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ABSTRACT 
New input technologies (such as touch), recognition based 
input (such as pen gestures) and next-generation interac-
tions (such as inexact interaction) all hold the promise of 
more natural user interfaces. However, these techniques all 
create inputs with some uncertainty. Unfortunately, con-
ventional infrastructure lacks a method for easily handling 
uncertainty, and as a result input produced by these tech-
nologies is often converted to conventional events as quick-
ly as possible, leading to a stunted interactive experience. 
We present a framework for handling input with uncertain-
ty in a systematic, extensible, and easy to manipulate fa-
shion. To illustrate this framework, we present several tra-
ditional interactors which have been extended to provide 
feedback about uncertain inputs and to allow for the possi-
bility that in the end that input will be judged wrong (or 
end up going to a different interactor). Our six demonstra-
tions include tiny buttons that are manipulable using touch 
input, a text box that can handle multiple interpretations of 
spoken input, a scrollbar that can respond to inexactly 
placed input, and buttons which are easier to click for 
people with motor impairments. Our framework supports 
all of these interactions by carrying uncertainty forward all 
the way through selection of possible target interactors, 
interpretation by interactors, generation of (uncertain) can-
didate actions to take, and a mediation process that decides 
(in a lazy fashion) which actions should become final. 

ACM Classification:H5.2 [Information interfaces and pres-
entation]: User Interfaces.- Graphical user interfaces. 
General terms: Performance, Human Factors.  
Keywords: Input Handling, Ambiguity, Recognition. 

INTRODUCTION 
Input handling in most modern interface toolkits depends 
on an established framework for modeling and responding 
to input that has been tuned over time to the needs of con-
ventional graphical user interfaces (GUIs). However, this 
framework makes a number of assumptions about the na-
ture of the inputs it deals with. For example, standard GUI 
toolkits implicitly assume inputs are certain to have oc-

curred as reported. As we move to promising new technol-
ogies such as computer vision, free-space gesture recogni-
tion, pen input, and touch sensing, this assumption of cer-
tainty is being violated. It is no longer the case that reports 
about inputs are completely correct, without ambiguity or 
significant error. For example, in touch input the location 
of a touch ‘click’ is partly ambiguous simply because a 
user’s finger touches, not at a point, but an area (and the 
user cannot see how their contact area overlaps small ob-
jects underneath their finger). Similarly, a recognizer may 
produce one or more uncertain estimates of user intent. 

If these inputs are processed using a conventional input 
framework, their uncertainty is resolved quickly and often 
simplistically. The result may seem arbitrary or unpredicta-
ble. Small errors in interpretation may lead to incorrect 
application actions that are difficult to recover from.  

One solution to this problem is to develop interactive sys-
tems that are designed to work smoothly with one or more 
types of recognized input. Along these lines, there has been 
considerable work on multimodal systems, which in part 
aims to mitigate interpretation errors [18,19]. While very 
promising, this body of work has largely entailed adoption 
of a radical new input framework, designed to integrate 
information from multiple sensor channels. An alternate 
approach is to integrate uncertain input into the conven-
tional input handling framework, making it possible to take 
advantage of existing buttons, sliders, menus, etc. that the 
vast majority of users are familiar with and have invested 
substantial learning in.  

In this paper we describe the details of a new input han-
dling framework that is compatible with the existing ap-
proach, accurately tracks the probabilities of alternative 
uncertain inputs, and provides mechanisms for dispatching 
input, intelligently making decisions, providing feedback, 
and acting in the light of that uncertainty. 

Our framework can temporarily entertain multiple possible 
uncertain inputs (until the interface needs to perform an 
action with permanent consequences beyond feedback). 
This puts off the decision of which possibility is correct, so 
that it is possible to use more information to make the final 
decision. For example, Figure 1 shows two possible inter-
pretations of a press-move-release sequence on a touch 
screen (left: dragging an icon; right: resizing a window). 
Rather than deciding which is correct at the moment the 
screen is touched, our framework allows interactors to tem-
porarily provide feedback about both possibilities. Addi-
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tional information such as the direction of motion can then 
be used to make a decision. For example, if the user moves 
vertically, he or she is unlikely to be resizing the window 
since only horizontal movements affect window width. 

In the next section, we review the major tasks inherent in 
conventional input handling. We compare this to our 
framework for handling uncertain input, which preserves 
the basic mechanisms of the conventional event-oriented 
input model. Next, we discuss our framework and imple-
mentation in more detail. Like the conventional input 
framework, our framework provides a general and reusable 
structure – including a model for probabilistic input and a 
means to make informed decisions on the basis of accurate 
probabilistic tracking of alternatives. This allows different 
interactors taken from a library to be used largely without 
regard to what other (probabilistic or conventional) interac-
tors are being used in the same interface. Finally, we give 
an overview of how our framework supports existing inte-
raction improvements and provide six examples of how the 
framework can be used to create improved interactions. 

COMPARING CONVENTIONAL AND UNCERTAIN INPUT 
Nearly all modern user interface toolkits implement inter-
faces as a mostly independent collection of interactive ob-
jects managed by an infrastructure for handling input, pro-
ducing output, and numerous other tasks. The input han-
dling component of these systems is now well evolved and 
works very well for its task. This conventional input han-
dling framework can be thought of as providing four major 
capabilities: (1) modeling of inputs, by providing a way to 
record all the relevant details of what input happened (in 
the form of event records), (2) a process for dispatch of 
those events – deciding which interactor object(s) should 
receive and handle a given input, (3) interpretation of those 
events by the interactors in terms of their own interactive 
state, and finally (4) action by the interactor (including 
presentation of user feedback and requesting action from 
the application). By giving interactors structured, yet inde-
pendent control over how they respond to input, this 
framework gains uniformity and extensibility. Interactors 
from an expandable library can be used together on a mix-
and-match basis with little explicit cooperation. This same 
basic structure is appropriate for inputs with uncertainty. 
Figure 2 gives an overview of this process and below we 
discuss each component, comparing conventional input and 
its probabilistic equivalent. 

Modeling Input 
In the input framework employed by most modern graphi-
cal user interfaces, all input is modeled as a discrete se-
quence of events, each of which records information about 
some significant occurrence that may affect an interactive 
program. While the exact form of event records used in 
various systems varies somewhat, with a small amount of 
abstraction most can be characterized as recording the fol-
lowing five categories of information: 

 What type of input happened. A record of what oc-
curred, such as “a keyboard key was pressed down”. 
The type of input may determine the exact structure of 
the remaining information in the event record.  

 A detailed value describing what happened, such as 
“Key cap #12” for a key press event. 

 When the input happened. A timestamp. 
 Where the input happened. Most typically the (x, y) 

position of the primary pointing device.  
 Important context associated with the input. A record 

of other values that might modify the meaning of the 
input. A conventional example is the state of the mod-
ifier keyboard keys (ctrl, alt, etc.). 

When an input is less certain, conventional frameworks are 
unable to model this uncertainty. As described above, Fig-
ure 1 demonstrates a touch-based interaction involving un-
certainty. Here the user is pointing to a screen location very 
close to both an icon and the edge of a window partially 
covering it. The user’s intent may be to move the icon or to 
resize the window. Although the user has a specific intent, 
it may not be obvious what is intended at the moment the 
screen is touched. With conventional input, the user’s ac-
tion will produce a press event that is represented as a sin-
gle point (usually the center of the touch area). As a result, 
very small variations in location of the user’s finger have 
an effect that is difficult to predict.  

To accurately model uncertainty, input event properties 
need to be expanded from a single fact to estimates 
representing a range of possibilities, which we will 
represent using a probability mass function (PMF). A PMF 
is a function which describes the relative likelihood that 
some discrete random variable has a particular value or that 
a continuous random variable falls within a finite range. 
For example, a Boolean variable can be represented as a 
PMF with probability of 0.2 of being true and 0.8 of being 

Figure 1: Illustration of implicit disambiguation for touch input. Left: Users presses down and moves diagonally, moving 
the icon. Right: User presses down and moves horizontally, resizing the window instead. When the user presses down, 
both interactors are equally likely to respond. The user’s motion later disambiguates their intention and interactors in our 
framework respond appropriately.  



 

 

 

false and the PMF for a position indicates for each pixel the 
probability that the true position falls within the pixel. 
Since a PMF is derived from an underlying probability dis-
tribution, the integral over all possible values of the random 
variable must sum to 1. In our framework, all properties of 
an event may be represented by a PMF instead of a single 
certain value. In addition, the input event as a whole is as-
signed a probability, indicating the likelihood that it (as 
opposed to a different input event) is what happened. The 
event probability is often 100%; however something like a 
recognizer that produces multiple possible alternatives 
might assign differing likelihoods to each alternative, each 
of which would be represented by a separate input event.  

Event Dispatch 
Conventional event dispatch consists of selecting an inte-
ractor (or, occasionally, a set of interactors) to receive each 
event, then delivering that event. In a conventional frame-
work, selection is a cooperative process between the dis-
patch subsystem and the interactors it might deliver input 
to. An ordered set of candidate interactors is selected as 
potential recipients for an event based on factors such as 
location and type of the event. The dispatch system then 
queries each one, in order, to find out if it will use the 
event. An interactor may determine, based on its internal 
state (for example, if it is disabled), that it does not want an 
event, or may consume the event (take action on it), in 
which case dispatch is typically complete (no further inte-
ractors are queried). Each interactor implements a standard 
interface that encapsulates this process, facilitating the se-
lection of which interactor should receive an event and then 
the actual delivery of that event. 

Typical strategies for selecting interactors include position-
al selection, where the on-screen position of the primary 
locator determines which interactors receive events (e.g., 
how a menu receives press events), and focus-based selec-
tion, where one interactor is granted exclusive access to 
input, regardless of position (e.g., how a text box receives 
keystroke events). In the case of Figure 1, positional selec-
tion would be used. Conventional systems make use of a 
picking mechanism to generate an ordered list of interactors 
that should receive the input at a position. Each interactor is 
then queried as to whether it can handle the event, and the 

event is delivered to the first one to say yes. A typical pick-
ing strategy would select the topmost interactor within 
whose bounds an event is located. For example, if the cen-
troid of a press event falls on the icon in Figure 1, the icon 
would receive the event. 

To account for ambiguity and uncertainty these processes 
need to be handled probabilistically – we need to provide a 
representation of the certainty that an event should be deli-
vered to a given interactor. As shown in Figure 2, probabil-
istic events are delivered to all of the interactors in the 
candidate selection list instead of just one.  

Interpretation and Action 
Once an interactor receives an event, it is responsible for 
responding to that event. Each interactor tracks its interac-
tive state, including where it is currently drawn, what con-
figuration it is in (for example, a check box knows if it is 
checked or unchecked) and where within an interactive 
input sequence it currently is (for example, the icon in Fig-
ure 1 may know that it has received a press event and move 
into a “drag” state). A finite state machine is the traditional 
way to represent how an interactor should respond to dif-
ferent input events [17, 21].  

It is the responsibility of the interactor to display feedback 
in response to events (which is often done by updating its 
visible location on the screen, transparency, etc.). At ap-
propriate points in the interaction (e.g., when the icon rece-
ives a release event), the interactor is responsible for re-
questing action from the application on behalf of the user 
(e.g., if the icon is dropped into a folder, requesting a file 
system update).  

In an uncertain world, each interactor also (probabilistical-
ly) interprets events. As with the conventional input han-
dling framework, each interactor object is responsible for 
maintaining its own internal state. To properly handle un-
certainty between alternative inputs, interactor state needs 
to be handled probabilistically. This can be done in an ad-
hoc manner (as with the implementation described later in 
this paper), or using a more structured approach. One pos-
sibility is the Probabilistic Finite State Machine (PFSM) 
approach developed in our previous work [10]. A PFSM 
tracks the current state of an interactor as a PMF across the 
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Figure 2: Overview of how a probabilistic event is handled in our framework. (a) When an event arrives, a selection process is
used to assign a custom probability to it for each interactor. Interactors then decide whether to take action on it. Possible actions
(or temporary actions such as feedback) are sent to a mediator (b) At some point (either when there is a clear winner in terms of
probability, or a finalization request is made) the mediator picks an action, based on probability. All other actions are canceled. 
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state space of a finite state machine and updates that state 
based on probabilistic events.  

When an interactor changes state this may imply that an 
action needs to be performed, such as updating the file sys-
tem to represent its new location. If we assume that appli-
cations should not execute multiple potentially conflicting 
actions (each implied by different interpretations of the 
same uncertain input), this leads to a new requirement: At 
some point, it is necessary to choose between the different 
possible actions – to resolve the ambiguity.  

There is good evidence that pushing off this decision as 
long as possible is better for the user than making it too 
soon [8]. To enable this delayed resolution of uncertainty, 
we introduce a refinement on the notion of actions, break-
ing them into two categories: temporary actions and final 
actions. Temporary actions – which most typically provide 
feedback – are always fully reversible. For example, if a 
touch position is uncertain (e.g., overlaps two buttons) we 
can, and probably should, provide feedback to the user in-
dicating that both possibilities are still being considered by 
the system. Final actions on the other hand may not be re-
versible, and may not be compatible with each other. For 
example, it is not typically safe to ask the application to 
execute the final action of a “cancel” and “ok” button si-
multaneously, so we must make a choice between them.  

In our framework, the resolution of uncertainty is handled 
in a lazy fashion – it is pushed off until absolutely required. 
If an interactor reaches a state in which it must act, it makes 
a finalization request. As illustrated in Figure 2, finalization 
requests are handled by a system component called a me-
diator. The mediator may either choose one action, to re-
solve ambiguity, or override the interactor by deferring 
mediation if more information is needed. This part of the 
framework is directly adapted from [14] and the reader in 
encouraged to refer to [13] for a discussion of interesting 
mechanisms for interactive mediation.  

Probabilistic Input Handling Example 
Figure 3 illustrates a specific scenario for the use of proba-
bilistic input. Here touch input is being used to select a tiny 
square button smaller than the fingertip, packed tightly with 
two other small buttons. The button on the left in this ex-
ample is disabled. There is clearly some ambiguity here as 
the finger is at least in part “over” all three buttons.  

To give an overview of how our framework operates, we 
consider what happens when the finger is first pressed over 
these buttons. This input is modeled as a probabilistic 
event. Since we are fairly certain that a touch occurred, a 
single event (with 100% probability) is generated by the 
system. The location of that event is represented as a PMF 
derived from a 2d Gaussian function centered over the 
touch center with standard deviation of ¼ the width and 
height of the touch area (illustrated with the shading under 

the finger outline). This PMF is used during dispatch to 
determine how probable it is that the event is intended for 
each of the buttons. In this case, the selection score is the 
integration of the touch PMF over the button area. As is 
intuitively correct from a visual inspection of Figure 3, this 
selection score is higher for the left and center buttons than 
the right button. Interactors may optionally zero out their 
selection scores if they can determine that a particular input 
is definitely unsuitable for them, or may reduce the score if 
the input is unlikely to be suitable.  For example, a disabled 
interactor would always return a 0 selection score and a 
button might return 0 for all text inputs.   

Based on this, the leftmost button would return a 0 selec-
tion score and be eliminated from consideration. The event 
is then delivered to the two remaining viable candidates. 
Since the center button had a higher selection score than the 
right button, it generates a possible action with a higher 
score than the right button. In this simple example, the me-
diator selects that action over the other (less likely) alterna-
tive. The center button’s action is executed and the right 
button’s action is canceled. Other mediation strategies or 
new information might lead to other outcomes.  

HANDLING INPUTS WITH UNCERTAINTY: 
DETAILS AND IMPLEMENTATION 
While the previous section provided an overview of the key 
differences between conventional and uncertain input, this 
section explains in more depth how our framework actually 
handles event modeling, dispatch, interpretation and ac-
tion.  

A proof of concept implementation of the ideas presented 
here has been implemented in C# on top of the .NET 
framework. Relevant implementation details are discussed 
within each subsection. Although our implementation is not 
a full toolkit, it constitutes a working demonstration of the 
ideas discussed below.  
Modeling Probabilistic Events 
Each uncertain piece of information in a probabilistic event 
is modeled as a PMF. These PMFs can be instantiated in 
one of several forms, abstracted into an API. For example 
PMFs can be implemented as a table or histogram, can be 
implemented using an analytical function, or as a Monte 
Carlo sampling of the underling distribution.  

 
Figure 3: A probabilistic input scenario involving a 
touch over three very small square buttons. The button 
on left in this example is disabled. 



 

 

 

The type of the event (what it is) is a special case. Since the 
event type may determine the detailed structure of the 
overall event record, we implement the PMF for event type 
as a collection of separate event objects, one for each type, 
each with an associated probability. The collection of alter-
native events and their associated probabilities then serves 
as the PMF over possible event types. Figure 4 illustrates a 
sample uncertain event. 

Event Dispatch 
As described earlier, the goal of event dispatch is to select a 
candidate set of interactors that may represent the proper 
recipient(s) of an event, and then deliver that event. Al-
though position or interactor focus are most commonly 
used, other interesting policies are possible, see [9]. For 
example, input could be dispatched based on its proximity 
to a target or whether it surrounds a target. Probabilistic 
selection should be equally flexible, with the added re-
quirement that events are delivered to all interactors that 
may be plausible recipients.  
Selecting which interactor should receive an event 
We support a probabilistic notion of dispatch in which 
events are delivered to all interactors which are candidates 
for input. Candidacy is determined using a scoring mechan-
ism that considers event properties and interactor state. 
These scores are provided by querying each interactor. The 
resulting probabilistic selection list can be seen as a PMF. 
Past tools have typically not provided structured support 
for uncertainty about who should receive an event (termed 
target ambiguity [14]).  

Conventional dispatch usually determines candidacy based 
on one of two algorithms focusing on event type (focused 
dispatch) or position (positional dispatch). Both are han-
dled in the same way in our framework. Each interactor 
examines the type, position, or any other property of an 
event to determine a selection score between 0 and 1 inclu-
sive. Selection may be based on event types, as well as 
measures of “overlap,” “nearness” or other more radical 
spatial relationships. By loosening the requirements for 
“overlap” and using logic and contextual information to 

determine “nearness”, we can enable inexact interaction 
[3]. A nice property of the framework is that more exotic 
styles of dispatch can be supported simultaneously with 
more conventional styles because of the uniform way in 
which uncertain input is delivered.  

As a simple example of this process, consider the buttons in 
Figure 3, which are smaller than the touch area. They are 
designed to calculate a selection score based on the integra-
tion of the location PMF over the button bounds. Because 
buttons look at the integration over the non-uniform loca-
tion PMF, if the finger completely covers two or more but-
tons, the buttons closest to the center of the finger (where 
probability density is higher) will have the highest score. In 
contrast, an interactor used in a pen based system might 
return a high selection score for a circling gesture event 
which encloses it, rather than requiring overlap. Alterna-
tively we might support underlining in a pen system using a 
combined measure of nearness (without overlap) and paral-
lelism to calculate the selection score.  

The result of the selection process is a candidate list of 
interactors with associated probabilities (selection scores) 
indicating the likelihood that they are the intended target of 
the user’s input.  These selection scores are normalized 
across all interactors so that they sum to 1.   

Finally, for each interactor, the normalized selection score, 
and probability that the event actually occurred are multip-
lied together to determine a final probability to be asso-
ciated with dispatch of the event to that specific interactor. 

Interpretation, Feedback and Action 
At this point, it is up to the interactor to interpret the mean-
ing of the event based on its internal state, update that state, 
and decide whether there is a possible action it might take 
as a result. As indicated earlier, it is often valuable to pro-
vide immediate feedback to expresses a system’s current 
understanding of the user’s input – ambiguous or other-
wise. As a result, feedback or other temporary, fully revers-
ible actions, are modeled separately from actions that have 
permanent and/or irreversible consequences. In our frame-
work we only allow interactors to modify their own ap-
pearance to avoid conflicting representations of feedback.  

The interactor informs the system of any temporary actions 
that it will take using a temporary action object that encap-
sulates key information about the action useful for later 
reversing it. Similarly, possible (final) actions are encapsu-
lated in a possible action object (also referred to as a final 
action request), which has an associated probability that 
this interactor is really in a state compatible with that poss-
ible action. This possible action is passed to the system 
along with a Boolean indicating whether the request must 
be finalized immediately, or can be handled in a lazy fa-
shion.  

Mediation 
A mediator’s job is to choose between competing (and po-
tentially conflicting) actions. Typically, the mediator will 
make this choice when it receives a finalize request. In that 
case, the mediator will make one of three choices: (1) it 

     
Figure 4: Modeling and generation of probabilistic events. A
gesture recognizer generates two event alternatives: a circle
with a probability of 0.4 and pigtail selection with probability
0.6 
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may select an action (in our implementation simply the 
most probable one) (2) it may decide that no action is prob-
able enough to execute and cancel all actions (3) it may 
decide that it needs additional information and request 
some from the user, deferring mediation until the user re-
sponds e.g., while an N-best list style mediation dialog is 
offered to the user. Many other sophisticated interactive 
mediators are also possible [13]. In some cases, the media-
tor may decide to finalize even without a request to finalize. 
For example, if there is one possible action that is signifi-
cantly more likely than any others (i.e., ambiguity is very 
low), the mediator can choose to automatically finalize that 
action.  

Once a possible action is selected, the associated interactor 
is notified that the action has been finalized (and can act on 
it) and any other interactors with possible or temporary 
action requests are notified that their actions are canceled.  

One nice property of the temporary/possible action split is 
that feedback is provided early, and may be visible up to 
and through the mediation process. This can help a user to 
adjust their input to implicitly mediate, or provide the user 
with needed context during more explicit cases of media-
tion. When interactors are notified that an action has been 
canceled, feedback can be removed. Any pending actions 
(temporary or possible) registered since the last time an 
action was finalized are canceled. The interactor associated 
with each action is expected to roll back its state and undo 
any temporary changes such as displaying feedback.  

A Complete Example 
To illustrate the complete flow of input under our frame-
work, we use the interface shown in Figure 5. This example 
adds realism to the example associated with Figure 3. Al-
though both examples are fairly basic, our implementation 
enables something very powerful: By allowing users to 
select among very small buttons using a finger, we open the 
door to mobile applications that can take advantage of in-
creasing screen quality rather than being limited by finger 
size. Following this we will present a number of additional 
examples of the interactions enabled by our tool.   

1. The user touches the screen and a probabilistic touch 
event is generated and passed to the dispatcher. As de-
scribed before, a single event with 100% probability is 
generated. The position information within the event is 
uncertain and is provided as a PMF derived from a 2d 
Gaussian function centered about the touch center with 

standard deviation equal to the width/height of the touch 
area divided by 4.  

2. Each interactor in the interface is asked for a selection 
score which indicates whether it should be in the candi-
date dispatch list. It is obvious in Figure 3 that this in-
cludes all three buttons, but note that in the case of Fig-
ure 5, this includes the “yes”, “no”, “cancel” and “close” 
(“X”) buttons, as well as the dialog box title bar. Each in-
teractor computes its selection score by integrating the 
PMF over the button area. After receiving the selection 
scores, the dispatcher delivers a touch down event to the 
‘yes’ and ‘no’ buttons, as these are the only buttons 
which have returned nonzero selection scores. 

3. Our button class acts as soon as it receives the initial 
touch (without waiting for a release event), so each but-
ton’s tracking of state and interpretation of the input is 
trivial. The response of the “yes” and “no” buttons is to 
each emit a possible action and request finalization. 
Since the interpretation of events is very simple in this 
example, the incoming event score is simply passed 
along as the action probability.  

4. When the mediator receives the possible actions, it notes 
the presence of a finalization request and immediately 
makes a decision among the possible actions. The media-
tor we implemented selects the action with the highest 
probability to go forward. In the case of Figure 5, this 
means that it calls finalized() on the “yes” button, passing 
its action back so that it can respond, and calls cancel() 
on the “no” button. All other buttons are ignored, since 
they did not submit possible or temporary actions.  

5. The selected button notifies the application that it should 
execute its action. If any other button had displayed any 
feedback, at this point it would remove that feedback.  

This example has the practical effect of making the effec-
tive target size larger. This is one of the central ways in 
which one can make it easier to select a target (“beat” Fitts’ 
law [1]) and so it is not surprising that many advanced inte-
raction techniques take a similar approach – starting from 
Sutherland’s earliest work with gravity fields in SketchPad 
[23] through [3, 15, 2, 16]. Our framework’s  approach to 
identifying candidate targets makes adaptive versions of 
techniques for beating Fitts’ law essentially the default 
(having an effect analogous to adaptive area cursors [11] or 
bubble cursors [6]). 

Integrating Conventional Interactors 
Our approach allows different interactors taken from a li-
brary to be used largely without regard to what other (prob-
abilistic or conventional) interactors are being used in the 
same interface. In this section we will outline how our 
framework could integrate conventional interactors, al-
though we have not yet implemented this.  

As discussed earlier, ordinarily, a conventional interactor 
upon receiving input will either discard it (allowing another 
interactor to use it instead) or act on it in an irreversible 
fashion. A simple solution to this problem is to embed the 
conventional interactor in a container that will act as a bro-

 
Figure 5: Scenario for an ambiguous button press. But-
tons in our framework look at the integral of the location 
PMF over button area to determine selection. 



 

 

 

ker between it and our framework, ensuring that it only 
ever receives input that it can assume is certain.  

To accommodate this, the wrapper container handles selec-
tion scoring in a way that matches the typical behavior of 
conventional interactors: input must fall inside the interac-
tors bounds, and non-zero scores are provided only for in-
put types that the interactor has registered interest in. To 
facilitate this, a developer must specify the type of input the 
interactor handles.  

If an event is then dispatched to the wrapper container, it 
immediately creates a possible action and submits a request 
to finalize it to the mediator. If the mediator selects the 
possible action, the original event is passed on to the con-
ventional interactor by the wrapper. 

One special case must be handled for this to work: It is 
possible that the conventional interactor will discard the 
event (rather than acting on it). In this case, the proper be-
havior of the mediator would be to select the next most 
likely possible action instead. To facilitate this, the media-
tor does not cancel any actions until after the wrapper con-
tainer notifies it that the conventional interactor did indeed 
consume the event. With these changes, conventional inte-
ractors may be integrated into our framework in a seamless 
fashion. 

Note that like every other aspect of our framework, this 
approach is pluggable. For example, the wrapper could: 
support inexact interaction, finalize later in the interaction 
process, or convert between input event types to make them 
match the expectations of the conventional interactor. 

EXPLORATION OF RESULTS 
We provide a set of demonstrations illustrating the flexibili-
ty and expressiveness of our framework. These examples 
help to illustrate the space of interactions that our frame-
work should be able to facilitate. Our examples include 
new and existing interaction techniques – demonstrating 
that our framework is expressive enough to create new pos-
sibilities and support the state of the art. We show how our 
framework can support feedback of uncertainty, provide a 
firm basis for making probabilistically sound decisions, and 
avoid premature decisions. This helps to avoid brittle di-
alogs and allows interactions to make use of multiple and 
richer sources of information about the interaction to re-
solve ambiguity (such as the shape of a movement that oc-
curs after an initial click, touch, or other start of an interac-
tion). 

Our validation consists of six case studies. Taken together 
they demonstrate our framework’s ability to address new 
types of uncertainty, expand on or straightforwardly sup-
port prior novel interaction techniques from the research 
literature, and introduce new interaction techniques. These 
examples are presented in the subsections below, and the 
reader is also referred to the accompanying video figure for 
running demonstrations. 

Improving Touch Interaction (Examples 1, 2 and 3) 
Pointing activities are an integral part of interaction in to-
day’s graphical user interfaces. Perhaps because they are 
such a basic part of what we do, we have stopped noticing 
that not all pointing activities are equally straightforward 
and error free. For example, to save screen space, many 
windows have very small borders. This is good, except 
when the user is trying to resize a window and must grab 
its border (and not something under it or next to it). Simi-
larly, small slider and scrollbar thumbs are often difficult to 
manipulate (or far from the current locator position). These 
and other interactions are made even worse in the face of 
touch input, where the user’s finger may be larger than the 
very targets he or she is attempting to select. For small de-
vices such as mobile phones, the result can be limits on the 
number of interactive elements that can reasonably be inte-
racted with, despite high screen resolution. 
Implementation 
We have implemented three examples: (1) smart window 
resizing (shown in Figure 1); (2) ambiguous and remote 
sliders (shown in Figure 6); and (3) tiny buttons for touch 
input (shown in Figure 3). Some key implementation de-
tails are discussed here. 

All of these examples boil down to a simple question: 
Which interactive element should be handling the current 
set of locator-related events? Since these events are touch 
based, they are modeled as a single probabilistic event 
record, with a PMF describing the location as an area ap-
proximately the size of the user’s finger (derived from the 
2d Gaussian mentioned earlier). The question of who 
should handle each event is easily addressed in our frame-
work by modifying the selection scores of interactors. 
Based on this, each interactor is given an event with a score 
weight indicating the likelihood that this is the correct inte-
ractor to consume that event. At that point, all of the inte-
ractors proceed in the identical way: They decide whether 
to show any feedback, create a possible action 
(representing what they would do with the event), and pass 
it to the mediator. This process repeats as each additional 
touch event arrives, until the mediator decides that ambigu-
ity is low enough to finalize, or an interactor reaches a state 
in which it must finalize (such as when the user raises his 
or her finger). Note that mediation always considers the 
most recent possible actions only, but will cancel all past 
actions as well when completed. 

Factors to consider for selection include: (1) direction of 
motion for move events (appropriate for smart window 
resizing, which assigns scores to targets differently for ho-
rizontal motion and vertical motion) (2) overlap or nearness 
(overlap is appropriate for touch, but nearness creates the 
equivalent of an area cursor  [16, 12]). Selection is imple-
mented in the same way for all of the interactors in our 
examples.  However, it would be straightforward to imple-
ment special cases such as buttons with dangerous actions 
that artificially reduce their selection scores to require that 
they be more unambiguously selected before they can be 
activated. 



 

 

 

Given these decisions, we implemented three sample appli-
cations: 
1) Smart Window Resizing (Figure 1) 
For this interaction horizontal motion should drive the se-
lection score for the window up, and vertical motion should 
drive it down. Direction of motion is calculated by compar-
ing the location of the current move event to the original 
press event. The icon’s selection score is computed based 
on the integral of the location PMF over the icon area, mul-
tiplied by a factor accounting for its direction. 
2) Ambiguous and Remote Sliders (Figure 6) 
A key feature of these sliders is interaction at a distance. 
Thus, the selection score depends on the distance between 
the current move event and each slider on the screen in ad-
dition to the direction of motion. As shown in Figure 6b all 
viable target sliders show feedback. 
3) Tiny buttons for touch input (Figure 3) 
Buttons integrate the location PMF over the button area to 
calculate a selection score. Details on this application of 
our framework are provided in the two concrete examples 
discussed earlier in the text.  
Discussion 
We have discussed the implementation of three demonstra-
tion applications. In all three cases, there is ambiguity in 
determining what the user intends to interact with. This is 
further complicated by the wish to interact at a distance 
(sliders) or support inexact interaction (buttons). An impor-
tant property of our framework is the fact that all of these 
different styles of interaction are enabled simply by varying 
the method for determining the selection probability. The 
interactors involved do not directly communicate. Rather, 
our framework helps to handle the process of deciding 
among them.  

In using these example applications, we found it easy to 
adapt to the flexibility of the interface. For example, in the 
case of small buttons, it is very easy to pick a spot near one 
button but not near others. This effectively increases target 
size for that button.  

Clearly, our framework has the potential to enable entirely 
new forms of interaction. Interactors could adjust their res-
ponses based on how likely they are to be pressed (given a 
users previous actions), based on the severity of any dan-
gerous consequences they might have, or other forms of 
context [3]. By enabling feedback without committing to 
action, we can improve the user’s ability to make correc-
tions. This may help mitigate a key limitation of touch inte-

raction – the inability to hover over the interface to position 
a locator without affecting what happens in the interface. 

Just as clearly, not all of these may be usable. As with the 
GUI interfaces of the past, the interaction techniques made 
possible by our framework will need to be studied and re-
fined progressively over time to match the user’s needs as 
fluently as windows, menus, icons, and so on.  

Smarter text entry (Examples 4 and 5) 
The previous examples focused on touch input, but our 
framework is equally appropriate for other types of input. 
Consider the problem of entering text into a form.  

Although the text a user is typing is certain, where this text 
should go may be ambiguous. Many forms don’t respond 
when a user starts typing text without having first selected a 
field, and those that do respond often simply select the 
topmost text box. Things get even more complicated when 
a speech interface is in use, especially given that speech is 
often used because of physical or visual impairments that 
eliminate the ability to use a pointer. 

Our framework can address this problem with text fields 
that return selection scores based on what content they ex-
pect to receive, show feedback, and make final action re-
quests when they think their text fields are complete. If 
several text boxes can receive input, our system easily al-
lows these fields to provide feedback and allow the user to 
disambiguate. 
Implementation 
We have implemented two examples – smart text delivery 
and speech text entry. Both examples deliver text to a form 
with several different fields: name, phone number, email, 
and URL. We built a text box interactor that matches input 
against a regular expression, which we re-used for each 
field. During the selection phase, a text box returns a selec-
tion score based on the match between the incoming cha-
racter and its regular expression. For example, if a text box 
has already been filled out it returns a selection score of 0, 
if a phone number field sees an incoming alphabetic cha-
racter, it also returns 0, whereas if a phone number field 
sees an incoming number it returns a selection score of 1.  

When a text box receives an event, it produces a temporary 
action and shows the text it’s seen so far in gray. Text box-
es send a finalize request if a user clicks on the textbox (to 
explicitly disambiguate which field should receive the in-
put), or if the text in the textbox matches some finalization 
criteria expressed by a regular expression (for instance ends 
in “.com” in the case of a URL field).  

 
Figure 6: Sliders use temporary actions to provide feedback when a user moves in between two sliders.  



 

 

 

4) Smart Text Delivery 
When a user types text without having first selected a text-
box, all text boxes which have not yet been filled out and 
that can receive input (i.e. which return a selection score > 
0) show the typed text in gray. A user can then continue 
typing or select the correct textbox. If a user continues typ-
ing, his text may match some finalization criterion for a 
text box, causing that text box to send a finalization request 
with a possible action score of 1 and to become selected if 
no other textboxes send similar finalization requests. 
5) Speech Text Entry 
Speech recognition systems often include confidence scores 
for each recognized utterance. Previous research has identi-
fied and evaluated patterns of entry and correction in 
speech recognition systems [12], and examined how to use 
confidence scores to improve interaction [5]. Our frame-
work naturally incorporates these confidence scores of rec-
ognition systems into probabilistic events, and supports the 
improvements studied and recommended in previous work.  

We used the Windows Speech API to implement a speech-
based probabilistic dispatcher on top of the text demo de-
scribed above. A speech recognition event often contains 
multiple uncertain interpretations, such as “2” and “q”. Our 
speech dispatcher would turn these alternate interpretations 
into two alternate text entry events which it would send to 
each of the interactors. At an implementation level, those 
events are handled identically to the single character events 
described in example 4 above, with the caveat that an inte-
ractor will only display temporary feedback about the most 
likely event currently in consideration. From an interactive 
perspective the result is that a name field might show one 
possible interpretation of the user’s speech (such as “q”), 
while a phone number field might show the other (such as 
“2”). The user could then continue speaking or select the 
correct textbox. 
Discussion 
While it would be possible to implement an intelligent form 
entry system using conventional interactors, that would 
typically require a complicated ad-hoc solution on top of 
the conventional event-based model. In contrast, we were 
able to implement our demo by writing a single reusable 
probabilistic text box subclass in 130 lines of code.  

The extensions to our existing text box class to add support 
for voice was less than 30 lines total. This shows that our 
framework can handle multiple interpretations of alterna-
tive events with little to no extra work on behalf of the de-
velopers writing new interactors. 

Improved GUI Pointing for the Motor Impaired  
(Example 6) 
Individuals with motor impairments may struggle greatly 
when using conventional GUI input devices such as a 
mouse and keyboard. For example, in a prior analysis of 
real-world pointing data by six individuals with motor im-
pairments [10], we found a mean double click speed of 1.3 
seconds [SD .3 seconds], a mean slip distance (distance 
traveled between the press and release of a mouse button) 

of almost 6 pixels [SD 20 pixels], and high rates of missed 
clicks, direction changes, excess distance traveled, and so 
on. All of these measures tended to have a high variance 
both within users (over time) and across users. One inter-
pretation of this analysis is that this input is unpredictable, 
or uncertain. That is to say, the actual location, time, and 
even button used when a user clicks is at best an approxi-
mation of their actual intent. We hypothesized that by treat-
ing their input in a way that handles its true uncertainty 
well, we could increase the accuracy of user interactions. 
Implementation 
To test the validity of our hypothesis, we conducted an ex-
perimental analysis of recorded real-world interaction data 
of motor-impaired participants, derived from [10]. We se-
lected a total of 3,614  click events from hour-long record-
ings of four (male) participants using a desktop computer. 
We then pruned these down to 419 clicks representative of 
real-world selection scenarios with known targets (many of 
the clicks in our data were from games which had abnor-
mally large target sizes). For each click, we coded the event 
based on whether the user clicked on their intended target.  

Next, we simulated the same click using our framework. 
For this simulation, we modeled the location of the click 
probabilistically using a 2d Gaussian distribution of 30x30 
pixels (providing an expanding selection area analogous to 
bubble cursors [6]). Each potential target returned a score 
based solely on overlap with the probabilistic location of 
the event, and mediation selected the interactor with the 
highest score. The result of each simulation was coded 
along the same metric as the original interaction: Was the 
intended target selected?  

As shown in Figure 7, in the original data set, users missed 
their target 14% of the time, on average (SD=6%). Our 
simulated interaction was incorrect in only two cases. This 
is a worst-case result, meaning that a more sophisticated 
model of location ambiguity or a user who learned how to 
leverage our solution would likely have led to even better 
results.  
Discussion 
This example demonstrates a novel application of the over-
all concept of uncertainty. More generally, many situations 

Figure 7: Reduction in errors for motor-impaired 
users when probabilistic input is used 
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where the user’s intent may not match their actions might 
be considered an opportunity to apply our framework.  

Summary 
The six examples discussed in this section illustrate how 
relatively straightforward applications of our tool can ena-
ble novel interaction techniques, or simplify (and expand 
on) the implementation of interaction techniques that had 
previously been applied in an ad-hoc fashion.  

FUTURE WORK 
Our framework presents a new way of thinking about and 
handling user input. As such, it opens a wide range of poss-
ible directions for future work, some of which we touched 
upon in our presentation thus far. 

Specifically, we mentioned that during the interpretation 
phase, interactors could probabilistically track their state 
based on probabilistic inputs and act accordingly. The de-
tails of this are fairly complex and are a topic we plan to 
cover in future work. Finally, in future work we plan to 
integrate our contributions into a toolkit which developers 
can use to handle inputs with uncertainty.  

CONCLUSION 
The advent of new input technologies introduces a new 
type of input: input with uncertainty, which conventional 
input frameworks deal with poorly. We presented a frame-
work for the robust and flexible handling of inputs with 
uncertainty as an extension of the conventional event-based 
input handling framework, and showed how our framework 
supports existing interaction improvements, enables new 
interactions, and can be used to create techniques improv-
ing user experience for people with motor impairments. 
Our paper highlights the importance of properly dealing 
with uncertain input and presents a robust and flexible 
framework for handling inputs with uncertainty. 
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