Dependency-Driven Analytics:
a Compass for Uncharted Data Oceans

Ruslan Mavlyutov™/, Carlo Curino™, Boris Asipov™, Phil Cudre-Mauroux/
™ Microsoft, T University of Fribourg

ABSTRACT

In this paper, we predict the rise of Dependency-Driven Analytics
(DDA), a new class of data analytics designed to cope with growing
volumes of unstructured data. DDA drastically reduces the cogni-
tive burden of data analysis by systematically leveraging a compact
dependency graph derived from the raw data. The computational
cost associated with the analysis is also reduced substantially, as
the graph acts as an index for commonly accessed data items. We
built a system supporting DDA using off-the-shelf Big Data and
graph DB technologies, and deployed it in production at Microsoft
to support the analysis of the exhaust of our Big Data infrastructure
producing petabytes of system logs daily. The dependency graph in
this setting captures lineage information among jobs and files and
is used to guide the analysis of telemetry data. We qualitatively dis-
cuss the improvement over the brute-force analytics our users used
to performed by considering a series of practical applications, in-
cluding: job auditing and compliance, automated SLO extraction of
recurring tasks, and global job ranking. We conclude by discussing
the shortcomings of our current implementation and by presenting
some of the open research challenges for Dependency-Driven An-
alytics that we plan to tackle next.

1. INTRODUCTION

Large companies operate increasingly complex infrastructures to
collect, store, and analyze vast amounts of data. At Microsoft, our
infrastructure consists of a number of very large clusters (up to 50k
nodes each) serving thousands of data scientists, running hundreds
of thousands of jobs daily, and accessing billions of files. The
exhaust of this infrastructure consists of petabytes of system logs
daily. These logs faithfully capture all relevant aspects of our in-
frastructure, applications, and data life-cycle. However, their sheer
size and loose structure make them very challenging and expensive
to access and analyze.

To address this problem, we built a system—currently in pro-
duction at Microsoft—that automatically extracts from the logs a
compact, higher-level graph representation capturing entities (e.g.,
jobs, files, machines) and their dependencies (e.g., job reads file),
and provide this to our users as a compass to navigate this ocean of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CIDR 2017
© 2016 ACM. ISBN 123-4567-24-567/08/06.
DOL: 10.475/123_4

f -“Blast radius of JobA”
- 3)

User interface

A ." “.encities,
N MachineD , “Yélatiortlghips.
' \ properties. ..
Dependency graph @) L

ape”:ho15-0tos 2
784NFO ord. s

Ocean of log data

@

bet:(

\{75 SS ’% i sserisumcicioeie
Figure 1: Dependency-Driven Analytics: a log-analytics exam-
ple. (1) Petabytes of daily logs; (2) Dependency graph that rep-
resents a lightweight “skeleton” of the logs used for navigation;

(3) User-level queries return bytes of aggregated data.

i
QAN \\\\
“ i >
DA
UV N
QAN
QAN

raw data. The result is a declarative, directed and informed access
to the logs that saves users hours of development time, reduces the
computational cost of common analysis by orders of magnitude,
and enables interactive exploration of the logs—see Figure 1.

A key tenet of our paper is that the log-analysis scenario pre-
sented above is just one example of a broadening class of data an-
alytics we call Dependency-Driven Analytics (DDA). In DDA, raw
data are (automatically) preprocessed to extract a semantically rich
and compact graph structure that captures the key entities in the
data as well as their relationships—often dependencies among data
items, hence our choice of name. We expect DDA to emerge in
settings with massive volumes of loosely structured data, produced
by uncoordinated parties. In this context, we argue that two costs
become prohibitive: 1) cognitive costs for users to understand the
many quirks and local semantics of the data and parse/analyze such
raw data, and 2) computational costs when scanning/filtering/joining
the data in their raw form.

Anecdotally, we observed these issues in production settings at
Microsoft for the log-analytics example introduced above; Users
and cluster operators alike were forced to write complex process-
ing scripts—and invest substantial computational power—to ex-
tract usable insight from these raw textual logs. These efforts be-

came unattainable in the long run, as the software components pro-
ducing the logs are owned by multiple teams and keep evolving
independently. Users often gave up or employed rough, indirect
measurements to estimate quantities that were precisely reported in
the logs. Section 2 discusses DDA as a pattern for data analytics,
and presents key application scenarios.

For these reasons we embarked in building a system to support
DDA named Guider. Guider is built from off-the-shelf Big Data
and graph DB tools to support the access to very large log data in
a more effective and systematic way. Guider is in production today
and powers several key use cases at Microsoft both in production
and research stages (the architecture and use cases for Guider are
discussed in Section 3).

Our vision for DDA goes well beyond the initial capabilities of
our system, that is custom built for the log analysis instance of
DDA. We expect the process of extracting the dependency graph
from the raw data to be eventually fully automated, leveraging tech-
niques akin to entity extraction and deduplication. The graph itself
is potentially very large and calls for improved scale-out graph and
DB technologies—in Guider we are forced to use multiple narrow
projections of the original graph to support different applications
scenarios. Novel language support is also required to effectively
access the graph, relational and unstructured data in a unified way.
We present a research agenda in support of DDA in Section 4.

We begin by introducing the notion Dependency-Driven Analyt-
ics in more details below.

2. DEPENDENCY-DRIVEN ANALYTICS

Dependency-Driven Analytics (DDA) is a new pattern in data an-
alytics in which massive volumes of largely unstructured data are
accessed through a compact and semantically-rich overlay struc-
ture: the dependency graph. The dependency graph fulfills two
roles: it serves as 1) a conceptual map of the domain being mod-
eled as well as 2) an index for some of the underlying raw data.

Conceptual Map The dependency graph is a structure overlayed
on the raw data, which takes the form of a highly specialized graph
and acts as a cognitive guide for the analytics process. Both its
nodes and edges are typed. Nodes represent the main entities (e.g.,
users, jobs, tasks, machines or files) that are captured by the raw
data, while edges represent their relationships or dependencies (e.g.,
a job reads a file, or a task executes on a machine). Instead of sift-
ing through massive volumes of shapeless data, the user of a DDA
system can navigate this conceptual map, and quickly correlate data
items which are very far apart in the data but directly or indirectly
connected through the dependency graph. Our experience indicates
that this drastically lowers the cognitive cost of accessing the un-
structured data. The dependency graph can be seen as a knowledge-
base or ontology derived from the raw data; One major difference
from standard Knowledge Base Construction [12], however, is that
in DDA we do not aim at extracting all information from the logs,
but rather we aim at building a sparse skeleton of key pieces of
information that users leverage to traverse and access the raw data.

Index The second key role of the dependency graph is to index key
portions of the logs and allow for highly efficient access patterns
for DDA, avoiding intractably expensive scans and joins (recall we
deal with potentially petabytes of raw data, created by several in-
dependent pieces of software). For some of the queries, the graph
itself will be sufficient (i.e., the dependency graph is a covering
index for some queries), allowing for interactive querying.

We postpone to Section 3 the description of how the graph is
ingested, stored, and queried. In the remainder of this section, we

introduce three application scenarios that we believe are a good
match for DDA.

2.1 Application Scenarios

DDA provides a pattern of analytics that is most suitable under
the following conditions: 1) analyses are mostly localized, 2) large
scale data, 3) mostly unstructured data, and 4) data produced by
loosely coordinating parties. The combination of these properties
makes standard Big Data solutions largely ineffective. The cog-
nitive/development cost of understanding the data format, parsing
and analyzing the data is prohibitive. Similarly, the cost of perform-
ing scans/joins/aggregates is excessive with respect to the relatively
localized type of analysis.

We present three application scenarios for DDA below, which all
exhibit the properties described above. The log analytics scenario
is the one we target with our production system. It is discussed in
greater detail and serves as a running example for the rest of the

paper.

2.1.1 Infrastructure Logs Analysis

The many systems that make up the Microsoft Big Data infras-
tructure produce a massive volume of system-level logs (petabytes
daily), which capture every aspect of our infrastructure, data, and
application lifecycle. These systems are owned and operated by
multiple teams and keep evolving independently. Users and cluster
operators alike are forced to write complex processing scripts, and
invest substantial computational power to extract insight from raw
textual logs. The resulting “cooked” data are surfaced in purpose-
built monitoring tools, dashboards, and alert systems. We make this
dire situation more concrete with an example, visually depicted in
Figure 2 and summarized below:

Example Q1: “job failure blast radius”. Consider a user/operator
who wants to quantify the impact of a failed run of a recurring pro-
duction job JobA on downstream jobs—where impact is measured
as the sum of CPU-hours of the affected jobs, and “downstream
jobs” are jobs that directly or transitively depend on JobA’s out-
put (see Figure 2). This user has to: access massive amounts
of logs, finding the entries for each historical run JobA; of job
JobA, parse the job-execution logs, collect a list of output files
out(JobA;), search for all job instances J; such that input(J;) N
output(JobA;) # O, repeat recursively until no more jobs are
found, deduplicate this job list, join it with the corresponding teleme-
try logs, sum all CPU-hours used by the jobs downstream of each
daily run JobA;, and finally average across runs.

Answering query Q1 requires a detailed understanding of the log
format and its many quirks (e.g., inconsistent field naming, differ-
ent system components reporting time in UTC or local time-zones,
etc.). This translates in hundreds of lines of complex analytics
scripts, which need to be run on a Big Data infrastructure burn-
ing tens or hundreds of CPU-hours to scan and dissect potentially

many TBs of textual logs.

On the other hand, given a dependency graph capturing job/file
lineage as well as basic telemetry information, the user can answer
Q1 with minimal effort. Using a language akin to gremlin as our
graph query language, query Q1 can be expressed as:

graph.traversal () .V () .has ("JobTemplateName", "JobA_x*")
.local (emit () .repeat (out ()) .times (100) .hasLabel (" job")

.dedup () .values ("TotalCPUTime") .sum()) .mean ()

This can be written in minutes, without any knowledge of the log
format, and can be run on a single-node, in-memory, graph database
(e.g., Neo4J [13]) in a matter of seconds. Next, we introduce a more
navigational and challenging DDA use case:

JobA 1 inpact

JobA 2 i npact Fail ed run inpact

JobA 1 | FileA 1 JobB_1 JobA 2 FileA 2 JobB_2 i
- B —e ~ ‘
W | e FileB 2 ®

H: JobA i
[XX]

failed

Time

Figure 2: Impact of a failed run for recurring job JobA—the “blast radius” of Example Q1.

Example Q2: “Debugging a recurring job” Consider the task of
debugging the failure of instance JobA; of the recurring job JobA
from Example Q1. Isolating the root cause of the failure (e.g., a
misbehaving UDF in an upstream job) is non-trivial, as this may
be local to JobA;, or due to a malformed input file produced by
a buggy upstream job. The job’s owner starts by analyzing the
logs of JobA;. If nothing looks suspicious, the user will turn to
an error in the job’s input. This means looking for log lines listing
the input files for the job, and separately inspecting their metadata.
If an input looks unusual (e.g., smaller than normal), the user can
scan the logs again looking for jobs that wrote to this file (before
JobA; attempted read). The user then inspects those logs. This
alternation of navigation and inspection continues until evidence
of the root cause is located. Note that the logs explored in this
task are potentially generated by a multitude of systems (Frontend
nodes, Job Runtime, Cluster Scheduler, DFS, UDFss, etc.)

Performing the above task over raw logs is painstaking, as key
information such as job input/output are buried in the middle of
massive amounts of unstructured text logs—most of which are ir-
relevant to the task at hand. On the other hand, given a depen-
dency graph, the navigational portion of Q2 becomes trivial—a ba-
sic graph traversal similar to the one in query Q1. Moreover, since
the job being investigated is recurrent, the job’s owner can perform
simple graph analytics in search of abnormalities (e.g., in the size
of the inputs to JobA). It is important to point out that the over-
all process still requires direct access to some of the raw logs, to
determine the root cause of the JobA; failure. This is quintessen-
tial of DDA, where the dependency graph acts as a guide to access
raw data. The development and computational cost is however re-
duced by orders of magnitude, as the user access of raw logs is very
targeted.

2.1.2 Enterprise Search

A large fraction of the information created and processed by
large companies is unstructured. Often, the same entities (e.g., cus-
tomers, transactions or employees) are found in dozens of differ-
ent enterprise systems ranging from email or document servers to
calendars, instant messaging systems and internal social networks.
Traditional enterprise search solutions build an inverted index from
all sources and let end users query the resulting system through
keywords. Such solutions are however incapable of reconstructing
the context in which the entities operate, for example to link trans-
actions to their customers, employees forming a team, or track the
approval of a spreadsheet. A DDA solution would precisely answer
those needs, by modeling key entities in the enterprise and by re-
constructing their interdependencies through a dependency graph
for further analysis. As extracting from this type of documents is
likely more challenging than from more regular infrastructure logs,
natural language text analysis solutions (such as [12]) can be lever-
aged in this context.

2.1.3 Internet of Things (IoT)

Embedded and mobile devices are increasingly connected, form-

ing webs of physical things'. Large Webs of things can intercon-
nect thousands of heterogeneous devices at the application layer.
Each device, however, maintains its own logs (browse logs, com-
mits, errors, etc.) Building analytics on top of such systems re-
quires to identify, and then match entities across devices. One ex-
ample is building a graph of users across devices for advertising
purposes’. Further example include following a single event across
multiple sensors, debugging or auditing complex Webs of things.
All cases directly match the DDA process sketched above, where
a dependency graph has to be modeled, and then instantiated by
collecting and analyzing massive amounts of heterogeneous and
unstructured data.

Next, we present a practical implementation of DDA for infras-
tructure log analysis.

3. Guider: A PRACTICAL TAKE ON DDA

Historically, Guider was built to support only auditing and com-
pliance applications (see Section 3.2.1). Therefore, the dependency
graph used focused on tracking provenance information. Prove-
nance was tracked at different levels of granularity (pipeline/datasets,
job/file, and task/column), allowing for different levels of inspec-
tion. The graph also captured all ingress/egress operations from
outside the cluster. Over time, we realized that focusing on prove-
nance only was restrictive, and we started to track telemetry infor-
mation for every entity that appeared in the dependency graph. For
example, the amount of resources consumed by JobA over time, or
the time at which FileB was read by JobC. This enabled a much
broader set of analysis (see second part of Section 3.2), and pro-
vided the insight behind our DDA vision.

3.1 Architecture overview

With reference to Figure 3, Guider’s architecture is organized as
follows:

Dependency Definition: an offline modeling step akin to schema
design for relational databases or ontology definition for the Se-
mantic Web, where key entities and their dependencies are man-
ually or automatically defined. Each entity/dependency is associ-
ated with extraction rules, instructing the DDA runtime on how to
find them in the raw data. This step can be challenging for free-
form textual data [12], but is typically easier for unstructured data
produced by automated systems (e.g., IoT or infrastructure logs),
whose highly regular structure is easier to learn from and more con-
ducive of rule-based extraction. In our current implementation of
Guider this step is manual, and the extraction rules take the form
of SQL-like scripts [4] that process relevant portions of the logs,
running on our internal Big Data infrastructure.

Dependency Graph Extraction: this is a runtime phase in which
the rules defined above are applied to the raw data. This is akin
to an ETL step for a relational data warehouse, but differs as the

"http://webofthings.org/
’See the 2016 CIKM Cross-Device Challenge:
/lcompetitions.codalab.org/competitions/11171

https:

Dependency

Big Data Graph
System System
Schema +
extr. rules — 3
Scope/ @
l Cosmos Neo4)
Raw Extraction depergdﬁncy
Dat grap

Figure 3: Guider’s architecture.

Definition

Storage

dependency graph is a sparse structure, which only acts as a guide
to access the raw data. In Guider today, we solve this through the
notion of a data scanner, a batch process running daily. Each scan-
ner processes the logs of a different system component and col-
lects a different portion of the dependency graph (e.g., we have a
job telemetry scanner analyzing solely job-level telemetry from a
given log). This scripts run on our existing Big Data infrastructure.
This batch-oriented solution prevents us from achieving real-time
analysis as the logs are being produced. Separate ongoing effort at
Microsoft are addressing these concerns?’.

Dependency Graph Storage: given the extracted nodes and edges,
we need to effectively and compactly store the resulting graph. The
key intuition is that dependency graphs are highly structured com-
pared to standard graphs. Nodes and Edges are typed and therefore
can be stored and indexed very efficiently. In our current imple-
mentation, the dependency graph is partitioned by node and edge
type, as well as by time (each day makes up a separate partition).
The primary storage is a distributed file system (DFS) [4]. In or-
der to enable interactive access, we designed several projections of
the graph that fulfill specific application needs. For example, we
leverage the recurrent nature of the graph to produce a summarized
provenance-only graph that captures recurring jobs (and files) in a
compact, non-redundant way. This allows us to load up to 30 days
of provenance in a single-node instance of Neo4J [13] and power
the auditing/compliance scenario of Section 3.2.1. Similarly, we
can load 1 day worth of job-level telemetry data, or 1 hour of task-
level data. When full-detail and long time-horizons are required
(e.g., for the SLO extraction use case), we resort to slower but scal-
able Big Data infrastructure accessing the graph from the DFS.

Dependency Graph Querying: finally, the querying patterns to
support DDA queries are unique, as they involve both graph traver-
sals, graph algorithms, as well as relational and unstructured data
processing. This is the next step in the progression from relational
to Big Data querying. In Big Data querying, the focused shifted
in supporting unstructured data and UDFs, and with DDA with
introduce the need to also handle graph data. Our current solu-
tion is quite limited in this regard, as it allows to run only pure
graph queries on the Neo4J instance, or complex analytics using
a full-fledged, scan-oriented, Big Data solution (running over the
DFS version of the data or the raw logs). We considered sev-
eral other graph technologies, including TitanDB, Spark Graph-
Frames, Tinkerpop/Tinkergraph, but at the current state of stabil-
ity/development they were not sufficiently capable for our setting.
This experience indicate that industry is in desperate need for a
fully capable, scale-out graph solution, that can handle complex,
large, and structured graphs.

3Citation will appear at CR time.

Guiders currently in use at Microsoft to support a combination of
production and research efforts that require obtaining detailed in-
sight from the data. We report on a few of those next, starting from
the auditing/compliance use case that initially motivated building
Guider

3.2 Applications

We introduced our prototype to several product and research teams
inside Microsoft, which proposed and helped us implement a sur-
prisingly high number of applications for Guider We briefly de-
scribe some of these applications below.

3.2.1 Auditing and Compliance

Data within large organizations are often stored in multiple in-
frastructures and across several geographic regions subjected to dif-
ferent regulations. Current storage and access technologies guar-
antee data integrity and protect against unauthorized access, but
cannot enforce legal regulations or business rules. A number of
important regulation prevent data to flow across geographic bound-
aries, like European Union regulations prohibitin the copy of “per-
sonal data” beyond jurisdictional boundaries. There are also laws
and business rules for data at rest, for example requirements to
delete personal data identifying users access to online services af-
ter a given period of time (e.g., 18 months), or business agreements
restricting 3rd-party data access to certain scenarios [2].

Current data stores are unable to identify policy violations in that
context (e.g., based on flexible business rules). At Microsoft, we
have deployed a monitoring system leveraging DDA for that pur-
pose. The resulting Compliance Monitoring system is rule-based.
Compliance managers derive compliance rules from business re-
quirements and regulations, and enter them using a Web interface.
“User IP addresses must not be retained over 180 days” or “Per-
sonally identifiable information must not be combined with anony-
mous identifiers” are typical examples of such rules.

The core of the system is a Big Data job operating on the depen-
dency graph, and taking the list of compliance rules as an input.
The system returns a list of violations, which are used to generate
notifications to compliance managers. Prior to the introduction of
the DDA-based Compliance Monitoring system, all auditing was
manual, and substantially more costly. Once deployed, the auto-
mated DDA-based Compliance Monitoring system detects compli-
ance violations on a continuous basis, providing improved coverage
and latency.

3.2.2 Morpheus

Morpheus [8] is a research system running on top of the resource
management infrastructure of our clusters. It enforces jobs dead-
lines (decreasing deadline violations by an order of magnitude),
while retaining a high cluster-utilization. Morpheus uses Guider
to access the dependency graph as its main inference tool. The
graph is used to infer user expectation as explicit SLOs inferred
from historical data. In the process, the system makes heavy use
of telemetry information (job resource consumption, job temporal
access pattern, etc.). The data stored in the graph allow to group
jobs instances into groups of periodic jobs (Job Templates)—see
Figure 2. For every periodic job, we query Guider to obtain the
earliest possible submission time (earliest time when all input data
are available) as well as the latest completion time (latest time be-
fore any of the job’s outputs are consumed by other jobs or egress
operations). Having access to rich information about the jobs such
as their validity intervals, usual job running times and resource uti-
lization profiles enables Morpheus to automate this complex pro-
cess.

3.2.3 Global Job Ranking

Estimating the importance of the various jobs running on the
cluster is often essential, for example when selecting the order in
which jobs should run, or to cope with capacity impairments (if
only a fraction of jobs can run, how do we choose?). There are
many ways to define the importance of a job, one being the job
contribution to future cluster operations. The number of jobs con-
suming the job output or their derivatives is a first approximation
of that metric. We implemented a Global Job Ranking tool at Mi-
crosoft using that metric and leveraging Guider to traverse the de-
pendency among jobs. This is equivalent to performing query Q1
of Section 2 for all jobs. As we discussed, this operation is daunting
when performed on raw logs, but becomes a rather standard graph
traversal and aggregation when leveraging the dependency graph.

3.2.4 Datacenter Migration

The Big Data clusters we operate at Microsoft are multi-tenant
and often serve hundreds to thousands of customers from several
business units. As their computational demands grow and saturate
the clusters (after all possible capacity expansion), some tenants
must be relocated to new clusters. The difficulty of that task comes
from the fact that the business units share a lot of data and often
have complex interdependencies at the job level (jobs of one busi-
ness units often consume the job outputs of other business units).
We recently leveraged Guider to find an optimal solution to that
problem. By querying Guider we constructed a specialized projec-
tion of the graph at the tenant level, with edges storing the amount
reads/writes shared by two tenants. At this point, determining which
tenants are easier to migrate becomes a matter of performing a par-
titioning of the graph (i.e., searching for a graph cut that fits in the
target clusters, and minimizing the cost of the edges being cut).
In practice, this is further complicated by the presence of business
restrictions. We thus solved this using an Integer Linear Program-
ming formulation that captures all business restrictions as well as
cluster capacity limitations and cross-tenant data sharing. This pro-
vided invaluable input to the migration team, and helped minimiz-
ing the cost of migration.

3.3 Preliminary Evaluation

As a demonstration of the DDA concept and the Guider system,
we showcase two queries (Q3 and Q4) performing simple aggre-
gates on jobs and files over one month of data. Q3 computes the
average count of inputs for each recurring job, and Q4 calculate
the ratio of jobs that are recurrent vs ad-hoc. These two queries
are routinely calculated and displayed as part of a monitoring dash-
board. They were chosen as they are easily expressed both on the
dependency graph and over the raw logs.

We compare three variants for each query: 1) a baseline access-
ing the raw logs* using a SQL-Like Big Data runtime [4], 2) the
same runtime operating on the DFS-resident copy of the depen-
dency graph, and 3) a Cypher query running on a single-instance
Neo4J graph DB [13]. Recall that in Neo4J we load only a projec-
tion of the data sufficient to answer the two queries. In all cases,
the IOs reported are after all possible partition pruning.

The results are presented in Table 1. Even for these simple
queries, the differences are substantial. Comparing Q3 and Q4 on a
DDA system vs operating directly on the raw logs, we observe: 1)
almost an order of magnitude less code, 2) up to 3 orders of magni-
tude less 10s, 3) up to 5 orders of magnitude less cpu-time, and 4)
up to 3 orders of magnitude shorter run-times.

*To be precise the logs accessed are already partially preprocessed,
as computing on the truly raw logs would require an additional 1 or

Table 1: DDA vs raw log baseline
Q3: “Average Count of inputs per Job”

Raw | Graph on DFS Neo4J
LoC 50 25 7
Run-time 58min 11min 4.9sec
CPU-time 563h 25h <40sec
10s 18.6TB 61GB | <24GB (RAM)

Q4: “Ratio of recurring vs Ad-hoc Jobs”

Raw | Graph on DFS | Neo4]
LoC 22 21 3
Run-time 8min 24min | 10.9sec
CPU-time 41h 14h | <90sec
10s 966GB 638MB | <24GB

Our only goal with this preliminary evaluation is to highlight
with a couple of simple examples the large potential of DDA and
systems like Guider in drastically reducing development and com-
putational costs.

4. RESEARCH AGENDA

Guider is a first practical step towards building a DDA system.
We describe below fundamental research challenges to achieve the
full DDA vision, some are new and some will look familiar. In
the latter case, this discussion serves as further evidence of their
industrial relevance and potential for impact.

4.1 Dependency Definition and Extraction

In Guider we solved dependency definition and extraction by
manually defining extraction rules from each of the types of logs
we ingest, and running them as batch computation on a Big Data
framework. This lacks two desirable properties: 1) automatic de-
pendency definition, and 2) continuous / real-time dependency ex-
traction.

The reason for automation is obvious: even for a reasonably sim-
ple instance of DDA such as log analysis, the process of defining
entities/dependencies and their extraction rules is costly, and given
a fast evolving ecosystem, likely requires continuous maintenance.
To orient the reader on how costly this process is, Hadoop alone
has 11k log statements, spread over a 1.8M lines codebase, that re-
ceived 300k lines of code change in 2015 alone. And this is just one
of the many interacting systems in the ecosystem. As observed in
[9], standardizing around shared formats is impractical even within
a single company, as too many different teams contribute to the
software ecosystem. The remaining alternative is to automate the
a-posteriori ingestion of logs.

Parsing and entity recognition is reasonably easy for logs thanks
to the repetitive, streamlined and abundant nature of this data. In
other settings such as Enterprise Search (see Section 2), this re-
quires more advanced techniques such as [12]. Entity Linking or
co-reference resolution is challenging regardless of the data source
format. As a simple example, in a Hadoop-based DDA proto-
type (parallel to the Guider effort) we had to resolve to tempo-
ral analytics to (probabilistically) match Yarn jobs to the HDFS
files they produce. Developing dedicated matching techniques and
(un)supervised models in this context is a major research challenge.

To further complicate this task, our next challenge is to achieve
all this in near real-time as data items are produced across hundreds
of thousands of machines. At Microsoft, we have built solutions

2 orders of magnitude IO and computational cost.

to ingest logs at such a massive scale, but stream-oriented entity
extraction and linking at this scale remains an open problem.

4.2 Graph Storage and Querying

Creating, storing and manipulating the dependency graph at scale
is a major technical issue; our current solution leverages two dif-
ferent back-ends, and lacks an integrated language surface. This is
far from optimal. There is a clear need for more efficient and scal-
able graph data management solutions, which could also elegantly
integrate with mechanisms for non-graph data manipulation.

One interesting avenue for future work is to leverage the prop-
erties of the dependency graph to optimize storage and query pro-
cessing. For example, the dependency graph in the log analytics use
case is a temporal DAG with causal edge semantics, whose nodes
and edges are typed, with strict domains and ranges. Stating it more
generally, the dependency graph is more “structured” than typical
graphs, i.e., it has a clearer schema. This opens up many options for
optimization, and to support a blurring of the graph/relational di-
vide. As an example, recall our running example Q1; Without spe-
cial optimizations, a relational system would require multiple joins
between all nodes and edges. The fact that the structure we operate
on is a causal, temporal graph allows us to prune all nodes/edges
that “precede” the source node JobA; chronologically. This prun-
ing can be pushed down to the storage of the graph (like we do
in our time-partitioned DFS copy of the graph) to dramatically re-
duce I0. The fact that nodes and edges are typed can also be used
for pruning, further reducing the cardinality of scans and joins. We
advocate for a system that automatically derives such complex con-
straints® (as part of the dependency definition process), and lever-
ages them during query optimization.

5. RELATED WORK

Provenance and versioning systems Provenance management for
databases and scientific workflows has been extensively studied
[14,5,7, 16, 15]. Both theoretical and system efforts have focused
on capturing fine-grained provenance for complex queries. In this
regard, Guider is less ambitious as it focuses on coarser-grained
provenance, and lacks many of the sophistications of proposed in
literature. File-level and object-store provenance tracking was ex-
plored in [10] and [11] respectively.

Our effort is, in spirit, closest to the Goods effort from Google
[9]. Both approaches reconstruct provenance a-posteriori from a
multitude of systems and operate at massive scale. We use prove-
nance as a skeleton to analyze telemetry and raw logs, while Goods
focuses on metadata indexing and dataset search. DDA extends to
a wide range of application scenarios beyond provenance.

Datahub [3] focuses on facilitating collaboration, by providing
Git style versioning for databases. This relates to our effort, but as-
sumes data owners are actively engaging with the datahub ecosys-
tem. Scale and legacy issues makes this impractical in our setting.

Entity extraction and linking is a hard and well studied problem,
especially for free form textual data. Efforts such as [12] will be
instrumental to DDA in settings such as Enterprise Search.

Graph technologies In building Guider, we tested several graph
databases: TitanDB, Graphframes [6], Tinkerpop, Neo4j [13]. Neo4j
was the most mature and performant system we found, but its lack
of support for scale-out forced us to resort to project/reduce the
graph sizes till each of our application could fit in one machine.
Support for scale-out graph computing is in large demand. Also, we
believe there is a strong industrial need for better language and sys-

Note that the constraints in this example enable push-down pred-
icates across tables, enabling sophisticated query rewritings.

tems that support mixing graph, relational and unstructured data.
Two particularly interesting efforts are [6], introducing support for
graph processing in Spark and [1] exploring theoretical and system
aspects of graph/relational query optimization.

6. CONCLUSIONS

We presented a vision for a new pattern in data analytics: Dependency-

Driven Analytics (DDA). DDA solutions pivot around the auto-
matic extraction of a dependency graph from large volumes of mostly
unstructured data, to guide users in efficiently navigating and query-
ing the data. We make this vision concrete by presenting a pro-
duction system that implements DDA for a specific use case: log
analytics. The benefits observed through this use case and related
industry trends inspire us to pursue the broader vision for DDA.

7. REFERENCES

[1] C.R. Aberger, S. Tu, K. Olukotun, and C. Ré. Emptyheaded:
A relational engine for graph processing. In SIGMOD, 2016.

[2] K. Bellare, C. Curino, A. Machanavajihala, P. Mika,

M. Rahurkar, and A. Sane. WOO: A scalable and
multi-tenant platform for continuous knowledge base
synthesis. PVLDB, 2013.

[3] A.Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande,
A. J. Elmore, S. Madden, and A. G. Parameswaran. Datahub:
Collaborative data science & dataset version management at
scale. arXiv preprint arXiv:1409.0798, 2014.

[4] R. Chaiken, B. Jenkins, P-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: easy and efficient parallel
processing of massive data sets. VLDB, 2008.

[5] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends in
Databases, 1(4):379-474, 2009.

[6] A.Dave, A. Jindal, L. E. Li, R. Xin, J. Gonzalez, and
M. Zaharia. Graphframes: an integrated api for mixing graph
and relational queries. In Workshop on Graph Data
Management Experiences and Systems, page 2. ACM, 2016.

[7] S. B. Davidson and J. Freire. Provenance and scientific
workflows: challenges and opportunities. In SIGMOD, 2008.

[8] S. A.J. etal. Morpheus: Towards automatic slos for
enterprise clusters. To appear: OSDI, 2016.

[9] A.Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis,

S. Roy, and S. E. Whang. Goods: Organizing google’s
datasets. In SIGMOD.

[10] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. L. Seltzer. Provenance-aware storage systems. In ATC,
2006.

[11] K.-K. Muniswamy-Reddy, P. Macko, and M. I. Seltzer.
Provenance for the cloud. In FAST, volume 10, pages 15-14,
2010.

[12] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, and C. Ré.
Incremental knowledge base construction using deepdive.
PVLDB, 2015.

[13] A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, and J. Partner.
Neo4j in Action. Manning, 2015.

[14] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In CIDR, pages 262-276, 2005.

[15] E. Wu and S. Madden. Scorpion: Explaining away outliers in
aggregate queries. PVLDB, 2013.

[16] E. Wu, S. Madden, and M. Stonebraker. Subzero: A
fine-grained lineage system for scientific databases. In /CDE,
2013.

