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ABSTRACT 
The Web browser is a killer app on mobile devices such as 
smartphones. However, the user experience of mobile Web 
browsing is undesirable because of the slow resource loading. To 
improve the performance of Web resource loading, caching has 
been adopted as a key mechanism. However, the existing passive 
measurement studies cannot comprehensively characterize the 
performance of mobile Web caching. For example, most of these 
studies mainly focus on client-side implementations but not 
server-side configurations, suffer from biased user behaviors, and 
fail to study “miscached” resources. To address these issues, in 
this paper, we present a proactive approach for a comprehensive 
measurement study on mobile Web cache performance. The key 
idea of our approach is to proactively crawl resources from 
hundreds of websites periodically with a fine-grained time 
interval. Thus, we are able to uncover the resource update history 
and cache configurations at the server side, and analyze the cache 
performance in various time granularities. Based on our collected 
data, we build a new cache analysis model and study the upper 
bound of how high percentage of resources could potentially be 
cached and how effective the caching works in practice. We 
report detailed analysis results of different websites and various 
types of Web resources, and identify the problems caused by 
unsatisfactory cache performance. In particular, we identify two 
major problems – Redundant Transfer and Miscached Resource, 
which lead to unsatisfactory cache performance. We investigate 
three main root causes: Same Content, Heuristic Expiration, and 
Conservative Expiration Time, and discuss what mobile Web 
developers can do to mitigate those problems. 
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1. INTRODUCTION 
The Web browser is a killer and arguably the most frequently 
used app on mobile devices such as smartphones and tablet 
computers. According to a study [26], Web browsers occupy 63% 
of the window focus time on the subjects’ mobile devices. 
However, the user experience of mobile Web browsing is far from 
satisfaction. Resource loading is one of the key factors influencing 
Web browsing performance. It is reported that 65% of page load 

time is spent on resource loading [21]. Such problem becomes 
even worse on mobile devices because of the unreliable network 
conditions, particularly when the network is congested or the user 
is moving around. Furthermore, more resource downloading may 
consume more energy, which is the scarcest resource on battery-
powered mobile devices.  

Caching is a widely adopted mechanism to accelerate Web 
resource loading1. By saving the resources of visited webpages 
into the local storage (memory or disk), these webpages may be 
served from the local storage rather than being re-fetched from the 
Web servers when the webpages are visited again. As a result, 
caching reduces the quantity of downloaded resources and thus 
can improve Web browsing performance. Caching is particularly 
beneficial to mobile devices because it not only reduces page load 
time, but also reduces network traffic and energy consumption.  

It is critical to understand how mobile Web browsing could 
benefit from caching and how well caching takes effect in practice. 
To this end, several measurement studies have been made by 
analyzing user access traces gathered from ISPs or instrumented 
client devices [11][15][16][17][24]. These studies have already 
revealed the performance problems of mobile Web caching 
caused by imperfect client-side implementations. However, they 
cannot comprehensively characterize the end-to-end Web cache 
performance involving not only Web clients but also Web servers 
and user behaviors. In particular, existing measurement studies on 
mobile Web cache have the following three main limitations. 

 These existing studies suffer from biased user behaviors. 
The traces collected from ISPs or instrumented client devices 
are passive observations on users’ Web access behaviors. 
These traces are just fragmented snapshots of the websites and 
thus cannot cover the full resource update history of these 
websites. As a result, measurements based on these traces 
could imply only how caching works on the sampled access of 
the sampled users, but cannot reflect how the websites 
themselves can essentially benefit from caching. 

 These existing studies do not investigate the influences of 
server-side caching configurations on cache performance. 
Similar to the first issue, as the passively collected data traces 
cannot cover the full resource update history of the websites, 
these studies concentrate on client-side implementations but 
not server-side configurations. Although how the browsers 
support caching on mobile devices is important, Web cache 
performance is largely determined by the cache configurations 
at the server side. For example, if resources are configured as 

                                                                 
1  “Caching” and “cache” are often used interchangeably. Usually, 

“caching” denotes the mechanism defined by specifications, and “cache” 
represents the browser component that could store resources temporally. 
“Cache” is also used as a verb, denoting putting something in the cache. 
In this paper, caching and cache have the same meaning if not 
specifically stated. 

 
 
Copyright is held by the International World Wide Web Conference 
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to 
the author's site if the Material is used in electronic media. 
WWW 2015, May 18–22, 2015, Florence, Italy. 
ACM  978-1-4503-3469-3/15/05. 
http://dx.doi.org/10.1145/2736277.2741114 

——————————————————— 
* Corresponding author 



no-cache (indicating that they should not be cached), client-
side caching cannot help at all. It is desirable to examine how 
server-side configurations may impact Web caching. 

 These existing studies do not investigate the problem of 
miscached resources. Miscached resources are those that 
have already been updated on the server, but the browser 
wrongly uses the expired resources from the cache rather than 
fetching the updated ones from the server. The passive data 
collection approaches cannot capture miscached resources 
because the passive approaches collect only the resources 
actually fetched by browsers. However, miscached resources 
may significantly affect user experience. In particular, if the 
functional resources (e.g., JavaScript or CSS) are miscached, 
the corresponding website may not work correctly. Therefore, 
there is a strong need of studying miscached resources. 

To address the preceding issues faced by the existing studies, in 
this paper, we present a proactive approach for comprehensive 
measurement and analysis of mobile Web cache performance. In 
our approach, we proactively crawl resources from hundreds of 
websites periodically with a fine-grained time interval for a long 
time duration. In this way, we are able to uncover the resource 
update history and cache configurations at the server side, and 
analyze the cache performance in various time granularities, 
without bias caused by limited samples of users’ behaviors. 
Furthermore, we build an analysis model to answer three research 
questions. The first one is how much of a website can be cached, 
giving an upper bound of how caching could help improve mobile 
Web browsing experience. More cacheable resources indicate 
more performance improvements that the website can benefit 
from caching. The second question is how well caching has been 
supported to reach the upper bound, providing comprehensive 
characterization of the state-of-the-art of mobile Web caching. 
The third question is what causes the gap between the upper 
bound and the actual performance. For various reasons, resources 
that can be cached may not be actually cached and there exist 
miscached resources. 

To make a quantitative study, we measure the performance of 
Web caching in both the resource size and resource number. 
Larger size of resources loaded from the cache indicates less data 
traffic that needs downloading from the network. However, the 
resource size itself cannot fully quantify the performance of Web 
caching. Given the same total size of resources, a larger number 
of small resources loaded from the cache indicates fewer network 
connections to the server and less energy consumption, compared 
to a small number of large resources. Therefore, we consider both 
the resource size and resource number as the evaluation metrics 
on how caching influences mobile Web browsing experience in 
terms of page load time, data traffic, and energy consumption.  

This paper makes the following main contributions: 

 A proactive approach to acquire resource update history. We 
choose two sets of websites for a comparative study to 
uncover both the state-of-the-art and ordinary status of mobile 
Web cache performance. One set (Top) comes from Alexa 
Top 100 list. The other set (Random) comes from 100 
websites randomly chosen from Alexa Top 1,000,000 list. We 
periodically crawl their resource update history for one week, 
forming the basis of our analysis. 

 An analysis model for cache performance. Based on the 
resource update history, we formally define the metrics to 
quantitatively measure cache performance. We then build a 
cache behavior taxonomy to correlate cache configurations to 
resource updates. Such taxonomy maps each possible case to 

one of the four behavior patterns: Positive Hit (PH), Negative 
Hit (NH), Positive Miss (PM), and Negative Miss (NM).  

 Empirical results for showing the gap between ideal and 
actual mobile Web cache performance. On average, more 
than half of the total resources can be cached and the Random 
websites are more cacheable than the Top ones. However, in 
practice, only a limited portion of the cacheable resources are 
cached, not more than 50% for the Random websites. 
Different types of resources have different cacheabilities.  

 Empirical results for highlighting two main problems caused 
by undesirable cache performance. The Redundant Transfer 
problem comes from NM resources (the resources that can be 
served from the cache but are actually downloaded from the 
network). The median Negative Miss Ratios in terms of the 
resource size of Top and Random websites are 10% and 52% 
for one-day revisiting interval, respectively. The Miscached 
Resource problem comes from NH resources (the resources 
that have been updated on the server but are actually served 
from the cache). NH resources have a similar proportion in 
both Top and Random websites.  

 Root causes for undesirable mobile Web cache performance. 
Three main root causes are identified: Same Content (the 
same resources that have different URLs when requested at 
different times), Heuristic Expiration (the caching policy is 
not explicitly defined by the server and thus it depends on 
browsers to infer an expiration time), and Conservative 
Expiration Time (the expiration time is set to be too short). 

 Implications and recommendations on how to improve cache 
performance by better cache policies. For example, the 
Application Cache of HTML 5 can be used to make the 
resource updates visible to clients. 

The remainder of this paper is organized as follows. Section 2 
motivates our study by analyzing how caching works and 
identifying three research questions. Section 3 describes our data 
set and data-collection approach. Section 4 presents the analysis 
methodology and Section 5 presents the detailed measurement 
results. Based on the findings, we provide implications and 
recommendations for Web developers in Section 6. Section 7 
surveys related work and Section 8 concludes this paper. 

2. BACKGROUND AND GOAL 
In this section, we first describe the background on how Web 
caching works and then present the three research questions that 
we seek to answer, as the goal of this paper. 

2.1 How Web Caching Works 
Figure 1 shows a simplified procedure to illustrate how Web 
caching works. A webpage consists of a set of resources, such as 

 
Figure 1. Architecture of Web caching 
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HTML, CSS, JavaScript, and images. When users type in a URL 
and press the “Go” button or click through a hyperlink, the 
browser will load the target webpage by acquiring the 
corresponding resources from the Resource Loader module. 

The Resource Loader will first try to load resources from the local 
cache through the Cache Manager module. According to RFC 
2616 [9], HTTP/1.1 defines a cache expiration model and a cache 
validation model. The cache expiration model allows a Web 
server to set an expiration time for each resource, indicating how 
long the resource can be cached by a client device. Setting 
expiration time is not mandatory. If a resource does not have an 
expiration time explicitly set by the server, browsers may apply 
their own heuristic algorithms to decide the cache expiration time 
of the resource. Such mechanism is called Heuristic Expiration. 

The Cache Manager checks whether the requested resource 
(identified by its URL’s protocol, host, port, path, and query) can 
be found in the Cache Database. If not, the browser will set up a 
HTTP connection to fetch the resource from the remote Web 
server. If the resource is found and not expired according to the 
cache expiration model, it will be returned directly from the 
cache. If the resource is expired, the HTTP/1.1 cache validation 
model requires the browser to check with the server whether the 
resource is changed or not (via the last modified time or Etag 
identifier). If the server decides the corresponding resource has 
not changed, it responds with a "304 Not Modified" message and 
the resource will be fetched from the cache of the client. 
Otherwise, the server sends the updated resource back to the 
browser.  

It is worth mentioning that a website may be much more complex 
than a single Web server. A large website (e.g., Google) may have 
many backend Web servers. There may also be Content Delivery 
Network (CDN) servers to enable scalability and geographical 
distributions. In such a case, a URL’s query part often contains a 
hash code to indicate which CDN server should process the 
request, and thus the same resource may have different URLs 
served by different CDN servers. Furthermore, proxy servers and 
reverse proxies often act in the middle to route the requests to 
different backend servers for workload balance. Different backend 
servers could also attach different URLs to the same resource. As 
discussed in Section 5.3, this “multiple URLs of the same 
resource” problem causes undesirable Web cache performance 
and should be investigated.  

2.2 Research Questions to Answer 
Our goal is to conduct a comprehensive study on the performance 
of mobile Web caching. Specifically, we intend to answer the 
following three research questions. 

RQ1: What percentage of Web resources can be cached ideally? 
By answering this question, we study the upper bound of the 
benefit of Web caching. We consider not only the redundant 
transmission of the same resource (identified by its unique URL), 
but also the redundancy of the resources with different URLs. 

RQ2: What percentage of the cacheable Web resources are 
actually cached if the client is perfectly implemented according to 
the specification? By answering this question, we uncover how 
well developers leverage the caching mechanism in practice, and 
reveal the gap between the ideal and actual performance of mobile 
Web caching. 

RQ3: What causes the gap between ideal and actual performance? 
By answering this question, we investigate the root causes of the 
undesirable actual performance of Web caching, and give Web 

developers recommendations on how to improve the performance 
of mobile Web caching. 

Answering these questions requires tracking the whole resource 
update history of websites. This requirement cannot be met by 
existing passive data collection approaches. Therefore, we 
propose a new proactive data collection approach and next present 
how it works. 

3. DATA COLLECTION 
In this section, we describe how we proactively crawl Web 
resources and what data sets are used to conduct our study.  

3.1 Proactive Data Collection Approach 
We propose a proactive approach to capture the resource update 
history of a specific website. For a given URL, we periodically 
visit the corresponding webpage with a short time interval and for 
a long time duration. For each visit, we first clean the cache and 
then record all the returned resources. The short revisiting interval 
not only makes it possible to obtain the complete resource update 
history, but also enables us to make flexible analysis with various 
time granularities. The long data-collection time duration ensures 
enough samples and lowers the bias. We develop a tool to realize 
our approach and Figure 2 shows its architecture. 

Our tool runs on a PC using the Chrome browser. We enable the 
Chrome browser’s emulation mode to make it act as a mobile 
browser (Android 4.2 native browser in our case) so that a website 
will return its mobile-version webpages (if the website has a 
mobile version). It is important to use a real browser to crawl data. 
The reason is that many websites embed JavaScript, and more 
resources may be loaded by the JavaScript execution. Only when 
the webpage is actually rendered by a browser, can we obtain the 
whole set of resources. Furthermore, using a PC-version browser 
helps us leverage the programmability of the browser, which is 
not easy on Android smartphones.  

We use the Charles proxy [3], a commercial product, to act as the 
middle tier for data collection. Charles can record each TCP 
connection passed through it and save HTTP traces in structured 
data. The data structures split HTTP protocol elements into 
different fields, making it easy to perform further analysis. In 
addition, Charles has a programming interface to ease the data 
recording and saving. We install Charles on the same PC and 
configure the Chrome browser to use Charles as the proxy.  

We build a Chrome extension to automate our data collection. The 
extension takes a list of URLs and controls the Chrome browser to 
visit the URLs one by one. Before each visit, the browser cache is 
cleaned in order to ensure that all the resources are loaded from 
the network. When a Chrome TabComplete event is detected, the 
extension will regard that the website has finished loading. Note 
that some websites utilize lazy loading, and thus there will still be 
resource requests after TabComplete is fired. To mitigate such 
resource incompleteness, the extension is set to wait for two 

 
Figure 2. Data collection tool 
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seconds after a TabComplete event. Finally, the extension invokes 
the Charles programming interface to save all the resource request 
records on the disk. We can also configure the extension to 
periodically crawl a list of URLs with a given time interval. 

3.2 Data Sets 
For a comparative study, we choose two sets of websites from 
Alexa [1] ranking list in January 2014. The first set (Top) contains 
Alexa top 100 websites. We expect that their cache performance 
is highly optimized and regard them as the state-of-the-art of Web 
caching. The other set (Random) contains 100 websites randomly 
selected from Alexa top 1,000,000 list. We assume that their 
cache performance is not fully optimized and regard them as the 
average level of cache performance.  

We manually checked each website in the two sets and filtered out 
the following ones. 

 Unreachable websites. Some websites were not reachable 
because they were shut down at the time that we visited. 
Unreachable websites occurred in only the Random data set.  

 Same websites with different domain names. For example, in 
the Top data set, Google appears 16 times such as google.in, 
google.de, and google.jp. Since they have the same function 
and appearance, we keep only google.com in our Top data set. 
However, we treat yahoo and yahoo.jp as two different 
websites because their contents are totally different. 

 HTTPS-only websites. As HTTPS prevents us from capturing 
the Web resources transmitted over the encrypted network 
connection, we exclude those websites that support only the 
HTTPS protocol.  

After the filtering, 146 websites remain in total, 55 in the Top data 
set, and 91 in the Random data set. Note that not all of the 146 
websites have a mobile version customized for mobile browsing. 
According to our manual checking, 7 of the 55 Top websites and 
56 of the 91 Random websites do not have their mobile versions. 
However, the goal of our measurement is to study how Web 
caching performs on mobile devices for all websites, not only the 
ones with a mobile version. Therefore, we do not distinguish 
mobile or non-mobile websites.  

For these 146 websites, we used our data-collection tool to 
periodically crawl their homepages for one week. The crawling 
time interval was 30 minutes, being short enough to capture all the 
resource changes. One week means that we visited each website 
for more than 300 times. In total we crawled 157 GB data, 73 GB 
for the Top websites, and 84 GB for the Random websites. 

4. MEASUREMENT METHODOLOGY 
In this section, we formally define the measurement metrics used 
to study Web cache performance. We also design a taxonomy to 
map the relationship between cache specifications and actual 
resource updates. 

4.1 Metrics Definition 
Cache only works when a website is revisited. So we consider two 
visits. At the first visit, the browser cache is empty and all the 
resources needed to render the website have to be loaded from the 
network. After a given Revisiting Interval (RI) ݐ߂ , the same 
website is visited for the second time, where some of the 
resources are loaded from the browser cache while others are 
loaded from the network. We examine how the browser cache 
behaves for the second visit. 

Define ௧ܵ ൌ ሼݎ௧ሽ as the resource set fetched by the browser at time 
ݐ  under the condition that the browser cache is empty. 

௧ݎ ൏א ,ܮܴܷ ݐ݊݁ݐ݊݋ܥ ൐ is a resource entry, where ܷܴܮ (including 
the domain, port, path, and query) identifies the resource, and 
 is its actual entity. A resource can be updated when time ݐ݊݁ݐ݊݋ܥ
goes on. ௧ܵ represents the up-to-date resources of the website at 
time ݐ. 

Define 
ሻݐ߂௧ሺܣܥ           ൌ ሼݎ௧ א ௧ܵ|ݎ׌௧ି௱௧ א ௧ܵି௱௧, .௧ݎ ݐ݊݁ݐ݊݋ܥ ൌ .௧ି௱௧ݎ ሽݐ݊݁ݐ݊݋ܥ   
as the resources (at time ݐ) that have already been loaded from the 
network at the previous visit before ݐ߂ . Note that we do not 
enforce whether the resource’s URL is the same or not. We 
consider only the resource’s content that is actually used by 
browsers to render websites. In fact, ܣܥ௧ሺݐ߂ሻ are the resources 
that can benefit from caching. 

Based on the preceding definitions, cacheablity Ψሺݐ߂ሻ  can be 
formulated as the proportion of ܣܥ௧ሺݐ߂ሻ in ௧ܵ: 

Ψሺݐ߂ሻ ൌ
ሻݐ߂௧ሺܣܥ

௧ܵ
 

Ψሺݐ߂ሻ measures what percentage of a website can be cached after 
 ሻ means more resources are cacheable. It shouldݐ߂Larger Ψሺ .ݐ߂
be pointed out that cacheablity depends on ݐ߂ because resource 
updates are different when a website is revisited after different ݐ߂. 

Define 
ሻݐ߂௧ሺܥ ൌ ሼݎ௧ି௱௧ א ௧ܵି௱௧|ݎ௧ି௱௧ ݅݋ݐ ݀݁ݎݑ݂݃݅݊݋ܿ ݏ ܾ݁ ݄ܿܽܿ݁݀ሽ 

as the resource set in the browser cache at time ݐ  ሻݐ߂௧ሺܥ .
represents the resources stored into the cache on the previous visit 
at time ݐ െ ሻݐ߂௧ሺܥ Note that .ݐ߂ ك ௧ܵି௱௧ because some resources 
in ௧ܵି௱௧may be configured not to be stored in the browser cache. 

According to the cache mechanism, ሻݐ߂௧ሺܥ ൌ ௧ܺܧ ׫ ௧ܴܨ , 
indicates that some of the cached resources are expired (denoted 
as ܺܧ௧) while others are still fresh (denoted as ܴܨ௧). The browser 
will first load a resource from the cache if its URL is found in 
௧ܪ ௧, in which case we say the resource is hit. Defineܴܨ ൌ ሼݎ௧ א

௧ܵ|ݎ׌ א ,௧ܴܨ .௧ݎ ܮܴܷ ൌ .ݎ  ሽ as the resource set loaded fromܮܴܷ
the cache. Otherwise, no matter when the resource URL is found 
in ܺܧ௧ or cannot be found in ܥ௧ሺݐ߂ሻ, the browser will load it from 
the network, in which case we say the resource is miss. Define 
௧ܯ ൌ ሼݎ௧ א ௧ܵ|ሺݎ׌ א ,௧ܺܧ .௧ݎ ܮܴܷ ൌ .ݎ ሻܮܴܷ ש ሺݎ׊ א ,ሻݐ߂௧ሺܥ
.௧ݎ ܮܴܷ ് .ݎ  .ሻሽ as the resource set loaded from the networkܮܴܷ

However, the cache policy may not be set properly so that expired 
resources could still be up-to-date. In addition, only considering 
the resource URL can bring mistakes as the content is what 
actually matters for rendering websites. Therefore, we further 
define positive and negative patterns for ܪ௧ and ܯ௧, respectively.  

Positive Hit ( ሻ࢚ࢤሺ࢚ࡴࡼ ). Given ݎ௧ א ௧ܪ ௧ݎ , א ሻݐ߂௧ሺܪܲ ֞
௧ି௱௧ݎ׌ א ௧ܵି௱௧, .௧ݎ ܮܴܷ ൌ .௧ି௱௧ݎ ܮܴܷ ר .௧ݎ ݐ݊݁ݐ݊݋ܥ ൌ
.௧ି௱௧ݎ  which means that the resource is loaded from the ,ݐ݊݁ݐ݊݋ܥ
cache and it is the same with the up-to-date version on the server. 
Larger ܲܪ௧ሺݐ߂ሻ means more resources are correctly served from 
the cache. 

Negative Hit ( ሻ࢚ࢤሺ࢚ࡴࡺ ). Given ݎ௧ א ௧ܪ ௧ݎ , א ሻݐ߂௧ሺܪܰ ֞
௧ି௱௧ݎ׌ א ௧ܵି௱௧, .௧ݎ ܮܴܷ ൌ .௧ି௱௧ݎ ܮܴܷ ר .௧ݎ ݐ݊݁ݐ݊݋ܥ ്
.௧ି௱௧ݎ  which means that the resource is loaded from the ,ݐ݊݁ݐ݊݋ܥ
cache but its content has already been updated on the server. In 
this case, the browser should acquire the updated resource. Larger 
ሻݐ߂௧ሺܪܰ  means more stale resources are used to render the 
website, and wrong behaviors are more likely to happen. 

Positive Miss ( ሻ࢚ࢤሺ࢚ࡹࡼ ). Given ݎ௧ א ௧ܯ ௧ݎ , א ሻݐ߂௧ሺܯܲ ֞
௧ି௱௧ݎ׊ א ௧ܵି௱௧, .௧ݎ ݐ݊݁ݐ݊݋ܥ ് .௧ି௱௧ݎ ݐ݊݁ݐ݊݋ܥ , which means that 
the resource is loaded from the network and its content has never 
occurred in ௧ܵି௱௧. It is either a new resource or an update of a 



cached resource. Larger ܲܯ௧ሺݐ߂ሻ  indicates more resources are 
newly involved by the website or changed during the time. 

Negative Miss ( ሻ࢚ࢤሺ࢚ࡹࡺ ). Given ݎ௧ א ௧ܯ ௧ݎ , א  ሻݐ߂௧ሺܯܰ
֞ ௧ି௱௧ݎ׌ א ௧ܵି௱௧, .௧ݎ ݐ݊݁ݐ݊݋ܥ ൌ .௧ି௱௧ݎ ݐ݊݁ݐ݊݋ܥ , which means 
that the resource is loaded from the network but its content has 
ever been loaded by the browser before. It is either stored in the 
cache or configured not to be cached. In this case, the browser 
should directly use the previously loaded resource. Larger 
 .ሻ indicates more redundant transfersݐ߂௧ሺܯܰ

Based on the preceding definitions, we can formulate the actual 
cache performance Φሺݐ߂ሻ  as the proportion of ܲܪ௧ሺݐ߂ሻ  in 
ሻݐ߂௧ሺܪܲ ׫  :ሻݐ߂௧ሺܯܰ

Φሺݐ߂ሻ ൌ
ሻݐ߂௧ሺܪܲ

ሻݐ߂௧ሺܪܲ ׫ ሻݐ߂௧ሺܯܰ
 

In addition, we can measure the problems of redundant transfer by 
Negative Miss Ratio ΩሺΔݐሻ: 

ΩሺΔݐሻ ൌ
ሻݐ߂௧ሺܯܰ

ሻݐ߂௧ሺܯܲ ׫ ሻݐ߂௧ሺܯܰ
 

Larger Ω  indicates more resources loaded from network can 
actually be loaded from the cache. 

Table 1 summarizes the metrics and their meanings to measure 
mobile Web cache performance. Meanwhile, as we choose 
resource size and number as the quantitative parameters, subscript 
s and n will be attached to the metrics representing which 
parameter is used to calculate the metric values. For example, Ψ௦ 
and Ψ௡  denote the cacheability calculated by resource size and 
number, respectively. 

4.2 Cache Behavior Taxonomy 
In order to calculate the preceding metrics, we correlate the cache 
configurations and resource updates by building a cache behavior 
taxonomy (Figure 3).  

When a web page is visited, the browser will look up in its cache 
table for each resource represented by the URL. 

If the URL is found in the cache table (URLHit), the cache 
mechanism is ready to work. The browser will first check 
expiration to determine the freshness of the cached resources. 
There are two expiration policies. One is the server-specified 
expiration relying on the origin server to provide an explicit 
expiration time. The other is the heuristic expiration relying on the 

browser to assign an estimated value for those without explicit 
server-specified expiration time. 

For the heuristic expiration, no matter whether the resource 
content is changed or not, any of the four cache behavior patterns 
is possible to happen as its freshness cannot be explicitly 
determined. In the worst case, we can assume the 
ContentChanged state of heuristic expiration as NH and the 
ContentNotChanged state as NM. In the following parts, all the 
analyses are for the worst case unless specially stated. 

For the server-specified expiration, there are three possible 
policies. The first is NoStore, indicating that the resources cannot 
be persistently stored on the hard disk. The second is NoCache, 
indicating that although the resources should not be cached by the 
browser, they can be persistently stored on the hard disk. The 
ContentChanged and ContentNotChanged states of both NoStore 
and NoCache are classified as PM and NM, respectively. In the 
third case, according to the expiration time, we can determine 
whether the cached resources get expired or stay fresh. If expired, 
two further branches Validated and NotValidated can be derived 
from the cache validation model, where the last modified time or 
Etag is used for the freshness check with the origin server. 
Combined with resource update states, we can classify each leaf 
node with the ContentChanged state as PM or 
ContentNotChanged state as NM. For the Fresh node, NH 
happens if the content is changed, while PH happens if the content 
is not actually changed.  

If the URL is not found in the cache table (URLMiss), it does not 
mean that the resource cannot be served by the cache. As 
aforementioned, resources with different URLs may have the 
same content. We use ContentFound to denote such case and 
classify its cache behavior pattern as NM. The last branch of New 
indicates completely new resources that have to be downloaded 
from the network, and thus we classify it as PM. 

5. MEASUREMENT RESULTS 
This section presents our detailed measurement results from three 
aspects: the gap between the ideal and the actual cache 
performance (Section 5.1), the problems caused by undesirable 
cache performance (Section 5.2), and the root cause analysis 
(Section 5.3). 

        
         Figure 3. Cache behavior taxonomy 
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Table 1. Cache performance metrics 

Metric Description 

 ሻݐ߂ሺܪܲ
The proportion of resources that are correctly served by 
the cache when the website is revisited after ݐ߂. 

 ሻݐ߂ሺܪܰ
The proportion of resources that should have been 
fetched from the server but are actually provided by the 
cache when the website is revisited after ݐ߂. 

 ሻݐ߂ሺܯܲ
The proportion of resources that are correctly fetched 
from the server when the website is revisited after ݐ߂. 

 ሻݐ߂ሺܯܰ
The proportion of resources that should have been 
provided by the cache but are actually fetched from the 
server when the website is revisited after ݐ߂. 

Ψሺݐ߂ሻ 
Cacheability of a website with revisiting interval ݐ߂ , 
giving an upper bound of how much a website can 
benefit from caching. 

Φሺݐ߂ሻ 
Actual cache performance of a website with revisiting 
interval ݐ߂ , showing how well a website has utilized 
caching. 

ΩሺΔݐሻ 
Negative Miss Ratio with revisiting interval ݐ߂ , 
indicating how much data traffics are wasted by 
redundant transfers. 



5.1 Ideal and Actual Cache Performance 
We first show the cacheability of websites and then present how 
much cacheability is realized in practice, uncovering the gap 
between the ideal and actual cache performance. 

5.1.1 Potential Benefits of Caching 
To answer the first research question of “What percentage of Web 
resources can be cached ideally”, we calculate Ψ of the websites 
in the two data sets, as shown in Table 2. From Table 2, we make 
the following observations.  

A high percentage of the total resources are cacheable and 
thus caching may be substantially helpful. For the Top 
websites, 56.4%-72.7% of the total resource size (Ψ௦) and 69.5%-
83.2% of the total resource number (Ψ௡) are cacheable, depending 
on the values of RI. For the Random websites, the percentages are 
even higher: 63.2%-79.0% in Ψ௦ and 72.1%-84.5% in Ψ௡. These 
results demonstrate that caching has great potential to help 
improve the performance of mobile Web browsing if caching is 
correctly configured and implemented. For the websites that users 
visit daily or even more frequently (e.g., news websites and search 
engines), caching can substantially reduce the cost of Web 
browsing on mobile devices, in terms of network bandwidth, 
computation, and energy. Furthermore, as RI increases, Ψ 
declines. This phenomenon is reasonable because resources are 
more likely to change when users revisit a website after a longer 
period and thus the probability of cache hit becomes lower. 

Caching is more helpful for the Random websites than for the 
Top websites. No matter what value RI has, Ψ௦  and Ψ௡  of the 
Random websites are always larger than those of the Top 
websites. For example, when RI is 24 hours, Ψ௦ of the Random 
set is 6.8% higher than Ψ௦  of the Top set. In other words, the 
Random websites are more cacheable than the Top websites. The 
reason is that resources are less likely to change for ordinary 
websites than for popular websites. 

Next, we examine how different types of resources can benefit 
from caching. 

HTML is the least likely to benefit from caching. Interestingly, 
HTML is the least cacheable type of Web resources. For example, 
Ψ௦ of HTML for the Top websites is as small as 4.5%-9.1%. This 
result may be due to that modern websites are becoming 
increasingly dynamic to meet the ever-growing user requirements. 
Rich client technologies, such as Asynchronous JavaScript + 
XML (AJAX) programming, can change HTML DOM trees on-
the-fly and make HTML less cacheable. Ψ௡  of HTML (34.2%-
41.1% for the Top websites) is larger than Ψ௦ of HTML, because 
small HTML pages are less likely dynamic. In addition, Ψ of 
HTML for the Random websites is larger than the one for the Top 

websites, indicating that the Random websites are relatively more 
stable than the Top websites. 

CSS is the most cacheable resources. Compared to other types 
of resources, Ψ of CSS is the highest: 74.6%-89.4% for the Top 
websites, and 72.0%-91.4% for the Random websites. This 
observation can be explained by the nature of CSS: although the 
content of a webpage may change frequently, the layout and style 
of the webpage may be more stable. 

JS of the Top websites benefits more than that of the Random 
websites. The cacheability of JS for the Top and Random 
websites is very different from overall results and other resource 
types. Given an RI, Ψ of JS for the Top websites is always larger 
than that of the Random websites. Furthermore, Ψ of JS for the 
Top websites does not change much as RI changes (70.9% to 
72.3%), but the variance of Ψ of JS is rather large for the Random 
websites (54.1% to 72.1%). This observation reflects that the Top 
websites remain more stable on functionalities than the Random 
websites. 

Images mostly benefit from caching for short RI. As RI 
increases, Ψ of images decreases a lot (about 30% for the Top 
websites and 20% for the Random websites). This phenomenon is 
reasonable since new images may take place of old ones after a 
longer time. 

5.1.2 Actual Cache Performance 
We further calculate Φ of the two data sets, to explore “What 
percentage of the cacheable Web resources are actually cached” 
for the websites that we captured. Table 3 shows the results and 
we have the following findings.  

Compared to the Top websites, the Random websites do not 
make best use of caching. Φ of Random is always smaller than Φ 
of Top. More than 80% of the cacheable bytes for Top have been 
actually cached in all cases, but just above 50% of the cacheable 
bytes for Random have been actually cached in the best case 
within 0.5 hour RI. 

Small-size resources are not taken into consideration very well. 
Although Φ௦ of Top is high, Φ௡ is relatively low. For 24 hours RI, 
Φ௦  is above 80% while Φ௡  is just not more than 50%. This 
observation implies that the Top websites pay more attention on 
larger-size resources but there are still a number of resources not 
being considered. They occupy small proportion in the total 
resource size but constitute the large proportion of the total 
resource number. Network connections may be wasted to 
download these small resources, not being energy efficient.  

The cacheability of HTML is almost not utilized at all. Both 
Φ௦ and Φ௡ of HTML for Top are smaller than those of Random. 
In the worst case with 24 hours RI, Φ௦ of Top is just 2.8%. For 

Table 2. Ψ of aggregated websites and resource types 

  
24h 6h 0.5h 

Ψ௦ Ψ௡ Ψ௦ Ψ௡ Ψ௦ Ψ௡
AllTop 56.4% 69.5% 64.7% 76.0% 72.7% 83.2%
AllRandom 63.2% 72.1% 73.5% 78.8% 79.0% 84.5%
HTMLTop 4.5% 34.2% 7.2% 39.6% 9.1% 41.1%
HTMLRandom 22.4% 44.0% 27.8% 49.3% 32.7% 51.0%
CSSTop 74.6% 86.9% 79.5% 86.9% 82.4% 89.4%
CSSRandom 72.0% 90.3% 81.7% 89.8% 84.8% 91.4%
JSTop 70.9% 84.5% 69.7% 82.4% 72.3% 83.4%
JSRandom 54.1% 69.8% 66.6% 77.4% 72.1% 80.6%
ImageTop 51.0% 67.2% 68.3% 78.3% 81.4% 88.8%
ImageRandom 74.0% 76.0% 83.7% 82.8% 91.4% 89.7%

Table 3. Φ of aggregated websites and resource types 

  
24h 6h 0.5h 

Φ௦ Φ௡ Φ௦ Φ௡ Φ௦ Φ௡
AllTop 80.7% 48.8% 85.2% 56.6% 88.5% 64.9%
AllRandom 42.4% 32.7% 48.9% 39.6% 53.8% 44.4%
HTMLTop 2.8% 3.8% 2.1% 4.9% 16.4% 12.9%
HTMLRandom 39.4% 11.2% 40.9% 13.0% 47.2% 19.2%
CSSTop 82.6% 52.7% 87.3% 55.9% 88.1% 67.7%
CSSRandom 44.6% 23.5% 55.2% 42.3% 57.9% 45.7%
JSTop 74.9% 37.8% 76.9% 44.5% 83.7% 52.4%
JSRandom 51.6% 29.4% 63.2% 38.9% 69.2% 48.8%
ImageTop 84.5% 55.7% 90.8% 63.3% 93.0% 70.6%
ImageRandom 36.6% 35.4% 41.9% 42.3% 45.2% 45.4%



Random, Φ௦ is not above 50% in the best case with 0.5 hours RI. 
Generally, it seems not possible to make HTML cached as it can 
hardly be predicted when the HTML will be changed. Therefore, 
popular websites give up the cacheability of HTML. 

The resource type with the highest cache performance is Image 
for Top and JS for Random. It is surprising that images of the 
Random websites do not make the best use of cache, where both 
Φ௦ and Φ௡ are even not above 50% in the best cases.  

In summary, there is a big gap between ideal and actual cache 
performance. For the Top websites, the gap is mostly originated 
from the large number of small-size resources. For the Random 
websites, all types of resources’ cacheability have not been 
properly considered. 

5.2 Problems Caused by Undesirable Cache 
Performance 
We then identify two major problems caused by undesirable cache 
performance: Redundant Transfer introduced by NM and 
Miscached Resource introduced by NH. These problems can 
negatively affect the experience of mobile Web browsing. 

5.2.1 Redundant Transfer 
The Redundant Transfer problem comes from NM when resources 
could be fetched from the cache but are actually downloaded from 
the network. Figure 4 shows the CDF of Ω௦  and Ω௡  of the Top 
and Random websites with different RIs.  

Redundant Transfer is a significant issue for mobile Web 
browsing and the issue is worse for the Random websites than 
the Top ones. Considering 24 hours RI, the medium Ω௦ of Top is 

about 10% while it reaches more than 40% for Random, i.e., 40% 
of the transferred bytes are redundant. The result indicates that 
Redundant Transfer is a common problem for mobile Web 
browsing while the Top websites indeed make some efforts to 
reduce it. However, in terms of the resource number, Ω௡ of both 
Top and Random is relatively high where the medium value is 
about 50% and 75%, respectively.  

Redundant Transfer is worse for short RI. Ω becomes higher 
as RI decreases for both Top and Random, represented by CDF 
curves shift to the right when RI decreases in Figure 4. In the 
worst case, the medium Ω௦ of Random is more than 80% with 0.5 
hour RI. As a result, a larger proportion of resources requested 
from the network are redundant when users revisit a website after 
a shorter interval. However, as discussed earlier, caching is more 
effective when RI is shorter. Therefore, caching is far from its 
capacity and it could be improved a lot if NM was reduced.  

Some websites have 100% ષ, indicating that all the requested 
resources are redundant for these websites. For example, about   
10% of Top and 20% of Random have 100% Ω with 24 hours RI. 
Table 4 lists the websites of 100% Ω for Top considering 24 
hours RI. It is surprising that some popular websites are in the list, 
such as Baidu, Wikipedia, and Apple. Since users may visit these 
popular websites many times every day, the waste of data traffic 
and energy could be very large. 

We then examine the Redundant Transfer problem for different 
resource types. Figure 5 shows Ω௦’s CDF with different RIs for 
both Top and Random, corresponding to the resource types of 
HTML, CSS, JavaScript, and Image.  

 
     (a)      (c) (e) (g) 

 
(b) (d) (f) (h) 

Figure 5. ષ࢙ of different resource types for Top and Random 
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(a)   (b)     (c)     (d) 

Figure 4. Overall Negative Miss Ratio 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩsofTop

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩsofRandom

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩnofTop

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ΩnofRandom

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RI=24h
RI=12h
RI=6h
RI=1h
RI=0.5h



For all kinds of resources, ષ of Random is larger than that of 
Top, represented by CDF curves shift to the right bottom by 
comparing the two figures of the same resource type for Top and 
Random. This result implies that ordinary websites do not 
consider cache much for each kind of resources. 

For HTML (5(a) and 5(b)), Ω of Top does not vary a lot while Ω 
of Random decreases as RI increases. This observation implies 
that HTML of the Top websites is more dynamic while HTML of 
the Random gets updated in a fixed period. 

For CSS (5(c) and 5(d)), when RI increases, Ω of both Top and 
Random increases, implying that more redundant transfers could 
occur after a longer RI. The reason may be that both Top and 
Random leverage the cache expiration model for CSS but the 
expiration time is too conservative. As a result, when the CSS is 
revisited after a shorter interval, it will be served by the cache. In 
contrast, the CSS will be loaded from the network when the page 
is revisited after a longer interval, but the resource is actually not 
changed. It is also interesting that CDF of CSS is a traverse line, 
indicating a polar effect that some websites’ CSS are no NM 
while others are all NM.   

For JS (5(e) and 5(f)), Ω of both Top and Random does not vary 
so much, indicating there are a fixed set of NM in JS.  

For image (5(g) and 5(h)), when RI increases, the Ω decreases. 
Random decreases in a small margin while Top decreases larger, 
implying that images of the Top websites change more frequently 
than the Random websites. 

5.2.2 Miscached Resource 
Due to the expiration model, it is likely to provide the out-of-date 
resources from the browser cache. In most cases, developers 
expect that users would tolerate these miscached resources such as 
acquiring information that is not the latest. However, in some 
circumstances, miscached resources could lead to incorrect 
functionalities. For example, during the evolution of Baidu, it 
changes many JS and CSS resources to improve its user 
interaction. However, some previous JS and CSS resources are 
configured to a considerable long expiration period. Therefore, 

users are even not able to use Baidu’s search functionality until 
the users clear the browser cache, or force to refresh the page, or 
wait until the expiration time comes. It is worth exploring the 
Miscached Resource problem. In fact, NH measures the extent of 
this problem. Table 5 shows the result of NH. 

NH takes a small proportion but we cannot ignore it. NH of 
Top and Random share a similar proportion. Although NH of 
the resource number is no more than 3%, NH of resource size is 
about 7%. Note that NH of Top and Random share a similar 
proportion, implying that both Top and Random have not 
considered much for NH. 

NH of HTML is relatively large. NH introduces a lot of expired 
content. Developers may think that users could bare the expired 
content so that temporally expired content is also acceptable. 

NH of image is the lowest but not zero because some functional 
images (such as border and button) may change when websites get 
updated. 

5.3 Analysis of Root Causes 
To study the third research question “What causes the gap 
between ideal and actual performance”, we break down the cache 
behaviors of NM and plot the CDF of each case in Figure 6. As 
explained in Section 4.2, there are six cache behaviors belonging 
to the NM pattern. We calculate the proportion of each cache 
behavior in the total NM and plot them on a CDF graph. Figure 6 
shows the cases of the resource size for Top and Random with 24 
hours and 0.5 hours RI.  

Heuristic and Same Content are the top two causes to NM for both 
Top and Random. For Top, Same Content is the most significant 
issue. For Random, Heuristic is the most significant issue while 
Same Content is in the second place. The distributions of 
Heuristic and Same Content are not affected by RI. For Heuristic, 
as we consider the worst case, RI is not an influencing factor and 
thus it occupies the same proportion in each RI. For Same 
Content, the distribution is similar because the same resources 
have different URLs at every visit. 

Table 4. Top websites with 100% ષ 

Website Rank Category 
Baidu 5 Search 

wikipedia 6 News & Reference 

Wordpress 20 Misc 

360 22 Corporation 

Soso 29 Search 

Ask 35 Search 

Instagram 37 Entertainment 

Apple 45 Corporation 

Alibaba 68 E-commerce 

Table 5. NH of aggregated websites and resource types 

  
24h 6h 0.5h 

NH௦ NH௡ NH௦ NH௡ NH௦ NH௡
AllTop 6.4% 2.3% 7.8% 3.0% 8.1% 3.0% 
AllRandom 7.7% 2.9% 7.9% 2.7% 9.0% 2.8% 
HTMLTop 35.7% 18.7% 35.8% 18.8% 40.0% 19.9% 
HTMLRandom 24.6% 10.3% 23.2% 8.9% 21.5% 9.1% 
CSSTop 8.3% 5.6% 13.4% 9.3% 12.1% 7.7% 
CSSRandom 13.5% 2.8% 9.8% 2.7% 10.5% 2.9% 
JSTop 4.8% 2.1% 10.2% 3.7% 10.4% 4.1% 
JSRandom 10.5% 4.3% 13.4% 3.7% 16.6% 5.3% 
ImageTop 0.1% 0.3% 0.1% 0.3% 0.1% 0.2% 
ImageRandom 1.0% 1.3% 0.6% 0.9% 0.5% 0.8% 

 
(a) (b) (c) (d) 

Figure 6. Breakdown of NM 
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Checked is the third reason for NM. Checked happens when the 
resources are expired in the cache (but actually are up-to-date on 
the server) and validated with the original server by last-modified 
time or Etag identifiers. Although the validation is successful to 
eliminate sending a full response, the protocol overheads account 
for some redundant size. Therefore, validating each resource’s 
status may be harmful for mobile Web browsing. The reason of 
Checked is that the expiration time is configured too short.  

No-store and No-cache occupy small proportion, indicating that 
developers are careful when configuring resources to no store or 
no cache. Therefore it is less important to consider such cases to 
improve mobile Web cache performance. 

We next analyze Same Content, Heuristic Expiration, and 
Conservative Expiration Time in detail. 

5.3.1 Same Content 
We first study the Same Content issue, as it has a significant 
influence on both Top and Random. As we described earlier, 
Same Content represents a case that a resource’s content is found 
in the cache but the URL is different. Since the HTTP 
specification regards the URL as the index of resources for 
caching, there is no means to use the cached resource if the URL 
cannot be found in the cache. By examining the resource request 
records, we find that there are two major causes of Same Content. 

Version management of resources. In order to provide end users 
the up-to-date resources, some best practices of Web development 
suggest that developers attach random query strings to URLs. 
Therefore, every time the webpage with the resource’s reference 
is visited, a new query string will be generated and the browser 
will treat the resource as a new one to download from the server. 
In other cases, some websites, such as Youku, use different 
directories to manage resource versions. Each time the website 
gets updated, a new directory with the new version number will be 
created. Since an update is not likely to change all the resource 
files, Same Content will happen if those unmodified resources are 
requested from the new directory. 

Web hierarchy architecture. Figure 1 has shown the Web 
hierarchy architecture that there are middle-boxes to improve the 
Web performance such as CDN and reverse proxy. To leverage 
these middle-boxes, Web servers have to generate different URLs 
or attach hash code of route paths to resources. As a result, one 
resource could have different URLs when requested at different 
times or at different places, leading to Same Content. 

5.3.2 Heuristic Expiration 
We next investigate the Heuristic Expiration issue, which often 
happens when developers are unaware of the importance of cache 
and do not explicitly configure cache parameters. Heuristic 
Expiration is an important issue for the Random websites because 
their developers may be unskilled. However, Heuristic Expiration 
also takes the second place in the Top websites. 

Table 6 shows the proportion of Heuristic Expiration resources as 
well as the average updating cycle (the interval between two 
updates). Totally, 6% and 33.7% of Top and Random resources 
are configured as Heuristic Expiration. For Top, HTML is the 

largest (37.4%). For Random, all proportions are above 20%, 
meaning that more than 1/5 of resources have not explicitly 
utilized the caching mechanism. 

Since different Web browsers have different algorithms to deal 
with Heuristic Expiration, we just consider the worst case in the 
previous analysis. Here we calculate the average updating cycle to 
study what is the proper expiration time for these resources. We 
can see that there is a big difference between Top and Random. 
Considering all the Heuristic Expiration resources, the cycle is 5.9 
hours for Top while it is 107 hours for Random. This observation 
implies that resources configured as “Heuristic Expiration” can 
benefit a lot from caching if their expiration time is set to day-
level. In contrast, the proper expiration time for Heuristic 
Expiration resources of Top is hour-level. Considering different 
resource types, JS has the longest updating cycle for both Top (7.2 
hours) and Random (143 hours). HTML has the shortest cycle for 
Random (29 hours). 

5.3.3 Conservative Expiration Time 
Figure 7 shows the resource expiration time (indicated by Max-
age primitive) distribution. 40% and 24% of the resources for Top 
and Random, respectively, are configured by less than one-day 
expiration time. This result implies that the Top websites are more 
conservative on expiration because their resources change more 
frequently than the Random websites. However, we find that as 
many as 89% and 86% resources with less than one-day 
expiration time have no updates for Top and Random, 
respectively. Therefore, the expiration time can be extended 
longer. However, longer expiration time may introduce the 
Miscached Resource problem. As a result, it is actually a tradeoff 
between website functionality and cache performance.  

6. IMPLICATIONS 
Table 7 summarizes the findings and implications of our 
measurement results. Overall, caching is helpful but it is a tradeoff 
between website functionality and cache performance when cache 
parameters are configured. To balance the two factors, we suggest 
using the HTML5 AppCache interface [6]. A manifest file can be 
attached to each webpage, specifying what to cache and what to 
load from the network. Resources in the cache list will always be 
loaded from the cache until the manifest file is updated.  

7. RELATED WORK  
With the popularity of mobile computing, research on Web has 
paced into mobile’s era. Studies on mobile Web could roughly be 
categorized into two branches. One is to measure the performance 
of mobile Web, trying to understand the latency, data usage, and 
energy consumption of mobile Web. The other is to improve the 
performance with novel techniques. As a basic mechanism of 
Web, measurement and improvement of mobile Web cache 
performance have driven lots of attention. We next briefly discuss 
related research on general mobile Web performance and then 
discuss related research on mobile Web cache specifically.  

 
Figure 7. Expiration time distribution of Top and Random 
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Table 6. Resources of Heuristic Expiration 

  HTML CSS JS Image Others Total 

Top 
Pct. 37.4% 1.9% 3.8% 2.6% 2.6% 6.0% 

Cycle 3.7 h 1.0 h 7.2 h 1.0 h 4.0 h 5.9 h 
Ran 
dom 

Pct. 29.9% 37.3% 20.4% 45.2% 24.5% 33.7% 
Cycle 29 h 134 h 143 h 133 h 90 h 107 h 



Mobile Web Performance. Measurement studies have been 
conducted to understand mobile Web performance. Mobile HTTP 
Archive [7] records mobile Web performance information of 
about 5000 mobile websites. But its recording period is 15 days, 
and is too coarse-grained to analyze the cache performance. 
Papapanagiotou et al. [14] compared smartphone and laptop Web 
traffic based on a three-week-long wireless communication trace 
collected in an enterprise environment. Thiagarajan et al. [19] 
measured the precise energy used by a mobile browser to render 
Web pages. Many techniques are proposed by researchers and 
employed by mobile developers to improve mobile Web 
performance. Jones et al. [12] studied how browser parallelization 
could help mobile browsers reduce latency and improve energy 
efficiency. PocketWeb [13] leverages prefetching techniques to 
load resources based on user behaviors with server support to 
reduce latency. Some latest commodity browsers such as Amazon 
Silk Browser [2], Google Chrome Beta [5], and OperaMini [8] are 
particularly designed for mobile browsing by leveraging server or 
cloud-based offloading [18]. New protocols, such as SPDY 
[10][22] and QUIC [4], are designed and deployed to optimize 
mobile Web performance from lower levels.  

Mobile Web Cache. A lot of efforts have been done to study the 
performance of mobile Web cache. Wang et al. [24] examined 
three client-only solutions to accelerate mobile browser speed: 
caching, prefetching, and speculative loading, by using Web 
usage data collected from 24 iPhone users over one year. They 
found that caching has very limited effectiveness: 60% of the 
requested resources are either expired or not in the cache. Zhang 
et al. [25] performed a comprehensive measurement study on Web 
caching functionality of 1300 top ranked Android apps, not just 
Web browsers. Results revealed that imperfect web caching is a 
common and serious problem for Android apps generating Web 
traffic. They also implemented a system wide service called 
CacheKeeper to effectively reduce overhead caused by poor Web 
caching of mobile apps. Qian et al. [16] conducted a measurement 
study on Web caching in smartphones. By examining a one-day 
smartphone Web traffic dataset collected from a cellular carrier 
and a five-month Web access trace collected from 20 smartphone 

users, the study revealed that about 20% of the total Web traffic 
examined is redundant due to imperfect cache implementations. In 
their subsequent work [17], they studied caching efficiency for the 
most popular 500 websites. They found that caching is poorly 
utilized for many mobile sites. 26% of the top mobile sites mark 
their main HTML files as non-storable, leading to potential 
bandwidth waste. About 23% of objects in mobile sites are 
cacheable but have freshness lifetime of less than 1 hour. Our 
work differs in our methodology: we use a long-period sampling 
traces and determine the cache efficiency by resource evolution 
history. Recent work [23] examined how Web browsing can 
benefit from micro-cache that separately caches layout, code, and 
data at a fine granularity. It studied how and when these resources 
are updated and found that layout and code that block subsequent 
object loads are highly cacheable. 

8. CONCLUSION 
In this paper, we have presented a comprehensive measurement 
and analysis of mobile Web cache performance. We have 
proposed a proactive approach to crawling the resource update 
traces from two sets of websites periodically with a fine-grained 
time interval. We have built an analysis model to capture the 
relationship between cache behavior and resource updates. Based 
on the model, (1) we have examined the ideal cacheability and 
found that caching is substantially helpful for mobile Web 
browsing; (2) we have measured the actual performance and 
identified a big gap between ideality and reality; (3) we have 
investigated three main root causes – Same Content, Heuristic 
Expiration, and Conservative Expiration Time. We have provided 
recommendations for developers to improve mobile Web cache 
performance according to the implications of our findings. 
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Table 7. Our major findings and implications of mobile Web cache performance 

Findings Implications 
More than half of the total resource bytes and about 70% of the 
resource objects can be cached after 24 hours. Although 80% of the 
cacheable bytes are actually cached for Top, the percentage of 
cached objects is under 50%. For Random, both cached bytes and 
objects occupy not more than 50% of the cacheability. 

Caching has substantial benefits for mobile Web browsing, especially for ordinary 
websites. But the cacheability has not been effectively utilized. Popular websites indeed 
make efforts on caching larger-size resources but do not consider small-size resources 
very well. Ordinary websites perform worse for both cacheable bytes and objects. 

The cacheability varies for different types of resources, and the 
actual performance is also different. The results between Top and 
Random are not the same either. 

Web developers should configure different caching policies for different types of 
resources based on the characteristics of websites. Developers from popular websites 
could consider more for caching JS, while developers from ordinary websites should 
check the cache configurations for all resources especially the images. 

The Redundant Transfer problem is worse when a website is 
revisited after a shorter period. Some popular websites even have 
100% Negative Miss Ratio. 

Data traffic and energy of mobile Web browsing are wasted mostly from frequently 
visited websites. Popular websites should leverage new techniques to further reduce 
unnecessary network traffic. 

NH of Top and Random share a similar proportion. HTML accounts 
for the largest NH. NH of CSS for Top is larger than for Random, 
while JS is on the contrary. NH of images is not 0. 

Miscached Resource is a common problem for all the websites. Popular websites may 
have wrong layout and view while ordinary websites could suffer from wrong 
functionalities. Developers should avoid using the same URL for different images. 

Same Content accounts for the main origins of NM. More than 20% 
of NM resources are resulted from Same Content for half of Top and 
25% of Random. Same Content is caused by the version 
management and Web hierarchy architecture. 

Current techniques to maintain website versions, such as random query strings, are not 
appropriate for mobile Web browsing. New techniques have to be adopted. 
Although the Web hierarchy architecture reduces the overall network traffic and releases 
server workload, it is harmful for user-centric mobile Web browsing. End-user based 
content distribution may help solve the problem. 

6% and 33.7% of Top and Random resources are configured as 
Heuristic Expiration, but the average updating cycle is 5.9 hours and 
107 hours for Top and Random, respectively. 

It is better to set an explicit expiration time than using the Heuristic Expiration. Ordinary 
websites can set day-level expiration time to their resources while popular websites can set 
hour-level time. 

40% and 24% of the resources for Top and Random are configured 
by less than one-day expiration time. But 89% and 86% of them 
have no updates for Top and Random, respectively. 

The expiration time is conservatively configured. Developers can extend the expiration 
time for some resources that are not likely to change for a considerably long time. But 
longer expiration time could cause the Miscached Resource problem. 
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