሻݐ߂௧ሺܯܰ

Φሺݐ߂ሻ ൌ
ሻݐ߂௧ሺܪܲ

ሻݐ߂௧ሺܪܲ ׫ ሻݐ߂௧ሺܯܰ

In addition, we can measure the problems of redundant transfer by
Negative Miss Ratio ΩሺΔݐሻ:

ΩሺΔݐሻ ൌ
ሻݐ߂௧ሺܯܰ

ሻݐ߂௧ሺܯܲ ׫ ሻݐ߂௧ሺܯܰ

Larger Ω indicates more resources loaded from network can
actually be loaded from the cache.

Table 1 summarizes the metrics and their meanings to measure
mobile Web cache performance. Meanwhile, as we choose
resource size and number as the quantitative parameters, subscript
s and n will be attached to the metrics representing which
parameter is used to calculate the metric values. For example, Ψ௦
and Ψ௡ denote the cacheability calculated by resource size and
number, respectively.

4.2 Cache Behavior Taxonomy
In order to calculate the preceding metrics, we correlate the cache
configurations and resource updates by building a cache behavior
taxonomy (Figure 3).

When a web page is visited, the browser will look up in its cache
table for each resource represented by the URL.

If the URL is found in the cache table (URLHit), the cache
mechanism is ready to work. The browser will first check
expiration to determine the freshness of the cached resources.
There are two expiration policies. One is the server-specified
expiration relying on the origin server to provide an explicit
expiration time. The other is the heuristic expiration relying on the

browser to assign an estimated value for those without explicit
server-specified expiration time.

For the heuristic expiration, no matter whether the resource
content is changed or not, any of the four cache behavior patterns
is possible to happen as its freshness cannot be explicitly
determined. In the worst case, we can assume the
ContentChanged state of heuristic expiration as NH and the
ContentNotChanged state as NM. In the following parts, all the
analyses are for the worst case unless specially stated.

For the server-specified expiration, there are three possible
policies. The first is NoStore, indicating that the resources cannot
be persistently stored on the hard disk. The second is NoCache,
indicating that although the resources should not be cached by the
browser, they can be persistently stored on the hard disk. The
ContentChanged and ContentNotChanged states of both NoStore
and NoCache are classified as PM and NM, respectively. In the
third case, according to the expiration time, we can determine
whether the cached resources get expired or stay fresh. If expired,
two further branches Validated and NotValidated can be derived
from the cache validation model, where the last modified time or
Etag is used for the freshness check with the origin server.
Combined with resource update states, we can classify each leaf
node with the ContentChanged state as PM or
ContentNotChanged state as NM. For the Fresh node, NH
happens if the content is changed, while PH happens if the content
is not actually changed.

If the URL is not found in the cache table (URLMiss), it does not
mean that the resource cannot be served by the cache. As
aforementioned, resources with different URLs may have the
same content. We use ContentFound to denote such case and
classify its cache behavior pattern as NM. The last branch of New
indicates completely new resources that have to be downloaded
from the network, and thus we classify it as PM.

5. MEASUREMENT RESULTS
This section presents our detailed measurement results from three
aspects: the gap between the ideal and the actual cache
performance (Section 5.1), the problems caused by undesirable
cache performance (Section 5.2), and the root cause analysis
(Section 5.3).

 Figure 3. Cache behavior taxonomy

Cache Behavior

URLHit URLMiss

NoStore NoCache TimeCache

Expired

Validated NotValidated

Fresh

Content
Found NewHeuristic ServerSpecified

Content
Changed

Content
Not Changed

PH NH PM NM

Table 1. Cache performance metrics

Metric Description

 ሻݐ߂ሺܪܲ
The proportion of resources that are correctly served by
the cache when the website is revisited after ݐ߂.

 ሻݐ߂ሺܪܰ
The proportion of resources that should have been
fetched from the server but are actually provided by the
cache when the website is revisited after ݐ߂.

 ሻݐ߂ሺܯܲ
The proportion of resources that are correctly fetched
from the server when the website is revisited after ݐ߂.

 ሻݐ߂ሺܯܰ
The proportion of resources that should have been
provided by the cache but are actually fetched from the
server when the website is revisited after ݐ߂.

Ψሺݐ߂ሻ
Cacheability of a website with revisiting interval ݐ߂ ,
giving an upper bound of how much a website can
benefit from caching.

Φሺݐ߂ሻ
Actual cache performance of a website with revisiting
interval ݐ߂ , showing how well a website has utilized
caching.

ΩሺΔݐሻ
Negative Miss Ratio with revisiting interval ݐ߂ ,
indicating how much data traffics are wasted by
redundant transfers.

5.1 Ideal and Actual Cache Performance
We first show the cacheability of websites and then present how
much cacheability is realized in practice, uncovering the gap
between the ideal and actual cache performance.

5.1.1 Potential Benefits of Caching
To answer the first research question of “What percentage of Web
resources can be cached ideally”, we calculate Ψ of the websites
in the two data sets, as shown in Table 2. From Table 2, we make
the following observations.

A high percentage of the total resources are cacheable and
thus caching may be substantially helpful. For the Top
websites, 56.4%-72.7% of the total resource size (Ψ௦) and 69.5%-
83.2% of the total resource number (Ψ௡) are cacheable, depending
on the values of RI. For the Random websites, the percentages are
even higher: 63.2%-79.0% in Ψ௦ and 72.1%-84.5% in Ψ௡. These
results demonstrate that caching has great potential to help
improve the performance of mobile Web browsing if caching is
correctly configured and implemented. For the websites that users
visit daily or even more frequently (e.g., news websites and search
engines), caching can substantially reduce the cost of Web
browsing on mobile devices, in terms of network bandwidth,
computation, and energy. Furthermore, as RI increases, Ψ
declines. This phenomenon is reasonable because resources are
more likely to change when users revisit a website after a longer
period and thus the probability of cache hit becomes lower.

Caching is more helpful for the Random websites than for the
Top websites. No matter what value RI has, Ψ௦ and Ψ௡ of the
Random websites are always larger than those of the Top
websites. For example, when RI is 24 hours, Ψ௦ of the Random
set is 6.8% higher than Ψ௦ of the Top set. In other words, the
Random websites are more cacheable than the Top websites. The
reason is that resources are less likely to change for ordinary
websites than for popular websites.

Next, we examine how different types of resources can benefit
from caching.

HTML is the least likely to benefit from caching. Interestingly,
HTML is the least cacheable type of Web resources. For example,
Ψ௦ of HTML for the Top websites is as small as 4.5%-9.1%. This
result may be due to that modern websites are becoming
increasingly dynamic to meet the ever-growing user requirements.
Rich client technologies, such as Asynchronous JavaScript +
XML (AJAX) programming, can change HTML DOM trees on-
the-fly and make HTML less cacheable. Ψ௡ of HTML (34.2%-
41.1% for the Top websites) is larger than Ψ௦ of HTML, because
small HTML pages are less likely dynamic. In addition, Ψ of
HTML for the Random websites is larger than the one for the Top

websites, indicating that the Random websites are relatively more
stable than the Top websites.

CSS is the most cacheable resources. Compared to other types
of resources, Ψ of CSS is the highest: 74.6%-89.4% for the Top
websites, and 72.0%-91.4% for the Random websites. This
observation can be explained by the nature of CSS: although the
content of a webpage may change frequently, the layout and style
of the webpage may be more stable.

JS of the Top websites benefits more than that of the Random
websites. The cacheability of JS for the Top and Random
websites is very different from overall results and other resource
types. Given an RI, Ψ of JS for the Top websites is always larger
than that of the Random websites. Furthermore, Ψ of JS for the
Top websites does not change much as RI changes (70.9% to
72.3%), but the variance of Ψ of JS is rather large for the Random
websites (54.1% to 72.1%). This observation reflects that the Top
websites remain more stable on functionalities than the Random
websites.

Images mostly benefit from caching for short RI. As RI
increases, Ψ of images decreases a lot (about 30% for the Top
websites and 20% for the Random websites). This phenomenon is
reasonable since new images may take place of old ones after a
longer time.

5.1.2 Actual Cache Performance
We further calculate Φ of the two data sets, to explore “What
percentage of the cacheable Web resources are actually cached”
for the websites that we captured. Table 3 shows the results and
we have the following findings.

Compared to the Top websites, the Random websites do not
make best use of caching. Φ of Random is always smaller than Φ
of Top. More than 80% of the cacheable bytes for Top have been
actually cached in all cases, but just above 50% of the cacheable
bytes for Random have been actually cached in the best case
within 0.5 hour RI.

Small-size resources are not taken into consideration very well.
Although Φ௦ of Top is high, Φ௡ is relatively low. For 24 hours RI,
Φ௦ is above 80% while Φ௡ is just not more than 50%. This
observation implies that the Top websites pay more attention on
larger-size resources but there are still a number of resources not
being considered. They occupy small proportion in the total
resource size but constitute the large proportion of the total
resource number. Network connections may be wasted to
download these small resources, not being energy efficient.

The cacheability of HTML is almost not utilized at all. Both
Φ௦ and Φ௡ of HTML for Top are smaller than those of Random.
In the worst case with 24 hours RI, Φ௦ of Top is just 2.8%. For

Table 2. Ψ of aggregated websites and resource types

24h 6h 0.5h

Ψ௦ Ψ௡ Ψ௦ Ψ௡ Ψ௦ Ψ௡
AllTop 56.4% 69.5% 64.7% 76.0% 72.7% 83.2%
AllRandom 63.2% 72.1% 73.5% 78.8% 79.0% 84.5%
HTMLTop 4.5% 34.2% 7.2% 39.6% 9.1% 41.1%
HTMLRandom 22.4% 44.0% 27.8% 49.3% 32.7% 51.0%
CSSTop 74.6% 86.9% 79.5% 86.9% 82.4% 89.4%
CSSRandom 72.0% 90.3% 81.7% 89.8% 84.8% 91.4%
JSTop 70.9% 84.5% 69.7% 82.4% 72.3% 83.4%
JSRandom 54.1% 69.8% 66.6% 77.4% 72.1% 80.6%
ImageTop 51.0% 67.2% 68.3% 78.3% 81.4% 88.8%
ImageRandom 74.0% 76.0% 83.7% 82.8% 91.4% 89.7%

Table 3. Φ of aggregated websites and resource types

24h 6h 0.5h

Φ௦ Φ௡ Φ௦ Φ௡ Φ௦ Φ௡
AllTop 80.7% 48.8% 85.2% 56.6% 88.5% 64.9%
AllRandom 42.4% 32.7% 48.9% 39.6% 53.8% 44.4%
HTMLTop 2.8% 3.8% 2.1% 4.9% 16.4% 12.9%
HTMLRandom 39.4% 11.2% 40.9% 13.0% 47.2% 19.2%
CSSTop 82.6% 52.7% 87.3% 55.9% 88.1% 67.7%
CSSRandom 44.6% 23.5% 55.2% 42.3% 57.9% 45.7%
JSTop 74.9% 37.8% 76.9% 44.5% 83.7% 52.4%
JSRandom 51.6% 29.4% 63.2% 38.9% 69.2% 48.8%
ImageTop 84.5% 55.7% 90.8% 63.3% 93.0% 70.6%
ImageRandom 36.6% 35.4% 41.9% 42.3% 45.2% 45.4%

Random, Φ௦ is not above 50% in the best case with 0.5 hours RI.
Generally, it seems not possible to make HTML cached as it can
hardly be predicted when the HTML will be changed. Therefore,
popular websites give up the cacheability of HTML.

The resource type with the highest cache performance is Image
for Top and JS for Random. It is surprising that images of the
Random websites do not make the best use of cache, where both
Φ௦ and Φ௡ are even not above 50% in the best cases.

In summary, there is a big gap between ideal and actual cache
performance. For the Top websites, the gap is mostly originated
from the large number of small-size resources. For the Random
websites, all types of resources’ cacheability have not been
properly considered.

5.2 Problems Caused by Undesirable Cache
Performance
We then identify two major problems caused by undesirable cache
performance: Redundant Transfer introduced by NM and
Miscached Resource introduced by NH. These problems can
negatively affect the experience of mobile Web browsing.

5.2.1 Redundant Transfer
The Redundant Transfer problem comes from NM when resources
could be fetched from the cache but are actually downloaded from
the network. Figure 4 shows the CDF of Ω௦ and Ω௡ of the Top
and Random websites with different RIs.

Redundant Transfer is a significant issue for mobile Web
browsing and the issue is worse for the Random websites than
the Top ones. Considering 24 hours RI, the medium Ω௦ of Top is

about 10% while it reaches more than 40% for Random, i.e., 40%
of the transferred bytes are redundant. The result indicates that
Redundant Transfer is a common problem for mobile Web
browsing while the Top websites indeed make some efforts to
reduce it. However, in terms of the resource number, Ω௡ of both
Top and Random is relatively high where the medium value is
about 50% and 75%, respectively.

Redundant Transfer is worse for short RI. Ω becomes higher
as RI decreases for both Top and Random, represented by CDF
curves shift to the right when RI decreases in Figure 4. In the
worst case, the medium Ω௦ of Random is more than 80% with 0.5
hour RI. As a result, a larger proportion of resources requested
from the network are redundant when users revisit a website after
a shorter interval. However, as discussed earlier, caching is more
effective when RI is shorter. Therefore, caching is far from its
capacity and it could be improved a lot if NM was reduced.

Some websites have 100% ષ, indicating that all the requested
resources are redundant for these websites. For example, about
10% of Top and 20% of Random have 100% Ω with 24 hours RI.
Table 4 lists the websites of 100% Ω for Top considering 24
hours RI. It is surprising that some popular websites are in the list,
such as Baidu, Wikipedia, and Apple. Since users may visit these
popular websites many times every day, the waste of data traffic
and energy could be very large.

We then examine the Redundant Transfer problem for different
resource types. Figure 5 shows Ω௦’s CDF with different RIs for
both Top and Random, corresponding to the resource types of
HTML, CSS, JavaScript, and Image.

 (a) (c) (e) (g)

(b) (d) (f) (h)

Figure 5. ષ࢙ of different resource types for Top and Random

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩsofTopHTML

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩsofTopCSS

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩsofTopJavascript

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩsofTopImage

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩsofRandomHTML

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩsofRandomCSS

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩsofRandomJavascript

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩsofRandomImage

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

(a) (b) (c) (d)

Figure 4. Overall Negative Miss Ratio

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩsofTop

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩsofRandom

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩnofTop

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩnofRandom

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

For all kinds of resources, ષ of Random is larger than that of
Top, represented by CDF curves shift to the right bottom by
comparing the two figures of the same resource type for Top and
Random. This result implies that ordinary websites do not
consider cache much for each kind of resources.

For HTML (5(a) and 5(b)), Ω of Top does not vary a lot while Ω
of Random decreases as RI increases. This observation implies
that HTML of the Top websites is more dynamic while HTML of
the Random gets updated in a fixed period.

For CSS (5(c) and 5(d)), when RI increases, Ω of both Top and
Random increases, implying that more redundant transfers could
occur after a longer RI. The reason may be that both Top and
Random leverage the cache expiration model for CSS but the
expiration time is too conservative. As a result, when the CSS is
revisited after a shorter interval, it will be served by the cache. In
contrast, the CSS will be loaded from the network when the page
is revisited after a longer interval, but the resource is actually not
changed. It is also interesting that CDF of CSS is a traverse line,
indicating a polar effect that some websites’ CSS are no NM
while others are all NM.

For JS (5(e) and 5(f)), Ω of both Top and Random does not vary
so much, indicating there are a fixed set of NM in JS.

For image (5(g) and 5(h)), when RI increases, the Ω decreases.
Random decreases in a small margin while Top decreases larger,
implying that images of the Top websites change more frequently
than the Random websites.

5.2.2 Miscached Resource
Due to the expiration model, it is likely to provide the out-of-date
resources from the browser cache. In most cases, developers
expect that users would tolerate these miscached resources such as
acquiring information that is not the latest. However, in some
circumstances, miscached resources could lead to incorrect
functionalities. For example, during the evolution of Baidu, it
changes many JS and CSS resources to improve its user
interaction. However, some previous JS and CSS resources are
configured to a considerable long expiration period. Therefore,

users are even not able to use Baidu’s search functionality until
the users clear the browser cache, or force to refresh the page, or
wait until the expiration time comes. It is worth exploring the
Miscached Resource problem. In fact, NH measures the extent of
this problem. Table 5 shows the result of NH.

NH takes a small proportion but we cannot ignore it. NH of
Top and Random share a similar proportion. Although NH of
the resource number is no more than 3%, NH of resource size is
about 7%. Note that NH of Top and Random share a similar
proportion, implying that both Top and Random have not
considered much for NH.

NH of HTML is relatively large. NH introduces a lot of expired
content. Developers may think that users could bare the expired
content so that temporally expired content is also acceptable.

NH of image is the lowest but not zero because some functional
images (such as border and button) may change when websites get
updated.

5.3 Analysis of Root Causes
To study the third research question “What causes the gap
between ideal and actual performance”, we break down the cache
behaviors of NM and plot the CDF of each case in Figure 6. As
explained in Section 4.2, there are six cache behaviors belonging
to the NM pattern. We calculate the proportion of each cache
behavior in the total NM and plot them on a CDF graph. Figure 6
shows the cases of the resource size for Top and Random with 24
hours and 0.5 hours RI.

Heuristic and Same Content are the top two causes to NM for both
Top and Random. For Top, Same Content is the most significant
issue. For Random, Heuristic is the most significant issue while
Same Content is in the second place. The distributions of
Heuristic and Same Content are not affected by RI. For Heuristic,
as we consider the worst case, RI is not an influencing factor and
thus it occupies the same proportion in each RI. For Same
Content, the distribution is similar because the same resources
have different URLs at every visit.

Table 4. Top websites with 100% ષ

Website Rank Category
Baidu 5 Search

wikipedia 6 News & Reference

Wordpress 20 Misc

360 22 Corporation

Soso 29 Search

Ask 35 Search

Instagram 37 Entertainment

Apple 45 Corporation

Alibaba 68 E-commerce

Table 5. NH of aggregated websites and resource types

24h 6h 0.5h

NH௦ NH௡ NH௦ NH௡ NH௦ NH௡
AllTop 6.4% 2.3% 7.8% 3.0% 8.1% 3.0%
AllRandom 7.7% 2.9% 7.9% 2.7% 9.0% 2.8%
HTMLTop 35.7% 18.7% 35.8% 18.8% 40.0% 19.9%
HTMLRandom 24.6% 10.3% 23.2% 8.9% 21.5% 9.1%
CSSTop 8.3% 5.6% 13.4% 9.3% 12.1% 7.7%
CSSRandom 13.5% 2.8% 9.8% 2.7% 10.5% 2.9%
JSTop 4.8% 2.1% 10.2% 3.7% 10.4% 4.1%
JSRandom 10.5% 4.3% 13.4% 3.7% 16.6% 5.3%
ImageTop 0.1% 0.3% 0.1% 0.3% 0.1% 0.2%
ImageRandom 1.0% 1.3% 0.6% 0.9% 0.5% 0.8%

(a) (b) (c) (d)

Figure 6. Breakdown of NM

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion in NM(Top, 24h)

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 heuristic
 no cache
 no store
 checked
 nocheck
 same content

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion in NM(Random, 24h)

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 heuristic
 no cache
 no store
 checked
 nocheck
 same content

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion in NM(Top, 0.5h)
C

D
F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 heuristic
 no cache
 no store
 checked
 nocheck
 same content

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion in NM(Random, 0.5h)

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 heuristic
 no cache
 no store
 checked
 nocheck
 same content

Checked is the third reason for NM. Checked happens when the
resources are expired in the cache (but actually are up-to-date on
the server) and validated with the original server by last-modified
time or Etag identifiers. Although the validation is successful to
eliminate sending a full response, the protocol overheads account
for some redundant size. Therefore, validating each resource’s
status may be harmful for mobile Web browsing. The reason of
Checked is that the expiration time is configured too short.

No-store and No-cache occupy small proportion, indicating that
developers are careful when configuring resources to no store or
no cache. Therefore it is less important to consider such cases to
improve mobile Web cache performance.

We next analyze Same Content, Heuristic Expiration, and
Conservative Expiration Time in detail.

5.3.1 Same Content
We first study the Same Content issue, as it has a significant
influence on both Top and Random. As we described earlier,
Same Content represents a case that a resource’s content is found
in the cache but the URL is different. Since the HTTP
specification regards the URL as the index of resources for
caching, there is no means to use the cached resource if the URL
cannot be found in the cache. By examining the resource request
records, we find that there are two major causes of Same Content.

Version management of resources. In order to provide end users
the up-to-date resources, some best practices of Web development
suggest that developers attach random query strings to URLs.
Therefore, every time the webpage with the resource’s reference
is visited, a new query string will be generated and the browser
will treat the resource as a new one to download from the server.
In other cases, some websites, such as Youku, use different
directories to manage resource versions. Each time the website
gets updated, a new directory with the new version number will be
created. Since an update is not likely to change all the resource
files, Same Content will happen if those unmodified resources are
requested from the new directory.

Web hierarchy architecture. Figure 1 has shown the Web
hierarchy architecture that there are middle-boxes to improve the
Web performance such as CDN and reverse proxy. To leverage
these middle-boxes, Web servers have to generate different URLs
or attach hash code of route paths to resources. As a result, one
resource could have different URLs when requested at different
times or at different places, leading to Same Content.

5.3.2 Heuristic Expiration
We next investigate the Heuristic Expiration issue, which often
happens when developers are unaware of the importance of cache
and do not explicitly configure cache parameters. Heuristic
Expiration is an important issue for the Random websites because
their developers may be unskilled. However, Heuristic Expiration
also takes the second place in the Top websites.

Table 6 shows the proportion of Heuristic Expiration resources as
well as the average updating cycle (the interval between two
updates). Totally, 6% and 33.7% of Top and Random resources
are configured as Heuristic Expiration. For Top, HTML is the

largest (37.4%). For Random, all proportions are above 20%,
meaning that more than 1/5 of resources have not explicitly
utilized the caching mechanism.

Since different Web browsers have different algorithms to deal
with Heuristic Expiration, we just consider the worst case in the
previous analysis. Here we calculate the average updating cycle to
study what is the proper expiration time for these resources. We
can see that there is a big difference between Top and Random.
Considering all the Heuristic Expiration resources, the cycle is 5.9
hours for Top while it is 107 hours for Random. This observation
implies that resources configured as “Heuristic Expiration” can
benefit a lot from caching if their expiration time is set to day-
level. In contrast, the proper expiration time for Heuristic
Expiration resources of Top is hour-level. Considering different
resource types, JS has the longest updating cycle for both Top (7.2
hours) and Random (143 hours). HTML has the shortest cycle for
Random (29 hours).

5.3.3 Conservative Expiration Time
Figure 7 shows the resource expiration time (indicated by Max-
age primitive) distribution. 40% and 24% of the resources for Top
and Random, respectively, are configured by less than one-day
expiration time. This result implies that the Top websites are more
conservative on expiration because their resources change more
frequently than the Random websites. However, we find that as
many as 89% and 86% resources with less than one-day
expiration time have no updates for Top and Random,
respectively. Therefore, the expiration time can be extended
longer. However, longer expiration time may introduce the
Miscached Resource problem. As a result, it is actually a tradeoff
between website functionality and cache performance.

6. IMPLICATIONS
Table 7 summarizes the findings and implications of our
measurement results. Overall, caching is helpful but it is a tradeoff
between website functionality and cache performance when cache
parameters are configured. To balance the two factors, we suggest
using the HTML5 AppCache interface [6]. A manifest file can be
attached to each webpage, specifying what to cache and what to
load from the network. Resources in the cache list will always be
loaded from the cache until the manifest file is updated.

7. RELATED WORK
With the popularity of mobile computing, research on Web has
paced into mobile’s era. Studies on mobile Web could roughly be
categorized into two branches. One is to measure the performance
of mobile Web, trying to understand the latency, data usage, and
energy consumption of mobile Web. The other is to improve the
performance with novel techniques. As a basic mechanism of
Web, measurement and improvement of mobile Web cache
performance have driven lots of attention. We next briefly discuss
related research on general mobile Web performance and then
discuss related research on mobile Web cache specifically.

Figure 7. Expiration time distribution of Top and Random

18%

25%

2%

9%

4%

6%

6%

10%

30%

10%

9%

21%

26%

16%

5%

3%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
a

n
d

o
m

T
o

p

0 1H 1D 1W 1M 1Y 10Y >10Y

Table 6. Resources of Heuristic Expiration

 HTML CSS JS Image Others Total

Top
Pct. 37.4% 1.9% 3.8% 2.6% 2.6% 6.0%

Cycle 3.7 h 1.0 h 7.2 h 1.0 h 4.0 h 5.9 h
Ran
dom

Pct. 29.9% 37.3% 20.4% 45.2% 24.5% 33.7%
Cycle 29 h 134 h 143 h 133 h 90 h 107 h

Mobile Web Performance. Measurement studies have been
conducted to understand mobile Web performance. Mobile HTTP
Archive [7] records mobile Web performance information of
about 5000 mobile websites. But its recording period is 15 days,
and is too coarse-grained to analyze the cache performance.
Papapanagiotou et al. [14] compared smartphone and laptop Web
traffic based on a three-week-long wireless communication trace
collected in an enterprise environment. Thiagarajan et al. [19]
measured the precise energy used by a mobile browser to render
Web pages. Many techniques are proposed by researchers and
employed by mobile developers to improve mobile Web
performance. Jones et al. [12] studied how browser parallelization
could help mobile browsers reduce latency and improve energy
efficiency. PocketWeb [13] leverages prefetching techniques to
load resources based on user behaviors with server support to
reduce latency. Some latest commodity browsers such as Amazon
Silk Browser [2], Google Chrome Beta [5], and OperaMini [8] are
particularly designed for mobile browsing by leveraging server or
cloud-based offloading [18]. New protocols, such as SPDY
[10][22] and QUIC [4], are designed and deployed to optimize
mobile Web performance from lower levels.

Mobile Web Cache. A lot of efforts have been done to study the
performance of mobile Web cache. Wang et al. [24] examined
three client-only solutions to accelerate mobile browser speed:
caching, prefetching, and speculative loading, by using Web
usage data collected from 24 iPhone users over one year. They
found that caching has very limited effectiveness: 60% of the
requested resources are either expired or not in the cache. Zhang
et al. [25] performed a comprehensive measurement study on Web
caching functionality of 1300 top ranked Android apps, not just
Web browsers. Results revealed that imperfect web caching is a
common and serious problem for Android apps generating Web
traffic. They also implemented a system wide service called
CacheKeeper to effectively reduce overhead caused by poor Web
caching of mobile apps. Qian et al. [16] conducted a measurement
study on Web caching in smartphones. By examining a one-day
smartphone Web traffic dataset collected from a cellular carrier
and a five-month Web access trace collected from 20 smartphone

users, the study revealed that about 20% of the total Web traffic
examined is redundant due to imperfect cache implementations. In
their subsequent work [17], they studied caching efficiency for the
most popular 500 websites. They found that caching is poorly
utilized for many mobile sites. 26% of the top mobile sites mark
their main HTML files as non-storable, leading to potential
bandwidth waste. About 23% of objects in mobile sites are
cacheable but have freshness lifetime of less than 1 hour. Our
work differs in our methodology: we use a long-period sampling
traces and determine the cache efficiency by resource evolution
history. Recent work [23] examined how Web browsing can
benefit from micro-cache that separately caches layout, code, and
data at a fine granularity. It studied how and when these resources
are updated and found that layout and code that block subsequent
object loads are highly cacheable.

8. CONCLUSION
In this paper, we have presented a comprehensive measurement
and analysis of mobile Web cache performance. We have
proposed a proactive approach to crawling the resource update
traces from two sets of websites periodically with a fine-grained
time interval. We have built an analysis model to capture the
relationship between cache behavior and resource updates. Based
on the model, (1) we have examined the ideal cacheability and
found that caching is substantially helpful for mobile Web
browsing; (2) we have measured the actual performance and
identified a big gap between ideality and reality; (3) we have
investigated three main root causes – Same Content, Heuristic
Expiration, and Conservative Expiration Time. We have provided
recommendations for developers to improve mobile Web cache
performance according to the implications of our findings.

9. ACKNOWLEDGMENTS
This work was supported by the National Basic Research Program
(973) of China under Grant No. 2014CB347701, the Natural
Science Foundation of China (Grant No. 61421091, 61370020,
61222203), and “Star-Track” Young Scholar Program of
Microsoft Research Asia. Tao Xie’s work was supported in part

Table 7. Our major findings and implications of mobile Web cache performance

Findings Implications
More than half of the total resource bytes and about 70% of the
resource objects can be cached after 24 hours. Although 80% of the
cacheable bytes are actually cached for Top, the percentage of
cached objects is under 50%. For Random, both cached bytes and
objects occupy not more than 50% of the cacheability.

Caching has substantial benefits for mobile Web browsing, especially for ordinary
websites. But the cacheability has not been effectively utilized. Popular websites indeed
make efforts on caching larger-size resources but do not consider small-size resources
very well. Ordinary websites perform worse for both cacheable bytes and objects.

The cacheability varies for different types of resources, and the
actual performance is also different. The results between Top and
Random are not the same either.

Web developers should configure different caching policies for different types of
resources based on the characteristics of websites. Developers from popular websites
could consider more for caching JS, while developers from ordinary websites should
check the cache configurations for all resources especially the images.

The Redundant Transfer problem is worse when a website is
revisited after a shorter period. Some popular websites even have
100% Negative Miss Ratio.

Data traffic and energy of mobile Web browsing are wasted mostly from frequently
visited websites. Popular websites should leverage new techniques to further reduce
unnecessary network traffic.

NH of Top and Random share a similar proportion. HTML accounts
for the largest NH. NH of CSS for Top is larger than for Random,
while JS is on the contrary. NH of images is not 0.

Miscached Resource is a common problem for all the websites. Popular websites may
have wrong layout and view while ordinary websites could suffer from wrong
functionalities. Developers should avoid using the same URL for different images.

Same Content accounts for the main origins of NM. More than 20%
of NM resources are resulted from Same Content for half of Top and
25% of Random. Same Content is caused by the version
management and Web hierarchy architecture.

Current techniques to maintain website versions, such as random query strings, are not
appropriate for mobile Web browsing. New techniques have to be adopted.
Although the Web hierarchy architecture reduces the overall network traffic and releases
server workload, it is harmful for user-centric mobile Web browsing. End-user based
content distribution may help solve the problem.

6% and 33.7% of Top and Random resources are configured as
Heuristic Expiration, but the average updating cycle is 5.9 hours and
107 hours for Top and Random, respectively.

It is better to set an explicit expiration time than using the Heuristic Expiration. Ordinary
websites can set day-level expiration time to their resources while popular websites can set
hour-level time.

40% and 24% of the resources for Top and Random are configured
by less than one-day expiration time. But 89% and 86% of them
have no updates for Top and Random, respectively.

The expiration time is conservatively configured. Developers can extend the expiration
time for some resources that are not likely to change for a considerably long time. But
longer expiration time could cause the Miscached Resource problem.

by NSF grants CNS-1434582, CNS-1439481, CCF-1349666,
CCF-1409423, CCF-1434590, and CCF-1434596.

10. REFERENCES
[1] Alexa. http://www.alexa.com/

[2] Amazon Silk browser.
http://aws.amazon.com/cn/documentation/silk/

[3] Charles Proxy. http://www.charlesproxy.com/

[4] Experimenting with QUIC.
http://blog.chromium.org/2013/06/experimenting-with-
quic.html.

[5] Google Chrome beta browser.
https://www.google.com/chrome/browser/beta.html

[6] HTML5. http://www.w3.org/TR/html5/

[7] Mobile HTTP Archive. http://mobile.httparchive.org/

[8] Opera mini browser.
http://www.opera.com/mobile/mini/iphone

[9] RFC 2616. http://www.w3.org/Protocols/rfc2616/rfc2616.txt

[10] SPDY Protocol - Draft 3.
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-
draft3

[11] J. Erman, A. Gerber, M. Hajiaghayi, D. Pei, S. Sen, and O.
Spatscheck. To Cache or not to Cache: The 3G case. IEEE
Internet Computing, vol. 15, pp. 27-34, 2011.

[12] C. G. Jones, R. Liu, L. Meyerovich, K. Asanovi, R. Bod, and
K. Parallelizing the web browser. In Proc. the 1st USENIX
Conference on Hot Topics in Parallelism, pp. 7-7, 2009.

[13] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and A.
Ntoulas. PocketWeb: instant web browsing for mobile
devices. In Proc. the 17th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 1-12, 2012.

[14] I. Papapanagiotou, E. Nahum and V. Pappas. Smartphones vs.
laptops: comparing web browsing behavior and the
implications for caching. ACM SIGMETRICS Performance
Evaluation Review, vol. 40, pp. 423-424, 2012.

[15] F. Qian, J. Huang, J. Erman, Z. M. Mao, S. Sen, and O.
Spatscheck. How to reduce smartphone traffic volume by
30%? In Proc. Passive and Active Measurement Conference,
pp. 42-52, 2013.

[16] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao,
S. Sen, and O. Spatscheck. Web caching on smartphones:

ideal vs. reality. In Proc. the 10th International Conference
on Mobile Systems, Applications, and Services, pp. 127-140,
2012.

[17] F. Qian, S. Sen and O. Spatscheck. Characterizing resource
usage for mobile web browsing. In Proc. the 12th Annual
International Conference on Mobile Systems, Applications,
and Services, pp. 218-231, 2014.

[18] A. Sivakumar, V. Gopalakrishnan, S. Lee, and S. Rao. Cloud
is not a silver bullet: A case study of cloud-based mobile
browsing. In Proc. the 15th International Workshop on
Mobile Computing Systems and Applications, pp. 1-6, 2014.

[19] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P.
Singh. Who killed my battery?: analyzing mobile browser
energy consumption. In Proc. the 21st International
Conference on World Wide Web, pp. 41-50, 2012.

[20] X. Wang, X. Liu, Y. Zhang, and G. Huang. Migration and
execution of JavaScript applications between mobile devices
and cloud. In Proc. the 3rd Annual Conference on Systems,
Programming, and Applications: Software for Humanity, pp.
83-84, 2012.

[21] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D.
Wetherall. Demystifying page load performance with WProf.
In Proc. the 10th USENIX Conference on Networked Systems
Design and Implementation, pp. 473-486, 2013.

[22] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D.
Wetherall. How speedy is SPDY? In Proc. the 11th USENIX
Conference on Networked Systems Design and
Implementation, pp. 387-399, 2014.

[23] X. S. Wang, A. Krishnamurthy and D. Wetherall. How Much
Can We Micro-Cache Web Pages? In Proc. the 2014
Conference on Internet Measurement Conference, pp. 249-
256, 2014.

[24] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. How far can
client-only solutions go for mobile browser speed? In Proc.
the 21st International Conference on World Wide Web, pp.
31-40, 2012.

[25] Y. Zhang, C. Tan and L. Qun. CacheKeeper: a system-wide
web caching service for smartphones. In Proc. the 2013
ACM International joint Conference on Pervasive and
Ubiquitous Computing, pp. 265-274, 2013.

[26] Y. Zhu and V.J. Reddi. WebCore: Architectural support for
mobile Web browsing. In Proc. the 2014 ACM/IEEE 41st
International Symposium on Computer Architecture, pp. 541-
552, 2014.

