

A Framework for Robust and Flexible Handling
of Inputs with Uncertainty

Julia Schwarz, Scott E. Hudson, Jennifer Mankoff Andrew D. Wilson
HCII, Carnegie Mellon

5000 Forbes Ave, Pittsburgh, PA 15213 USA
{julia.schwarz, scott.hudson, jmankoff}@cs.cmu.edu

Microsoft Research
One Microsoft Way, Redmond, WA 98052

awilson@microsoft.com

ABSTRACT
New input technologies (such as touch), recognition based
input (such as pen gestures) and next-generation interac-
tions (such as inexact interaction) all hold the promise of
more natural user interfaces. However, these techniques all
create inputs with some uncertainty. Unfortunately, con-
ventional infrastructure lacks a method for easily handling
uncertainty, and as a result input produced by these tech-
nologies is often converted to conventional events as quick-
ly as possible, leading to a stunted interactive experience.
We present a framework for handling input with uncertain-
ty in a systematic, extensible, and easy to manipulate fa-
shion. To illustrate this framework, we present several tra-
ditional interactors which have been extended to provide
feedback about uncertain inputs and to allow for the possi-
bility that in the end that input will be judged wrong (or
end up going to a different interactor). Our six demonstra-
tions include tiny buttons that are manipulable using touch
input, a text box that can handle multiple interpretations of
spoken input, a scrollbar that can respond to inexactly
placed input, and buttons which are easier to click for
people with motor impairments. Our framework supports
all of these interactions by carrying uncertainty forward all
the way through selection of possible target interactors,
interpretation by interactors, generation of (uncertain) can-
didate actions to take, and a mediation process that decides
(in a lazy fashion) which actions should become final.

ACM Classification:H5.2 [Information interfaces and pres-
entation]: User Interfaces.- Graphical user interfaces.
General terms: Performance, Human Factors.
Keywords: Input Handling, Ambiguity, Recognition.

INTRODUCTION
Input handling in most modern interface toolkits depends
on an established framework for modeling and responding
to input that has been tuned over time to the needs of con-
ventional graphical user interfaces (GUIs). However, this
framework makes a number of assumptions about the na-
ture of the inputs it deals with. For example, standard GUI
toolkits implicitly assume inputs are certain to have oc-

curred as reported. As we move to promising new technol-
ogies such as computer vision, free-space gesture recogni-
tion, pen input, and touch sensing, this assumption of cer-
tainty is being violated. It is no longer the case that reports
about inputs are completely correct, without ambiguity or
significant error. For example, in touch input the location
of a touch ‘click’ is partly ambiguous simply because a
user’s finger touches, not at a point, but an area (and the
user cannot see how their contact area overlaps small ob-
jects underneath their finger). Similarly, a recognizer may
produce one or more uncertain estimates of user intent.

If these inputs are processed using a conventional input
framework, their uncertainty is resolved quickly and often
simplistically. The result may seem arbitrary or unpredicta-
ble. Small errors in interpretation may lead to incorrect
application actions that are difficult to recover from.

One solution to this problem is to develop interactive sys-
tems that are designed to work smoothly with one or more
types of recognized input. Along these lines, there has been
considerable work on multimodal systems, which in part
aims to mitigate interpretation errors [18,19]. While very
promising, this body of work has largely entailed adoption
of a radical new input framework, designed to integrate
information from multiple sensor channels. An alternate
approach is to integrate uncertain input into the conven-
tional input handling framework, making it possible to take
advantage of existing buttons, sliders, menus, etc. that the
vast majority of users are familiar with and have invested
substantial learning in.

In this paper we describe the details of a new input han-
dling framework that is compatible with the existing ap-
proach, accurately tracks the probabilities of alternative
uncertain inputs, and provides mechanisms for dispatching
input, intelligently making decisions, providing feedback,
and acting in the light of that uncertainty.

Our framework can temporarily entertain multiple possible
uncertain inputs (until the interface needs to perform an
action with permanent consequences beyond feedback).
This puts off the decision of which possibility is correct, so
that it is possible to use more information to make the final
decision. For example, Figure 1 shows two possible inter-
pretations of a press-move-release sequence on a touch
screen (left: dragging an icon; right: resizing a window).
Rather than deciding which is correct at the moment the
screen is touched, our framework allows interactors to tem-
porarily provide feedback about both possibilities. Addi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’10, October 3–6, 2010, New York, New York, USA.
Copyright 2010 ACM 978-1-4503-0271-5/10/10....$10.00.

tional information such as the direction of motion can then
be used to make a decision. For example, if the user moves
vertically, he or she is unlikely to be resizing the window
since only horizontal movements affect window width.

In the next section, we review the major tasks inherent in
conventional input handling. We compare this to our
framework for handling uncertain input, which preserves
the basic mechanisms of the conventional event-oriented
input model. Next, we discuss our framework and imple-
mentation in more detail. Like the conventional input
framework, our framework provides a general and reusable
structure – including a model for probabilistic input and a
means to make informed decisions on the basis of accurate
probabilistic tracking of alternatives. This allows different
interactors taken from a library to be used largely without
regard to what other (probabilistic or conventional) interac-
tors are being used in the same interface. Finally, we give
an overview of how our framework supports existing inte-
raction improvements and provide six examples of how the
framework can be used to create improved interactions.

COMPARING CONVENTIONAL AND UNCERTAIN INPUT
Nearly all modern user interface toolkits implement inter-
faces as a mostly independent collection of interactive ob-
jects managed by an infrastructure for handling input, pro-
ducing output, and numerous other tasks. The input han-
dling component of these systems is now well evolved and
works very well for its task. This conventional input han-
dling framework can be thought of as providing four major
capabilities: (1) modeling of inputs, by providing a way to
record all the relevant details of what input happened (in
the form of event records), (2) a process for dispatch of
those events – deciding which interactor object(s) should
receive and handle a given input, (3) interpretation of those
events by the interactors in terms of their own interactive
state, and finally (4) action by the interactor (including
presentation of user feedback and requesting action from
the application). By giving interactors structured, yet inde-
pendent control over how they respond to input, this
framework gains uniformity and extensibility. Interactors
from an expandable library can be used together on a mix-
and-match basis with little explicit cooperation. This same
basic structure is appropriate for inputs with uncertainty.
Figure 2 gives an overview of this process and below we
discuss each component, comparing conventional input and
its probabilistic equivalent.

Modeling Input
In the input framework employed by most modern graphi-
cal user interfaces, all input is modeled as a discrete se-
quence of events, each of which records information about
some significant occurrence that may affect an interactive
program. While the exact form of event records used in
various systems varies somewhat, with a small amount of
abstraction most can be characterized as recording the fol-
lowing five categories of information:

 What type of input happened. A record of what oc-
curred, such as “a keyboard key was pressed down”.
The type of input may determine the exact structure of
the remaining information in the event record.

 A detailed value describing what happened, such as
“Key cap #12” for a key press event.

 When the input happened. A timestamp.
 Where the input happened. Most typically the (x, y)

position of the primary pointing device.
 Important context associated with the input. A record

of other values that might modify the meaning of the
input. A conventional example is the state of the mod-
ifier keyboard keys (ctrl, alt, etc.).

When an input is less certain, conventional frameworks are
unable to model this uncertainty. As described above, Fig-
ure 1 demonstrates a touch-based interaction involving un-
certainty. Here the user is pointing to a screen location very
close to both an icon and the edge of a window partially
covering it. The user’s intent may be to move the icon or to
resize the window. Although the user has a specific intent,
it may not be obvious what is intended at the moment the
screen is touched. With conventional input, the user’s ac-
tion will produce a press event that is represented as a sin-
gle point (usually the center of the touch area). As a result,
very small variations in location of the user’s finger have
an effect that is difficult to predict.

To accurately model uncertainty, input event properties
need to be expanded from a single fact to estimates
representing a range of possibilities, which we will
represent using a probability mass function (PMF). A PMF
is a function which describes the relative likelihood that
some discrete random variable has a particular value or that
a continuous random variable falls within a finite range.
For example, a Boolean variable can be represented as a
PMF with probability of 0.2 of being true and 0.8 of being

Figure 1: Illustration of implicit disambiguation for touch input. Left: Users presses down and moves diagonally, moving
the icon. Right: User presses down and moves horizontally, resizing the window instead. When the user presses down,
both interactors are equally likely to respond. The user’s motion later disambiguates their intention and interactors in our
framework respond appropriately.

false and the PMF for a position indicates for each pixel the
probability that the true position falls within the pixel.
Since a PMF is derived from an underlying probability dis-
tribution, the integral over all possible values of the random
variable must sum to 1. In our framework, all properties of
an event may be represented by a PMF instead of a single
certain value. In addition, the input event as a whole is as-
signed a probability, indicating the likelihood that it (as
opposed to a different input event) is what happened. The
event probability is often 100%; however something like a
recognizer that produces multiple possible alternatives
might assign differing likelihoods to each alternative, each
of which would be represented by a separate input event.

Event Dispatch
Conventional event dispatch consists of selecting an inte-
ractor (or, occasionally, a set of interactors) to receive each
event, then delivering that event. In a conventional frame-
work, selection is a cooperative process between the dis-
patch subsystem and the interactors it might deliver input
to. An ordered set of candidate interactors is selected as
potential recipients for an event based on factors such as
location and type of the event. The dispatch system then
queries each one, in order, to find out if it will use the
event. An interactor may determine, based on its internal
state (for example, if it is disabled), that it does not want an
event, or may consume the event (take action on it), in
which case dispatch is typically complete (no further inte-
ractors are queried). Each interactor implements a standard
interface that encapsulates this process, facilitating the se-
lection of which interactor should receive an event and then
the actual delivery of that event.

Typical strategies for selecting interactors include position-
al selection, where the on-screen position of the primary
locator determines which interactors receive events (e.g.,
how a menu receives press events), and focus-based selec-
tion, where one interactor is granted exclusive access to
input, regardless of position (e.g., how a text box receives
keystroke events). In the case of Figure 1, positional selec-
tion would be used. Conventional systems make use of a
picking mechanism to generate an ordered list of interactors
that should receive the input at a position. Each interactor is
then queried as to whether it can handle the event, and the

event is delivered to the first one to say yes. A typical pick-
ing strategy would select the topmost interactor within
whose bounds an event is located. For example, if the cen-
troid of a press event falls on the icon in Figure 1, the icon
would receive the event.

To account for ambiguity and uncertainty these processes
need to be handled probabilistically – we need to provide a
representation of the certainty that an event should be deli-
vered to a given interactor. As shown in Figure 2, probabil-
istic events are delivered to all of the interactors in the
candidate selection list instead of just one.

Interpretation and Action
Once an interactor receives an event, it is responsible for
responding to that event. Each interactor tracks its interac-
tive state, including where it is currently drawn, what con-
figuration it is in (for example, a check box knows if it is
checked or unchecked) and where within an interactive
input sequence it currently is (for example, the icon in Fig-
ure 1 may know that it has received a press event and move
into a “drag” state). A finite state machine is the traditional
way to represent how an interactor should respond to dif-
ferent input events [17, 21].

It is the responsibility of the interactor to display feedback
in response to events (which is often done by updating its
visible location on the screen, transparency, etc.). At ap-
propriate points in the interaction (e.g., when the icon rece-
ives a release event), the interactor is responsible for re-
questing action from the application on behalf of the user
(e.g., if the icon is dropped into a folder, requesting a file
system update).

In an uncertain world, each interactor also (probabilistical-
ly) interprets events. As with the conventional input han-
dling framework, each interactor object is responsible for
maintaining its own internal state. To properly handle un-
certainty between alternative inputs, interactor state needs
to be handled probabilistically. This can be done in an ad-
hoc manner (as with the implementation described later in
this paper), or using a more structured approach. One pos-
sibility is the Probabilistic Finite State Machine (PFSM)
approach developed in our previous work [10]. A PFSM
tracks the current state of an interactor as a PMF across the

Dispatcher

Probabilistic
Event (s)

Selection
Process

(e.g., picking)

i1

i2

i3

i4

i5

Interactors

Mediator

Event
(.9)

…

Possible
Action (.5)

Temporary
Action

Possible
Action (.8)

Possible
Action (.5)

Alternate
Actions

Mediator

i1

i2

i3

i4

i5

Possible
Action

Temp.
Action

Possible
Action

Possible
Action

Figure 2: Overview of how a probabilistic event is handled in our framework. (a) When an event arrives, a selection process is
used to assign a custom probability to it for each interactor. Interactors then decide whether to take action on it. Possible actions
(or temporary actions such as feedback) are sent to a mediator (b) At some point (either when there is a clear winner in terms of
probability, or a finalization request is made) the mediator picks an action, based on probability. All other actions are canceled.

(a) (b)

state space of a finite state machine and updates that state
based on probabilistic events.

When an interactor changes state this may imply that an
action needs to be performed, such as updating the file sys-
tem to represent its new location. If we assume that appli-
cations should not execute multiple potentially conflicting
actions (each implied by different interpretations of the
same uncertain input), this leads to a new requirement: At
some point, it is necessary to choose between the different
possible actions – to resolve the ambiguity.

There is good evidence that pushing off this decision as
long as possible is better for the user than making it too
soon [8]. To enable this delayed resolution of uncertainty,
we introduce a refinement on the notion of actions, break-
ing them into two categories: temporary actions and final
actions. Temporary actions – which most typically provide
feedback – are always fully reversible. For example, if a
touch position is uncertain (e.g., overlaps two buttons) we
can, and probably should, provide feedback to the user in-
dicating that both possibilities are still being considered by
the system. Final actions on the other hand may not be re-
versible, and may not be compatible with each other. For
example, it is not typically safe to ask the application to
execute the final action of a “cancel” and “ok” button si-
multaneously, so we must make a choice between them.

In our framework, the resolution of uncertainty is handled
in a lazy fashion – it is pushed off until absolutely required.
If an interactor reaches a state in which it must act, it makes
a finalization request. As illustrated in Figure 2, finalization
requests are handled by a system component called a me-
diator. The mediator may either choose one action, to re-
solve ambiguity, or override the interactor by deferring
mediation if more information is needed. This part of the
framework is directly adapted from [14] and the reader in
encouraged to refer to [13] for a discussion of interesting
mechanisms for interactive mediation.

Probabilistic Input Handling Example
Figure 3 illustrates a specific scenario for the use of proba-
bilistic input. Here touch input is being used to select a tiny
square button smaller than the fingertip, packed tightly with
two other small buttons. The button on the left in this ex-
ample is disabled. There is clearly some ambiguity here as
the finger is at least in part “over” all three buttons.

To give an overview of how our framework operates, we
consider what happens when the finger is first pressed over
these buttons. This input is modeled as a probabilistic
event. Since we are fairly certain that a touch occurred, a
single event (with 100% probability) is generated by the
system. The location of that event is represented as a PMF
derived from a 2d Gaussian function centered over the
touch center with standard deviation of ¼ the width and
height of the touch area (illustrated with the shading under

the finger outline). This PMF is used during dispatch to
determine how probable it is that the event is intended for
each of the buttons. In this case, the selection score is the
integration of the touch PMF over the button area. As is
intuitively correct from a visual inspection of Figure 3, this
selection score is higher for the left and center buttons than
the right button. Interactors may optionally zero out their
selection scores if they can determine that a particular input
is definitely unsuitable for them, or may reduce the score if
the input is unlikely to be suitable. For example, a disabled
interactor would always return a 0 selection score and a
button might return 0 for all text inputs.

Based on this, the leftmost button would return a 0 selec-
tion score and be eliminated from consideration. The event
is then delivered to the two remaining viable candidates.
Since the center button had a higher selection score than the
right button, it generates a possible action with a higher
score than the right button. In this simple example, the me-
diator selects that action over the other (less likely) alterna-
tive. The center button’s action is executed and the right
button’s action is canceled. Other mediation strategies or
new information might lead to other outcomes.

HANDLING INPUTS WITH UNCERTAINTY:
DETAILS AND IMPLEMENTATION
While the previous section provided an overview of the key
differences between conventional and uncertain input, this
section explains in more depth how our framework actually
handles event modeling, dispatch, interpretation and ac-
tion.

A proof of concept implementation of the ideas presented
here has been implemented in C# on top of the .NET
framework. Relevant implementation details are discussed
within each subsection. Although our implementation is not
a full toolkit, it constitutes a working demonstration of the
ideas discussed below.
Modeling Probabilistic Events
Each uncertain piece of information in a probabilistic event
is modeled as a PMF. These PMFs can be instantiated in
one of several forms, abstracted into an API. For example
PMFs can be implemented as a table or histogram, can be
implemented using an analytical function, or as a Monte
Carlo sampling of the underling distribution.

Figure 3: A probabilistic input scenario involving a
touch over three very small square buttons. The button
on left in this example is disabled.

The type of the event (what it is) is a special case. Since the
event type may determine the detailed structure of the
overall event record, we implement the PMF for event type
as a collection of separate event objects, one for each type,
each with an associated probability. The collection of alter-
native events and their associated probabilities then serves
as the PMF over possible event types. Figure 4 illustrates a
sample uncertain event.

Event Dispatch
As described earlier, the goal of event dispatch is to select a
candidate set of interactors that may represent the proper
recipient(s) of an event, and then deliver that event. Al-
though position or interactor focus are most commonly
used, other interesting policies are possible, see [9]. For
example, input could be dispatched based on its proximity
to a target or whether it surrounds a target. Probabilistic
selection should be equally flexible, with the added re-
quirement that events are delivered to all interactors that
may be plausible recipients.
Selecting which interactor should receive an event
We support a probabilistic notion of dispatch in which
events are delivered to all interactors which are candidates
for input. Candidacy is determined using a scoring mechan-
ism that considers event properties and interactor state.
These scores are provided by querying each interactor. The
resulting probabilistic selection list can be seen as a PMF.
Past tools have typically not provided structured support
for uncertainty about who should receive an event (termed
target ambiguity [14]).

Conventional dispatch usually determines candidacy based
on one of two algorithms focusing on event type (focused
dispatch) or position (positional dispatch). Both are han-
dled in the same way in our framework. Each interactor
examines the type, position, or any other property of an
event to determine a selection score between 0 and 1 inclu-
sive. Selection may be based on event types, as well as
measures of “overlap,” “nearness” or other more radical
spatial relationships. By loosening the requirements for
“overlap” and using logic and contextual information to

determine “nearness”, we can enable inexact interaction
[3]. A nice property of the framework is that more exotic
styles of dispatch can be supported simultaneously with
more conventional styles because of the uniform way in
which uncertain input is delivered.

As a simple example of this process, consider the buttons in
Figure 3, which are smaller than the touch area. They are
designed to calculate a selection score based on the integra-
tion of the location PMF over the button bounds. Because
buttons look at the integration over the non-uniform loca-
tion PMF, if the finger completely covers two or more but-
tons, the buttons closest to the center of the finger (where
probability density is higher) will have the highest score. In
contrast, an interactor used in a pen based system might
return a high selection score for a circling gesture event
which encloses it, rather than requiring overlap. Alterna-
tively we might support underlining in a pen system using a
combined measure of nearness (without overlap) and paral-
lelism to calculate the selection score.

The result of the selection process is a candidate list of
interactors with associated probabilities (selection scores)
indicating the likelihood that they are the intended target of
the user’s input. These selection scores are normalized
across all interactors so that they sum to 1.

Finally, for each interactor, the normalized selection score,
and probability that the event actually occurred are multip-
lied together to determine a final probability to be asso-
ciated with dispatch of the event to that specific interactor.

Interpretation, Feedback and Action
At this point, it is up to the interactor to interpret the mean-
ing of the event based on its internal state, update that state,
and decide whether there is a possible action it might take
as a result. As indicated earlier, it is often valuable to pro-
vide immediate feedback to expresses a system’s current
understanding of the user’s input – ambiguous or other-
wise. As a result, feedback or other temporary, fully revers-
ible actions, are modeled separately from actions that have
permanent and/or irreversible consequences. In our frame-
work we only allow interactors to modify their own ap-
pearance to avoid conflicting representations of feedback.

The interactor informs the system of any temporary actions
that it will take using a temporary action object that encap-
sulates key information about the action useful for later
reversing it. Similarly, possible (final) actions are encapsu-
lated in a possible action object (also referred to as a final
action request), which has an associated probability that
this interactor is really in a state compatible with that poss-
ible action. This possible action is passed to the system
along with a Boolean indicating whether the request must
be finalized immediately, or can be handled in a lazy fa-
shion.

Mediation
A mediator’s job is to choose between competing (and po-
tentially conflicting) actions. Typically, the mediator will
make this choice when it receives a finalize request. In that
case, the mediator will make one of three choices: (1) it

Figure 4: Modeling and generation of probabilistic events. A
gesture recognizer generates two event alternatives: a circle
with a probability of 0.4 and pigtail selection with probability
0.6

What: Pigtail_Select

Tail_Dir:

Where: [bounding box]

When:

PMF
Clockwise: 0.2
CounterCW: 0.8

What: Circle

Where: [bounding box]

When:

Gesture
Recognizer

PMF

Event P=0.4

Event P=0.6

may select an action (in our implementation simply the
most probable one) (2) it may decide that no action is prob-
able enough to execute and cancel all actions (3) it may
decide that it needs additional information and request
some from the user, deferring mediation until the user re-
sponds e.g., while an N-best list style mediation dialog is
offered to the user. Many other sophisticated interactive
mediators are also possible [13]. In some cases, the media-
tor may decide to finalize even without a request to finalize.
For example, if there is one possible action that is signifi-
cantly more likely than any others (i.e., ambiguity is very
low), the mediator can choose to automatically finalize that
action.

Once a possible action is selected, the associated interactor
is notified that the action has been finalized (and can act on
it) and any other interactors with possible or temporary
action requests are notified that their actions are canceled.

One nice property of the temporary/possible action split is
that feedback is provided early, and may be visible up to
and through the mediation process. This can help a user to
adjust their input to implicitly mediate, or provide the user
with needed context during more explicit cases of media-
tion. When interactors are notified that an action has been
canceled, feedback can be removed. Any pending actions
(temporary or possible) registered since the last time an
action was finalized are canceled. The interactor associated
with each action is expected to roll back its state and undo
any temporary changes such as displaying feedback.

A Complete Example
To illustrate the complete flow of input under our frame-
work, we use the interface shown in Figure 5. This example
adds realism to the example associated with Figure 3. Al-
though both examples are fairly basic, our implementation
enables something very powerful: By allowing users to
select among very small buttons using a finger, we open the
door to mobile applications that can take advantage of in-
creasing screen quality rather than being limited by finger
size. Following this we will present a number of additional
examples of the interactions enabled by our tool.

1. The user touches the screen and a probabilistic touch
event is generated and passed to the dispatcher. As de-
scribed before, a single event with 100% probability is
generated. The position information within the event is
uncertain and is provided as a PMF derived from a 2d
Gaussian function centered about the touch center with

standard deviation equal to the width/height of the touch
area divided by 4.

2. Each interactor in the interface is asked for a selection
score which indicates whether it should be in the candi-
date dispatch list. It is obvious in Figure 3 that this in-
cludes all three buttons, but note that in the case of Fig-
ure 5, this includes the “yes”, “no”, “cancel” and “close”
(“X”) buttons, as well as the dialog box title bar. Each in-
teractor computes its selection score by integrating the
PMF over the button area. After receiving the selection
scores, the dispatcher delivers a touch down event to the
‘yes’ and ‘no’ buttons, as these are the only buttons
which have returned nonzero selection scores.

3. Our button class acts as soon as it receives the initial
touch (without waiting for a release event), so each but-
ton’s tracking of state and interpretation of the input is
trivial. The response of the “yes” and “no” buttons is to
each emit a possible action and request finalization.
Since the interpretation of events is very simple in this
example, the incoming event score is simply passed
along as the action probability.

4. When the mediator receives the possible actions, it notes
the presence of a finalization request and immediately
makes a decision among the possible actions. The media-
tor we implemented selects the action with the highest
probability to go forward. In the case of Figure 5, this
means that it calls finalized() on the “yes” button, passing
its action back so that it can respond, and calls cancel()
on the “no” button. All other buttons are ignored, since
they did not submit possible or temporary actions.

5. The selected button notifies the application that it should
execute its action. If any other button had displayed any
feedback, at this point it would remove that feedback.

This example has the practical effect of making the effec-
tive target size larger. This is one of the central ways in
which one can make it easier to select a target (“beat” Fitts’
law [1]) and so it is not surprising that many advanced inte-
raction techniques take a similar approach – starting from
Sutherland’s earliest work with gravity fields in SketchPad
[23] through [3, 15, 2, 16]. Our framework’s approach to
identifying candidate targets makes adaptive versions of
techniques for beating Fitts’ law essentially the default
(having an effect analogous to adaptive area cursors [11] or
bubble cursors [6]).

Integrating Conventional Interactors
Our approach allows different interactors taken from a li-
brary to be used largely without regard to what other (prob-
abilistic or conventional) interactors are being used in the
same interface. In this section we will outline how our
framework could integrate conventional interactors, al-
though we have not yet implemented this.

As discussed earlier, ordinarily, a conventional interactor
upon receiving input will either discard it (allowing another
interactor to use it instead) or act on it in an irreversible
fashion. A simple solution to this problem is to embed the
conventional interactor in a container that will act as a bro-

Figure 5: Scenario for an ambiguous button press. But-
tons in our framework look at the integral of the location
PMF over button area to determine selection.

ker between it and our framework, ensuring that it only
ever receives input that it can assume is certain.

To accommodate this, the wrapper container handles selec-
tion scoring in a way that matches the typical behavior of
conventional interactors: input must fall inside the interac-
tors bounds, and non-zero scores are provided only for in-
put types that the interactor has registered interest in. To
facilitate this, a developer must specify the type of input the
interactor handles.

If an event is then dispatched to the wrapper container, it
immediately creates a possible action and submits a request
to finalize it to the mediator. If the mediator selects the
possible action, the original event is passed on to the con-
ventional interactor by the wrapper.

One special case must be handled for this to work: It is
possible that the conventional interactor will discard the
event (rather than acting on it). In this case, the proper be-
havior of the mediator would be to select the next most
likely possible action instead. To facilitate this, the media-
tor does not cancel any actions until after the wrapper con-
tainer notifies it that the conventional interactor did indeed
consume the event. With these changes, conventional inte-
ractors may be integrated into our framework in a seamless
fashion.

Note that like every other aspect of our framework, this
approach is pluggable. For example, the wrapper could:
support inexact interaction, finalize later in the interaction
process, or convert between input event types to make them
match the expectations of the conventional interactor.

EXPLORATION OF RESULTS
We provide a set of demonstrations illustrating the flexibili-
ty and expressiveness of our framework. These examples
help to illustrate the space of interactions that our frame-
work should be able to facilitate. Our examples include
new and existing interaction techniques – demonstrating
that our framework is expressive enough to create new pos-
sibilities and support the state of the art. We show how our
framework can support feedback of uncertainty, provide a
firm basis for making probabilistically sound decisions, and
avoid premature decisions. This helps to avoid brittle di-
alogs and allows interactions to make use of multiple and
richer sources of information about the interaction to re-
solve ambiguity (such as the shape of a movement that oc-
curs after an initial click, touch, or other start of an interac-
tion).

Our validation consists of six case studies. Taken together
they demonstrate our framework’s ability to address new
types of uncertainty, expand on or straightforwardly sup-
port prior novel interaction techniques from the research
literature, and introduce new interaction techniques. These
examples are presented in the subsections below, and the
reader is also referred to the accompanying video figure for
running demonstrations.

Improving Touch Interaction (Examples 1, 2 and 3)
Pointing activities are an integral part of interaction in to-
day’s graphical user interfaces. Perhaps because they are
such a basic part of what we do, we have stopped noticing
that not all pointing activities are equally straightforward
and error free. For example, to save screen space, many
windows have very small borders. This is good, except
when the user is trying to resize a window and must grab
its border (and not something under it or next to it). Simi-
larly, small slider and scrollbar thumbs are often difficult to
manipulate (or far from the current locator position). These
and other interactions are made even worse in the face of
touch input, where the user’s finger may be larger than the
very targets he or she is attempting to select. For small de-
vices such as mobile phones, the result can be limits on the
number of interactive elements that can reasonably be inte-
racted with, despite high screen resolution.
Implementation
We have implemented three examples: (1) smart window
resizing (shown in Figure 1); (2) ambiguous and remote
sliders (shown in Figure 6); and (3) tiny buttons for touch
input (shown in Figure 3). Some key implementation de-
tails are discussed here.

All of these examples boil down to a simple question:
Which interactive element should be handling the current
set of locator-related events? Since these events are touch
based, they are modeled as a single probabilistic event
record, with a PMF describing the location as an area ap-
proximately the size of the user’s finger (derived from the
2d Gaussian mentioned earlier). The question of who
should handle each event is easily addressed in our frame-
work by modifying the selection scores of interactors.
Based on this, each interactor is given an event with a score
weight indicating the likelihood that this is the correct inte-
ractor to consume that event. At that point, all of the inte-
ractors proceed in the identical way: They decide whether
to show any feedback, create a possible action
(representing what they would do with the event), and pass
it to the mediator. This process repeats as each additional
touch event arrives, until the mediator decides that ambigu-
ity is low enough to finalize, or an interactor reaches a state
in which it must finalize (such as when the user raises his
or her finger). Note that mediation always considers the
most recent possible actions only, but will cancel all past
actions as well when completed.

Factors to consider for selection include: (1) direction of
motion for move events (appropriate for smart window
resizing, which assigns scores to targets differently for ho-
rizontal motion and vertical motion) (2) overlap or nearness
(overlap is appropriate for touch, but nearness creates the
equivalent of an area cursor [16, 12]). Selection is imple-
mented in the same way for all of the interactors in our
examples. However, it would be straightforward to imple-
ment special cases such as buttons with dangerous actions
that artificially reduce their selection scores to require that
they be more unambiguously selected before they can be
activated.

Given these decisions, we implemented three sample appli-
cations:
1) Smart Window Resizing (Figure 1)
For this interaction horizontal motion should drive the se-
lection score for the window up, and vertical motion should
drive it down. Direction of motion is calculated by compar-
ing the location of the current move event to the original
press event. The icon’s selection score is computed based
on the integral of the location PMF over the icon area, mul-
tiplied by a factor accounting for its direction.
2) Ambiguous and Remote Sliders (Figure 6)
A key feature of these sliders is interaction at a distance.
Thus, the selection score depends on the distance between
the current move event and each slider on the screen in ad-
dition to the direction of motion. As shown in Figure 6b all
viable target sliders show feedback.
3) Tiny buttons for touch input (Figure 3)
Buttons integrate the location PMF over the button area to
calculate a selection score. Details on this application of
our framework are provided in the two concrete examples
discussed earlier in the text.
Discussion
We have discussed the implementation of three demonstra-
tion applications. In all three cases, there is ambiguity in
determining what the user intends to interact with. This is
further complicated by the wish to interact at a distance
(sliders) or support inexact interaction (buttons). An impor-
tant property of our framework is the fact that all of these
different styles of interaction are enabled simply by varying
the method for determining the selection probability. The
interactors involved do not directly communicate. Rather,
our framework helps to handle the process of deciding
among them.

In using these example applications, we found it easy to
adapt to the flexibility of the interface. For example, in the
case of small buttons, it is very easy to pick a spot near one
button but not near others. This effectively increases target
size for that button.

Clearly, our framework has the potential to enable entirely
new forms of interaction. Interactors could adjust their res-
ponses based on how likely they are to be pressed (given a
users previous actions), based on the severity of any dan-
gerous consequences they might have, or other forms of
context [3]. By enabling feedback without committing to
action, we can improve the user’s ability to make correc-
tions. This may help mitigate a key limitation of touch inte-

raction – the inability to hover over the interface to position
a locator without affecting what happens in the interface.

Just as clearly, not all of these may be usable. As with the
GUI interfaces of the past, the interaction techniques made
possible by our framework will need to be studied and re-
fined progressively over time to match the user’s needs as
fluently as windows, menus, icons, and so on.

Smarter text entry (Examples 4 and 5)
The previous examples focused on touch input, but our
framework is equally appropriate for other types of input.
Consider the problem of entering text into a form.

Although the text a user is typing is certain, where this text
should go may be ambiguous. Many forms don’t respond
when a user starts typing text without having first selected a
field, and those that do respond often simply select the
topmost text box. Things get even more complicated when
a speech interface is in use, especially given that speech is
often used because of physical or visual impairments that
eliminate the ability to use a pointer.

Our framework can address this problem with text fields
that return selection scores based on what content they ex-
pect to receive, show feedback, and make final action re-
quests when they think their text fields are complete. If
several text boxes can receive input, our system easily al-
lows these fields to provide feedback and allow the user to
disambiguate.
Implementation
We have implemented two examples – smart text delivery
and speech text entry. Both examples deliver text to a form
with several different fields: name, phone number, email,
and URL. We built a text box interactor that matches input
against a regular expression, which we re-used for each
field. During the selection phase, a text box returns a selec-
tion score based on the match between the incoming cha-
racter and its regular expression. For example, if a text box
has already been filled out it returns a selection score of 0,
if a phone number field sees an incoming alphabetic cha-
racter, it also returns 0, whereas if a phone number field
sees an incoming number it returns a selection score of 1.

When a text box receives an event, it produces a temporary
action and shows the text it’s seen so far in gray. Text box-
es send a finalize request if a user clicks on the textbox (to
explicitly disambiguate which field should receive the in-
put), or if the text in the textbox matches some finalization
criteria expressed by a regular expression (for instance ends
in “.com” in the case of a URL field).

Figure 6: Sliders use temporary actions to provide feedback when a user moves in between two sliders.

4) Smart Text Delivery
When a user types text without having first selected a text-
box, all text boxes which have not yet been filled out and
that can receive input (i.e. which return a selection score >
0) show the typed text in gray. A user can then continue
typing or select the correct textbox. If a user continues typ-
ing, his text may match some finalization criterion for a
text box, causing that text box to send a finalization request
with a possible action score of 1 and to become selected if
no other textboxes send similar finalization requests.
5) Speech Text Entry
Speech recognition systems often include confidence scores
for each recognized utterance. Previous research has identi-
fied and evaluated patterns of entry and correction in
speech recognition systems [12], and examined how to use
confidence scores to improve interaction [5]. Our frame-
work naturally incorporates these confidence scores of rec-
ognition systems into probabilistic events, and supports the
improvements studied and recommended in previous work.

We used the Windows Speech API to implement a speech-
based probabilistic dispatcher on top of the text demo de-
scribed above. A speech recognition event often contains
multiple uncertain interpretations, such as “2” and “q”. Our
speech dispatcher would turn these alternate interpretations
into two alternate text entry events which it would send to
each of the interactors. At an implementation level, those
events are handled identically to the single character events
described in example 4 above, with the caveat that an inte-
ractor will only display temporary feedback about the most
likely event currently in consideration. From an interactive
perspective the result is that a name field might show one
possible interpretation of the user’s speech (such as “q”),
while a phone number field might show the other (such as
“2”). The user could then continue speaking or select the
correct textbox.
Discussion
While it would be possible to implement an intelligent form
entry system using conventional interactors, that would
typically require a complicated ad-hoc solution on top of
the conventional event-based model. In contrast, we were
able to implement our demo by writing a single reusable
probabilistic text box subclass in 130 lines of code.

The extensions to our existing text box class to add support
for voice was less than 30 lines total. This shows that our
framework can handle multiple interpretations of alterna-
tive events with little to no extra work on behalf of the de-
velopers writing new interactors.

Improved GUI Pointing for the Motor Impaired
(Example 6)
Individuals with motor impairments may struggle greatly
when using conventional GUI input devices such as a
mouse and keyboard. For example, in a prior analysis of
real-world pointing data by six individuals with motor im-
pairments [10], we found a mean double click speed of 1.3
seconds [SD .3 seconds], a mean slip distance (distance
traveled between the press and release of a mouse button)

of almost 6 pixels [SD 20 pixels], and high rates of missed
clicks, direction changes, excess distance traveled, and so
on. All of these measures tended to have a high variance
both within users (over time) and across users. One inter-
pretation of this analysis is that this input is unpredictable,
or uncertain. That is to say, the actual location, time, and
even button used when a user clicks is at best an approxi-
mation of their actual intent. We hypothesized that by treat-
ing their input in a way that handles its true uncertainty
well, we could increase the accuracy of user interactions.
Implementation
To test the validity of our hypothesis, we conducted an ex-
perimental analysis of recorded real-world interaction data
of motor-impaired participants, derived from [10]. We se-
lected a total of 3,614 click events from hour-long record-
ings of four (male) participants using a desktop computer.
We then pruned these down to 419 clicks representative of
real-world selection scenarios with known targets (many of
the clicks in our data were from games which had abnor-
mally large target sizes). For each click, we coded the event
based on whether the user clicked on their intended target.

Next, we simulated the same click using our framework.
For this simulation, we modeled the location of the click
probabilistically using a 2d Gaussian distribution of 30x30
pixels (providing an expanding selection area analogous to
bubble cursors [6]). Each potential target returned a score
based solely on overlap with the probabilistic location of
the event, and mediation selected the interactor with the
highest score. The result of each simulation was coded
along the same metric as the original interaction: Was the
intended target selected?

As shown in Figure 7, in the original data set, users missed
their target 14% of the time, on average (SD=6%). Our
simulated interaction was incorrect in only two cases. This
is a worst-case result, meaning that a more sophisticated
model of location ambiguity or a user who learned how to
leverage our solution would likely have led to even better
results.
Discussion
This example demonstrates a novel application of the over-
all concept of uncertainty. More generally, many situations

Figure 7: Reduction in errors for motor-impaired
users when probabilistic input is used

0%

5%

10%

15%

20%

25%

30%

1 2 3 4

P
e
rc
e
n
t
M
is
se
d

User:

regular probabilistic

where the user’s intent may not match their actions might
be considered an opportunity to apply our framework.

Summary
The six examples discussed in this section illustrate how
relatively straightforward applications of our tool can ena-
ble novel interaction techniques, or simplify (and expand
on) the implementation of interaction techniques that had
previously been applied in an ad-hoc fashion.

FUTURE WORK
Our framework presents a new way of thinking about and
handling user input. As such, it opens a wide range of poss-
ible directions for future work, some of which we touched
upon in our presentation thus far.

Specifically, we mentioned that during the interpretation
phase, interactors could probabilistically track their state
based on probabilistic inputs and act accordingly. The de-
tails of this are fairly complex and are a topic we plan to
cover in future work. Finally, in future work we plan to
integrate our contributions into a toolkit which developers
can use to handle inputs with uncertainty.

CONCLUSION
The advent of new input technologies introduces a new
type of input: input with uncertainty, which conventional
input frameworks deal with poorly. We presented a frame-
work for the robust and flexible handling of inputs with
uncertainty as an extension of the conventional event-based
input handling framework, and showed how our framework
supports existing interaction improvements, enables new
interactions, and can be used to create techniques improv-
ing user experience for people with motor impairments.
Our paper highlights the importance of properly dealing
with uncertain input and presents a robust and flexible
framework for handling inputs with uncertainty.

ACKNOWLEDGMENTS
This work was funded in part by grants IIS-0713509, IIS-
0803733, and IIS-0840766 from the National Science
Foundation and a grant from the Intel Research Council.
This project was also supported by a National Science
Foundation Graduate Research Fellowship and an ARCS
Foundation Fellowship.

REFERENCES
1. Balakrishnan, R. "Beating" Fitts' law: virtual enhance-

ments for pointing facilitation. IJHCS 61(6), 2004, 857-
874.

2. Bederson, B. B. Fisheye menus. In Proc. UIST ’00,
217-225.

3. Blanch, R., Guiard, Y., and Beaudouin-Lafon, M. Se-
mantic pointing: improving target acquisition with con-
trol-display ratio adaptation. In Proc. CHI ’04. 519-526.

4. Cao, X., Wilson, A.D., Balakrishnan, R., Hinckley, K.,
and Hudson, S., Shapetouch: Leveraging contact shape
on interactive surfaces. In Proc. TABLETOP ’08 129-
136.

5. Feng, J. and Sears, A. Using confidence scores to im-
prove hands-free speech based navigation in continuous
dictation systems. TOCHI 11(4):329-356, 2004.

6. Grossman, T. and Balakrishnan, R. The bubble cursor:
enhancing target acquisition by dynamic resizing of the
cursor's activation area. In Proc. CHI ‘05, 281-290.

7. Hong, J., Landay, J., Long, A.C., and Mankoff, J.,
Sketch recognizers from the end-user's the designer's
and the programmer's perspective. In Proc. AAAI Spring
Symposium on Sketch Understanding ‘02, 73-77.

8. Hudson, S. E., Mankoff, J., and Smith, I. Extensible
input handling in the subArctic toolkit. In Proc. CHI
’05, 381-390.

9. Hudson, S. E. and Newell, G. L. Probabilistic state ma-
chines: dialog management for inputs with uncertainty.
In Proc. UIST ’92, 199-208.

10. Hurst, A., Mankoff, J., and Hudson, S. E. Understand-
ing pointing problems in real world computing envi-
ronments. In Proc. ASSESTS ’08, 43 – 50.

11. Kabbash, P., Buxton, W., The “prince” technique: Fitts'
law and selection using area cursors. In Proc. CHI ’95,
273-279.

12. Karat, C., Halverson, C., Horn, D., and Karat, J. Pat-
terns of entry and correction in large vocabulary conti-
nuous speech recognition systems. In Proc. CHI ’99,
568-575.

13. Mankoff, J., Hudson, S. E., and Abowd, G. D. Interac-
tion techniques for ambiguity resolution in recognition-
based interfaces. In Proc. UIST ’00, 11 – 20.

14. Mankoff, J., Hudson, S. E., and Abowd, G. D. Provid-
ing integrated toolkit-level support for ambiguity in
recognition-based interfaces. In Proc. CHI ’00, 368-
375.

15. McGuffin, M. and Balakrishnan, R. Acquisition of ex-
panding targets. In Proc. CHI ’02, 2002, 57-64.

16. Moscovich, T. Contact area interaction with sliding
widgets. In Proc. UIST ’09, 13-22.

17. Newman, W.M., A system for interactive graphical
programming. In Proc. AFIPS Spring Joint Computer
Conference ‘68, 47-54.

18. Oviatt, S. Mutual disambiguation of recognition errors
in a multimodal architecture. In Proc.CHI ’99, 576-583.

19. Oviatt, S. Ten myths of multimodal interaction.
CACM 42(11):74 – 81, 1999.

20. Sutherland, I. E. Sketchpad, A Man-Machine Graphical
Communication System. Doctoral Thesis. Massachu-
setts Institute of Technology, 1963.

21. Wasserman, A. I. Extending State Transition Diagrams
for the Specification of Human-Computer Interaction.
IEEE Trans. Softw. Eng. 11(8):699-713, 1985.

