
ACM Reference Format
Raghuvanshi, N., Snyder, J. 2014. Parametric Wave Field Coding for Precomputed Sound Propagation.
ACM Trans. Graph. 33, 4, Article 38 (July 2014), 11 pages. DOI = 10.1145/2601097.2601184
http://doi.acm.org/10.1145/2601097.2601184.

Copyright Notice
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or commercial advantage and that
copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request
permissions from permissions@acm.org.
2014 Copyright held by the Owner/Author. Publication rights licensed to ACM.
0730-0301/14/07-ART38 $15.00.
DOI: http://dx.doi.org/10.1145/2601097.2601184

Parametric Wave Field Coding for Precomputed Sound Propagation

Nikunj Raghuvanshi John Snyder

Microsoft Research

0.1

1

10s

TER TLR

6dB

‐60LDS LER
Figure 1: Our wave coding transforms 7D pressure fields (dependent on source/listener location and time) generated by numerical wave simulation to time-
invariant 6D fields based on four perceptual parameters. Consistent with everyday experience, these parameters vary smoothly in space, aiding compression.
Scene geometry (‘Deck’) is shown on the left, followed by a 2D slice of the parameter fields for a single source (blue dot). Direct sound loudness (LDS)
exhibits strong shadowing while early reflection loudness (LER) captures numerous scattered/diffracted paths, and consequently shadows less. Low LDS
combined with high LER conveys a distant and/or occluded source. Early decay time (TER) and late reverberation time (TLR) together indicate scene size,
reflectivity and openness. TLR is spatially smoother than TER, being determined by many more weaker and higher-order paths in this complex space.

Abstract

The acoustic wave field in a complex scene is a chaotic 7D function
of time and the positions of source and listener, making it diffi-
cult to compress and interpolate. This hampers precomputed ap-
proaches which tabulate impulse responses (IRs) to allow immer-
sive, real-time sound propagation in static scenes. We code the
field of time-varying IRs in terms of a few perceptual parameters
derived from the IR’s energy decay. The resulting parameter fields
are spatially smooth and compressed using a lossless scheme sim-
ilar to PNG. We show that this encoding removes two of the seven
dimensions, making it possible to handle large scenes such as entire
game maps within 100MB of memory. Run-time decoding is fast,
taking 100µs per source. We introduce an efficient and scalable
method for convolutionally rendering acoustic parameters that gen-
erates artifact-free audio even for fast motion and sudden changes in
reverberance. We demonstrate convincing spatially-varying effects
in complex scenes including occlusion/obstruction and reverbera-
tion, in our system integrated with Unreal Engine 3TM.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality H.5.5 [Information Inter-
faces and Presentation]: Sound and Music Computing—Modeling;

Keywords: wave equation, diffraction, scattering, room acous-
tics, early decay time, reverberation time, occlusion, obstruction,
exclusion, parametric reverb, impulse response, convolution, envi-
ronmental effects, DSP

Links: DL PDF

1 Introduction

Numerical wave simulation generates environmental sound effects
of compelling realism that complement visual effects, reveal infor-
mation about occluded parts of the scene, and establish a scene-
dependent mood. But it is too expensive to compute in real time.
Precomputed approaches allow real-time performance for dynamic
sources in static scenes by storing the simulated impulse response
(IR) as a function of source and listener position. Memory cost is
prohibitive, requiring hundreds of megabytes even for a constrained
2D distribution of source locations in small scenes [Raghuvanshi
et al. 2010]. To render the acoustics at run-time, a convolution is
performed on the anechoic (unpropagated) audio signal emitted by
each source with the IR between the source and receiver locations.
This expensive processing is typically performed on a busy shared
audio core, allowing only a few dynamic sources.

We take a novel parametric approach to more compactly encode
the wave field and render it faster. The acoustic field in a typical
environment is spatially chaotic, making it hard to compress di-
rectly [Ajdler et al. 2006]. On the other hand, our perception of that
environment changes smoothly as we or the sound source moves
– the human auditory system extracts only a few salient proper-
ties such as loudness, directionality, and reverberance, not individ-
ual information about the huge number of diffracted and scattered
wavefront arrivals [Gade 2007]. We therefore convert a field of IR
signals into a set of scalar fields corresponding to a few percep-
tual parameters (Figure 1). We observe that even in scenes of high
geometric complexity, each resulting parameter field is smooth as
expected, which we exploit using lossless compression similar to
PNG. Our approach reduces memory by orders of magnitude com-
pared to [Raghuvanshi et al. 2010]. Scaling results (Section 7) show
that spatial compression essentially removes an entire spatial di-
mension from the 6D field over 3D source and listener locations.

Our run-time engine reverses the encoding to apply IRs that con-
form to the precomputed parameters. We capitalize on the consid-
erable flexibility involved using a novel, fast rendering algorithm. It
uses a small set of canonical filters, optimized to cover the param-
eter space, allow artifact-free linear interpolation, and yield physi-
cally plausible results. Instead of interpolating and convolving an
IR for each source, we split each source signal into scaled copies
and accumulate a sum over all sources for each canonical filter.
This fixed-bus architecture produces identical results but largely re-

ACM Transactions on Graphics, Vol. 33, No. 4, Article 38, Publication Date: July 2014

http://doi.acm.org/10.1145/2601097.2601184
http://portal.acm.org/ft_gateway.cfm?id=2601184&type=pdf

occlusion
low LDS, low LER

obstruction
low LDS, high LER

exclusion
high LDS, low LER

strong scattered paths

strong direct path

weak scattered paths

weak (diffracted) direct path

Figure 2: Path-dependent propagation effects.

moves the the computation’s dependence on the number of sources,
providing a large speedup.

It is usual in acoustic analysis to segment an IR into three transient
phases: direct sound (DS), early reflections (ER), and late rever-
beration (LR) [Kuttruff 2000]. We find that much of the perceptual
quality of point-to-point sound propagation in an arbitrary scene
can be captured by just four parameters: DS and ER loudness, and
decay times of the ER and LR. Refer to Figure 3. This parameter set
is by no means complete and neglects important propagation effects
including accurate variation in sound directionality (spatialization),
diffusion, and coloration. Nevertheless, it provides immersive au-
ralization supporting a wide range of effects. Figure 2 shows three,
called occlusion, obstruction, and exclusion.

These effects integrate a huge number of sound paths emanating
in all directions from the source, diffracting around obstacles, and
scattering many times off scene geometry before arriving at the lis-
tener. They are notoriously difficult to specify by hand or compute
on the fly, and so are ignored or replaced by unrealistic heuristics in
many current games. The absolute and relative loudness of direct
and reverberant energy also provides an important distance cue [Ko-
larik et al. 2011], currently specified by hand in game audio design.
All these effects are elegantly captured by just two loudness param-
eters. Two additional decay rate parameters indicate the reflectivity,
size and openness of the space connecting source and listener.

As discussed in Section 2, our parameters are related to ones devel-
oped in earlier work. In room acoustics, parameters are extracted to
guide architectural design and analysis, not for auralization. In in-
teractive audio for games, reverberation parameters are manually
specified by artists and augmented with non-physical heuristics.
For example, parameters are selected based on which hand-marked
room the listener occupies. Occlusion is driven using one or a few
ray visibility queries. Sound is forced to attenuate to 0 at an artist-
specified radius to prevent it from propagating through walls.

We introduce the first parametric field approach for interactive ren-
dering of wave acoustics, and show that its results are easy to com-
press and interpolate, and fast to render. It handles much larger
scenes than possible with previous techniques: an entire level of
a modern game now fits in a 100MB memory budget. We intro-
duce a robust encoder to extract acoustic parameters from band-
limited wave simulations which works for billions of IRs. We also
describe a novel, high-performance run-time rendering technique.
We demonstrate our system’s quality and performance by integrat-
ing it with a modern game engine.

2 Related Work

Interactive geometric acoustics (GA) Takala and Hahn intro-
duced interactive acoustics to CG using ray tracing [1992]. Beam
tracing [Funkhouser et al. 2004] supports real-time walkthroughs of
static scenes with approximate diffraction from long straight edges
(>1m). Accelerated beam-tracing [Laine et al. 2009] can handle a
moving source. Frustum tracing [Chandak et al. 2008] computes a

fast conservative approximation to beam tracing using existing fast
ray tracers and supports dynamic sources.

The image source method (ISM) represents the global field as a
superposition of expanding spherical wavefronts centered at image
sources [Allen and Berkley 1979]. Their locations are computed by
recursively reflecting the actual source location through all planes
in the scene and retaining ones with clear line-of-sight to the lis-
tener. ISM is suitable for modeling specular reflections from large
(meters across) flat reflectors, not for complex, scattering geometry.
The number of image sources grows exponentially in the number of
reflections. Beam/frustum tracing can be seen as implementations
of ISM (each beam represents an angular section of a wavefront)
thus sharing these limitations. [Tsingos 2009] proposes a faster
but more approximate ISM-based technique that coarsely samples
sources (one per room) and computes a set of image sources for
each, interpolating their locations when sources move. Scattering
and diffraction are ignored.

Recent systems [Taylor et al. 2009; Schröder 2011] combine such
ISM techniques for specular reflections with Monte-Carlo ray
tracing for diffuse scattering on simplified scene models. Au-
tomatic simplification remains a challenging problem [Siltanen
2005]. Diffraction can be modeled using the Biot-Tolstoy-Medwin
(BTM) diffraction theory [Svensson et al. 1999]. When a ray hits
an edge element, [Svensson et al. 1999] provides analytic direc-
tivity functions for scattered rays in all directions. A probabilis-
tic variant is better suited for energy-based methods which neglect
phase [Stephenson and Svensson 2007].

All GA techniques use a Lagrangian model that propagates pres-
sure/energy quanta along piecewise straight paths. Computation
increases exponentially as the number of reflection, scattering, and
diffraction events along the path (path order) increases. Interac-
tive systems limit the path order. Accurately modeling high-order
diffraction and scattering is an active research area [Calamia 2009;
Siltanen et al. 2009].

Offline solvers Time-domain wave solvers use an Eulerian model
of a time-stepped pressure field, incurring an expense that increases
with the scene’s volume and the maximum frequency but insen-
sitive to its geometric complexity or the order of wave-geometry
interactions. Such solvers have been applied to room acoustics
[Savioja et al. 1994; Murphy et al. 2007; Kowalczyk and van Wal-
stijn 2010]. Modern hardware and algorithms make it feasible to
simulate offline up to mid-frequencies (above 1kHz) in concert-
hall-sized scenes [Sakamoto et al. 2008; Mehra et al. 2012], or real-
time in rooms [Savioja 2010].

Wave simulation accurately models diffraction and scattering and
so is excellent for precomputing acoustics. Simulation accuracy is
essential; salient propagation characteristics like total loudness de-
pend on complex, multi-path physics. Propagated sound often inte-
grates over a huge number of weak high-order paths. An example
is our Sanctuary scene, where a main hall opens outdoors through
a cave-like passage. Sound has to reflect, scatter, and diffract many
times within the hall, through the cave, and out the cave’s mouth
to reach a listener standing to the side. Such cases are extremely
challenging for GA methods.

[Siltanen et al. 2007] unify GA with a path-integral formulation
analogous to Kajiya’s rendering equation in graphics, and propose
acoustic radiance transfer (ART), an offline technique inspired by
progressive radiosity. Arbitrary BRDFs are supported but highly
specular reflections are costly. Diffraction can also be approxi-
mately modeled [Siltanen et al. 2010b]. Hybrid solvers [South-
ern et al. 2013] combine wave simulation at low frequencies with
ART for diffusion/late reverberation and beam tracing for specular
bounces. Such ideas are promising for extending our wave-based

38:2 • N. Raghuvanshi et al.

ACM Transactions on Graphics, Vol. 33, No. 4, Article 38, Publication Date: July 2014

parametric

representation

direct sound
(DS)

early reflections
(ER)

late reverberation
(LR)

5ms 200ms

LDS LER

p
re

ss
u

re
 𝑃

(P
a)

Impulse Response (IR)

1
0
lo
g
1
0

𝑃
2

(d
B

)

Loudness parameters

TER =
−60dB

slope

TLR =
−60dB

slope

Decay time parameters

Figure 3: Parametric IR encoding schematic (time not to scale). The four parameters we extract are shown in green on the right for an IR shown on the left.

precomputation to higher frequencies. Geometric and numerical
wave techniques are compared in [Siltanen et al. 2010a].

Real-time wave acoustics Prior work proposes wave-based pre-
computation with real-time auralization [Raghuvanshi et al. 2010].
Our technique reduces memory by orders of magnitude (see Sec-
tion 7), and accelerates the run-time. It also allows a true 3D
(rather than 2D) sampling of source positions to support a flying
source/listener. More recent work on large, outdoor spaces [Mehra
et al. 2013; Yeh et al. 2013] requires that either the listener or the
sources be static. These techniques also require manual partitioning
of the scene into well-separated objects.

Acoustic parameters Sabine’s pioneering work quantified the
subjective quality of a concert hall using the simple measure of re-
verberation time [1953]. Since then, one of the primary goals of
room acoustics research has been to find a set of parameters de-
rived from physical IRs that completely capture the sound quality of
a performance space [Krokstad 2008; Beranek 2003]. The widely-
used standard [ISO 3382-1:2009] codifies a small set of parame-
ters and prescribes how they can be extracted from measured IRs.
Sampling these parameters at a few (~10) listener locations lets an
acoustician decide if a hall’s acoustics are suitable and make archi-
tectural changes. The source distribution is fixed, corresponding to
musical instruments on the stage.

We are instead interested in recreating dense sound fields in general
3D scenes, between arbitrary, moving pairs of points possibly lying
in different rooms, across obstacles, or even outdoors. Several new
problems must be solved: 1) designing automatic techniques for
extracting parameters from the time- and frequency-limited IRs re-
sulting from simulation, 2) minimizing storage for dense parametric
fields and exploiting their spatial compressibility, and 3) auralizing
these parameters convincingly with high performance.

Parametric sound fields have been proposed before [Stettner and
Greenberg 1989] and are supported by commercial software [Rindel
and Christensen 2013]. In both cases, the simulation is based on ray
tracing and the goal is acoustic visualization for design, not efficient
encoding and generation of an acoustic experience.

Complementary to this work in room acoustics, consumer audio
applications have used parametric reverberation filters to manu-
ally design a wide range of propagation effects. The I3DL2 stan-
dard [IAS 1999] codifies a set of parameters using the vocabulary of
occlusion/obstruction/exclusion effects mentioned in the introduc-
tion. ISO 3382-1 and I3DL2 share parameters for separate levels
of direct, reflected and reverberant sound. ISO 3382-1 omits LR
decay time; I3DL2 omits ER decay time. Other parameters in ISO
3382-1 (lateral energy levels) presume a canonical view direction
looking towards the stage. While I3DL2 generalizes the scene con-
figuration, acoustic calculation or parameter extraction is outside
its scope; audio designers usually specify the parameters by hand
or using simple heuristics. In contrast, our system captures how
acoustic parameters vary with source and listener location, from
numerical wave simulations.

3 Precomputed Sound Simulation

The input to our system is the scene geometry represented as a
“triangle soup” with associated materials, supporting typical game
maps. Scene triangles are voxelized into a 3D occupancy grid for
simulation, along with their material codes. The maximum desired
simulation frequency, νmax, determines the cell size ∆. The deci-
sion is based on memory and computational constraints. We use
the ARD solver [Raghuvanshi et al. 2009] which determines voxel
size via ∆ = 3/8λmin, where λmin = c/νmax is the minimum
wavelength and c is the speed of sound. This represents 2.7 sam-
ples per wavelength. We typically fix νmax = 500Hz yielding
∆ = 25.5cm. Finite difference simulation could also be used, re-
quiring about 5 samples per wavelength.

The entire 7D pressure field is denoted P (xs,x`, t), where xs and
x` are the source and listener locations and t is time. We uni-
formly discretize the 6D space spanned by (xs,x`). Simulations
are performed independently over a 3D set of probe source loca-
tions Xs = {xs}. At each xs, a wave simulation yields a 4D slice
through this 7D field with xs held fixed, denoted Pxs(x`, t).

Source probe sampling Probe sources are placed in the scene
with user-specified uniform spacing in the horizontal and vertical
directions. Vertical spacing at roughly human height ensures that
entire building floors, doorways, etc. are not missed. Horizontal
spacing is typically 2-4m and vertical spacing 1.6m. Optionally,
watertight region-of-interest meshes can be specified which con-
strain probe samples to their interior. These are a few (2-42) boxes
in our examples. They are designed to include all places the listener
might walk or fly, and exclude unwanted regions such as below
the ground. Region-of-interest meshes are voxelized to compute a
discrete union of their interiors. Any probe sample whose corre-
sponding voxel lies outside the region of interest or within scene
geometry is rejected. This generates Xs. Note that we use listener
navigation to guide source probe sampling because source and lis-
tener locations are swapped at run-time as explained in Section 5.1.

Per-probe simulation At each probe xs ∈ Xs, we simulate in-
side a vertical cylinder around it of a specified radius and top and
bottom heights. Our rationale is that sounds do not propagate ar-
bitrarily far but attenuate due to occlusion/absorption and with dis-
tance. Typical values we use are a 45m radius (50m after padding,
described shortly) and 15-20m height. This is roughly the diameter
of a city block and the height of 4-5 building floors. We note that
propagation by 50m results in a pure distance attenuation of -34dB
relative to the loudness at 1m.

A padding layer of air is added around this cylindrical region, which
aids in run-time extrapolation as will be described later. Its thick-
ness is kept larger than the listener sample spacing used during en-
coding. The entire outer surface of the simulation region is marked
as “fully absorbing” to model emission into a free field.

Within this cylindrical domain, we invoke the wave simulator. Its
duration is tmax = ∆DS + ∆ER + ∆LR + ∆C as defined in Table
1, where ∆C is the line-of-sight delay from xs to the furthest point

Parametric Wave Field Coding for Precomputed Sound Propagation • 38:3

ACM Transactions on Graphics, Vol. 33, No. 4, Article 38, Publication Date: July 2014

-0.02

0.00

0.02

0.04

0 0.1 0.2 0.3 0.4 0.5

-0.02

0

0.02

0.04

0 0.1 0.2

-0.01

0

0.01

0 0.1 0.2

windowed: time domain deconvolved: frequency domain

Response, 𝑃(𝑡)
DS window, 𝑤𝐷𝑆(𝑡)
ER window, 𝑤𝐸𝑅(𝑡)

-60

-40

-20

0

0 100 200 300 400 500

-60

-40

-20

0

0 100 200 300 400 500

𝑃𝐷𝑆(𝑡)

𝑃𝐸𝑅(𝑡)

 𝑄𝐷𝑆(𝜔)

 𝑄𝐸𝑅(𝜔)

s

s

s

Hz

Hz

Pa

dB

Figure 4: Encoder extraction of loudness parameters. The response P (t)
here is an actual output from our simulator.

on the cylinder’s surface. This ensures that every point receives a
sufficiently long signal to encode. In our simulations, tmax ≈ 1s.
A source pulse is introduced at location xs via

s̃(x, t) = γ δ(x,xs) s(t), s(t) = exp

(
− (t− t0)2

σ2
s

)
, (1)

where δ denotes the 3D Kronecker delta function, x and xs are
drawn from the discrete set of voxel centers, σs =

√
ln 10/(π νmax),

and t0 = 5σs. The signal s̃ is a Gaussian introduced at a sin-
gle cell. The initial delay t0 ensures a very small starting amplitude
(< −210dB relative to peak). The factor γ normalizes the signal to
have unit peak amplitude at a distance of 1m. For our solver (ARD),
γ = 1/ (0.4 ∆). The choice of σs forces the Gaussian’s spectrum
to decay by−20dB at frequency νmax. This limits aliasing but still
contains extractable information near νmax.

Subsequent processing The entire simulation field is stored on
disk and provided to the encoder, which does a streaming read of the
data in blocks from the disk, encodes each block, and then writes
out the corresponding 3D block for the output parameter field. This
simulate+encode process can be done for all probe sources in a mas-
sively parallel computation. The four 3D parameter fields over all
probes are concatenated to be loaded by the run-time system.

4 Encoder

We separately encode each 4D slice of the wave field with xs held
fixed, as produced by a single wave simulation. The first step is
parameter extraction, denoted

Pxs(x`, t) 7−→ {F paramxs
(x`)} ,

where param ∈ {LDS , LER, TER, TLR}. Figure 1 shows ex-
amples of such fields. These fields are then smoothed and spa-
tially sampled, and finally quantized, compressed and stored. We
describe these steps in more detail in the following. The Fourier
transformation of a signal s(t) is denoted ŝ(ω).

4.1 Parameter Extraction

Processing is performed independently on the response signal re-
ceived at each listener cell x` and relies on concepts from room
acoustics [Gade 2007]. Recall from Section 3 that Pxs(x`, t) is
not a true impulse response but rather the response to an omnidi-
rectional Gaussian pulse, s̃(x, t), emanating from xs. We simplify
notation in this section and write Pxs(x`, t) as P (t). Table 1 lists
the processing parameters that govern parameter extraction.

symbol meaning value

Dτ threshold for first arrival −90dB

DER falloff indicating start of ER decay −3dB

Γw partitioning window width factor 3

∆DS DS duration 5ms

∆ER ER duration 200ms

∆LR duration for LR slope estimation 600ms

Table 1: Encoder processing constants.

Propagation delay In room acoustics, the direct path is nearly
unoccluded in concert halls and the direct energy can usually be
analytically estimated and removed. Our encoding must capture
more complex, scene-dependent occlusion. There is an initial de-
lay before energy starts arriving which we denote τ(xs,x`), as the
initial wavefront emanating from xs propagates outward at speed
c before reaching the listener at x`. This delay corresponds to a
geodesic path that may diffract around scene geometry and become
extremely attenuated. We adopt a simple definition viz.

τ(xs,x`) = mint{10 log10 P
2(xs,x`, t) > Dτ},

where the threshold Dτ indicates absence of any significant re-
sponse. A value of −90dB works robustly in all our examples.
Dτ must be chosen with care. Too large a value misses a weak
initial response in a highly occluded situation. Too small a value
is triggered by numerical noise, which travels faster than sound in
spectral solvers like ours. We can typically vary this value by about
10dB without substantial impact on τ .

Subsequent steps rely on τ but we do not retain this parameter af-
ter processing. Propagation delay is typically neglected in games
because players can mistake audio-visual asynchrony for system
latency in the audio pipeline.

Loudness While the term “direct sound” is standard in acous-
tics, a more appropriate term is “first arriving sound” since its path
may be indirect and its perceptual loudness may integrate other re-
flected/scattered paths that arrive within a few milliseconds of the
shortest path. It is known that our hearing system combines all
such information into a single perception [Gade 2007]. We as-
sume the interval t ∈ [τ, τ + ∆DS] contains the initial sound with
∆DS = 5ms. The extraction process is summarized in Figure 4.

Separating this interval in P (t) must be done carefully using a
smooth windowing function. Using a step function in the time do-
main results in Gibbs ripples which contaminate the spectral pro-
cessing we do later. We use the Gauss error function, defined as

w(t) =
1

πσw

tˆ

−∞

exp

(
−t′2

σ2
w

)
dt′.

We fix σw = Γw σs where σs is the Gaussian source signal’s stan-
dard deviation from Eq. 1. The proportionality constant Γw con-
trols the smoothness of the partitioning; we set Γw = 3. The
error function grows monotonically from 0 to 1 without oscilla-
tion, is controllably compact in time, and provides a straightforward
partition-of-unity w(t)+w(−t) = 1. The complementary window
is denoted w′(t) = w(−t).
To estimate direct sound loudness, we first extract the segment
PDS(t) = P (t)wDS(t), where t ∈ [τ, τ + ∆DS + 4σw]
and the time window is wDS(t) = w′ (t− τ −∆DS − 2σw),
shown in Fig. 4 (second row). Next, we transform the sig-
nal to the frequency domain to obtain P̂DS(ω) and deconvolve
it with the source signal to obtain the underlying frequency re-
sponse Q̂DS(ω) = P̂DS(ω)/ŝ(ω). Finally, we compute the en-

38:4 • N. Raghuvanshi et al.

ACM Transactions on Graphics, Vol. 33, No. 4, Article 38, Publication Date: July 2014

ergy over bands between the set of nν octave frequencies (in Hz)
νi = {62.5, 125, 250, 500, . . . , νmax}, via{
LDSi

}
= 10 log10

 1

νi+1 − νi

νi+1ˆ

νi

∥∥∥Q̂DS(2πν)
∥∥∥2 dν

 . (2)

Direct sound loudness averages these:

FLDS =
1

nν

∑
i

LDSi .

Note that we do not deconvolve the entire input signal to convert
a Gaussian response to an IR, but instead first window in time and
then deconvolve in the frequency domain where energy can be es-
timated directly via Parseval’s theorem. This avoids Gibbs ring-
ing that arises when deconvolving a band-limited response and can
overwhelm its important properties especially when the direct pulse
has high amplitude (i.e. when x` is close to xs).

Loudness parameter extraction for the ER is similar to that for
the DS phase, as shown in Fig. 4 (bottom row). The ER interval
is extracted from the response P (t) via PER(t) = P (t)wER(t)
where t ∈ [τ + ∆DS , τ + ∆DS + ∆ER + 4σw] and wER(t) =
w(t− τ −∆DS − 2σw)w′(t− τ −∆DS −∆ER− 2σw). Energy
is then extracted as described above for direct sound.

Decay times The energy profile of reverberation in typical rooms
decays differently as time progresses. Steeply decaying initial re-
flections are often followed by a more slowly decaying LR. The
early decay time (EDT, denoted TER) and late reverberation time
(LRT, denoted TLR) parameters account for separate energy decay
rates in these two phases. It is known that EDT strongly depends
on the scene geometry and on the locations (xs,x`), while LRT
depends mainly on the scene’s volume and surface area. It is also
known that for impulsive sources such as a gunshot or clap, LRT
correlates well with subjective reverberance, while for continuous
sources such as speech and music, EDT is a better measure [Gade
2007]. We extract and encode both.

Decay times are estimated using the backward (Schroeder) inte-
gral, defined as Ĩ (t) =

´∞
t
P 2(t) dt. The estimation is usually

done in a single octave band; we employ the 250-500Hz band for
which the response first needs to be band-passed. Band-passing
the entire response works poorly, introducing ringing that contam-
inates the weak signal near its end. We apply a standard but more
compute-intensive approach based on the short-time Fourier trans-
form (STFT), described in the following.

The direct sound typically causes a jump in the energy decay curve
which we remove by time-windowing it out:

P¬DS(t) = P (t)w(t− τ −∆DS − 2σw). (3)

For spectral analysis, we employ a sliding Hamming window of
width 87ms (256 samples for νmax = 500Hz) and 75% overlap.
For each translation of the window starting at time τ , we multiply
the window against P¬DS and compute the FFT of the windowed
segment. Then we take the spectrum’s sum of squared magnitudes
in the 250-500Hz band, yielding the energy E(t).

The energy decay curve applies the Schroeder integral to obtain

I(t) = 10 log10

tmaxˆ

t

E(t) dt, (4)

where tmax denotes the termination time of the simulated response
P . Combining time-windowed STFT and integration yields a
smooth curve. Figure 5 shows an example.

EDT estimates the initial decay time of I . [ISO 3382-1:2009]
(hereafter referred to as “the ISO”) recommends linear regression

-80

-70

-60

-50

-40

-30

-20

-10

0

0 0.2 0.4 0.6 0.8 1 1.2

e
n

e
rg

y
(d

B
)

time (s)

EDT

LRT

𝐼(𝑡)

Figure 5: Encoder extraction of decay time parameters. The energy decay
curve, I(t), is defined in Eq. 4, and represents an actual result from our
system on a simulated pressure response.

on the first 10dB of the decay. Since we have removed the direct
sound in Eq. 3, I(t) contains a plateau near t = 0 not present in
the true decay. We thus ignore the initial part of I until it decays by
DER = −3dB and call this time t0. Next, following the ISO, we
find the time when the signal has decayed a further 10dB relative
to DER, called t1. To estimate slope, δER, in the interval [t0, t1]
we depart somewhat from the ISO recommendation. Real decay
curves are often concave, especially outdoors. Linear regression
underestimates the decay rate in such cases and so overestimates
EDT. We compute derivatives on the smooth I using forward dif-
ferencing to obtain a time-varying slope. The RMS of these yields
the EDT slope, and puts more weight on an initial fast decay. Fi-
nally, TER = −60/δER yields the time necessary for the energy
to decay by 60dB, assuming the decay rate continues as estimated.
When the decay really is linear, our approach matches the ISO.

LRT estimates the asymptotic decay time for I . We consider its
end segment t ∈ [tmax −∆LR, tmax], use linear regression to find
the slope, and set TLR = −60/δLR.

4.2 Parameter Field Preparation

Direct sound loudness (LDS) exhibits a singularity at the probe lo-
cation, xs due to distance attenuation, so we encode it relative to
the free-field attenuation of a monopole source. That is, we up-
date via FLDS

xs (x`) ← 20 log10 ‖x` − xs‖ + FLDS
xs (x`). This

improves compression and reduces the dynamic range. (Our pa-
rameter field visualizations show the uncompensated field to make
its behavior more intuitive.) Loudness parameters are encoded in
logarithmic space (Eq. 2) clamped to the range -70dB to +20dB.
The upper bound is conservative since passive acoustic amplifica-
tion due to wall reflections rarely exceeds +6dB. The lower bound
corresponds to the audibility of a source with loudness 80dB SPL
at 1 meter (which damages hearing on continuous exposure) de-
caying to barely audible at 10dB SPL. Decay time parameters
(TER and TLR) are encoded in logarithmic space as well, via
log TER/ log 1.05. The denominator ensures 5% relative increase
between consecutive integral values. We use a range of -64 to 63,
representing 44ms to 21.6s. Each parameter is clamped against its
bounds. Parametric coding allows the parameters to be coarsely
sampled in space with little aliasing: smoothing and subsampling
of the parameter fields is performed using a box filter over all simu-
lated samples. A sample lying inside scene geometry (“bulkhead”)
is given a special don’t-care code used during compression.

4.3 Quantization

According to the ISO, the perceptual just-noticeable-difference
(JND) is 1dB for loudness and 5% relative for decay times, un-
der critical listening conditions. Each quantum in our logarithmic
mapping for both loudness and decay time parameters corresponds

Parametric Wave Field Coding for Precomputed Sound Propagation • 38:5

ACM Transactions on Graphics, Vol. 33, No. 4, Article 38, Publication Date: July 2014

to one JND. With these ranges and quantization steps, each mapped
scalar parameter fits in a byte. This quantization level is unduly
conservative for interactive applications where conditions are not
ideal and multiple sources play simultaneously. Loudness fields
are known to exhibit spatial oscillations around 1dB [Bradley and
Halliwell 1988]; late reverberation time also exhibits spatial fluc-
tuations [Davy et al. 1979]. We therefore increase the quantization
threshold (∆q in the next section) from 1 to 3 integral steps (that
is, 3dB for loudness and 15% relative increment for decay times),
to gain a factor of two improvement in compression. Even with
an increased quantization threshold, a field oscillating just around a
quantization level continually switches between discrete values, re-
ducing compression. We avoid this problem using the differencing
process described below.

4.4 Compression

The four parameter fields are treated identically, as 3D arrays with
a bulkhead code indicating presence of geometry. Each 2D Z slice
is compressed separately, where Z points up, against gravity. Thus,
only a few slices must be decompressed at run-time if the user per-
sists at roughly the same height while moving through the scene.

Our technique is a subset of PNG optimized to deal with bulk-
heads and accelerate decompression. We consider each X scan-
line in turn, accumulating a residual, r, representing the as-yet un-
quantized running difference. This residual always stays below the
quantum, denoted ∆q. We also maintain the previously processed
field value f ′ and the current field value f , and subtract to yield
the running difference ∆f = f − f ′. Initially, f ′ = r = 0. We
compute the output, q, and update the residual via

q ←
⌊

∆f + r

∆q

⌋
, r ← r + ∆f − q∆q. (5)

This simple procedure uses the scanline’s previous value as the pre-
dictor. If a bulkhead is encountered, we set f = f ′ producing the
value q = 0 over its span. A transition cost is incurred only when
the scanline exits the bulkhead. We finally perform LZW compres-
sion using Zlib over the resulting stream of q values.

5 Run-time

5.1 Parameter Decoding

As described in Section 3, the precomputed output concatenates
data over a set of probe source locations Xs. When this encoding
is loaded, probe locations are inserted into a spatial data structure;
we use a simple grid. Given a continuous source location at run-
time, this data structure accelerates the lookup of 8 probes forming
a box around it. Some of these may be missing because they lie
inside walls or outside the specified region of interest. We further
remove all probes that are “invisible” to the run-time source to avoid
interpolating across walls, using a finely-sampled voxelization of
the scene. This results in a valid set (≤ 8) of probes whose tri-linear
weights are renormalized. The final parameter values are obtained
via a weighted sum of each parameter value at the listener location.

Computing the parameter value at the listener again involves tri-
linear interpolation. Each probe comprises a 3D parameter field
organized as a set of compressed Z slices. The two slices span-
ning the listener location are decoded via LZW-decompression and
de-quantized by reversing Eq. 5 to obtain a 2D array for each pa-
rameter. We then interpolate over the 8-sample box around the lis-
tener. Invalid samples are removed in the same way as for probe
sources and the weights renormalized. This yields the (sampled)
probe’s parameters at the continuous listener location. The entire
process represents 6D hypercube interpolation. The computation

is extremely fast. The costliest part is LZW slice decompression.
We accelerate it by storing decompressed Z-slices in a 1MB global
cache with a least-recently-used policy.

Speedup from acoustic reciprocity We obtain a 10-100× per-
formance gain by exploiting acoustic reciprocity. The IR between
a point source and listener remains the same if these locations are
interchanged; the same holds for acoustic parameters. At run-time,
we simply exchange the source and listener location and apply the
procedure described above. The player becomes the source, and
the problem is converted from multiple-source single-listener to
multiple-listener single-source. The latter is faster because it re-
duces the number of fields to be decoded to at most 8 probes, rather
than 8 times the number of sources. Since LZW decompression is
the bottleneck, the performance gain is substantial.

Extrapolation outside the simulation region If the evaluation
point lies outside the simulation cylinder for the probe source, we
extrapolate a free-field extension. Recall from Section 3 that we ap-
ply an air padding around the simulation cylinder. This guarantees
that cells on its surface avoid scene geometry and approximate radi-
ation into a free field. We find the cell where the ray from the probe
to the evaluation point exits the cylinder and look up the parameter
values there. This heuristic works well for sounds propagating out-
doors from open doors or over low walls. It does not account for
distant geometry that scatters or blocks significant energy, which
must be included in the simulation cylinder during precomputation.

5.2 Parameter Rendering

Our acoustic rendering method uses a small, fixed number of global
canonical filters (CFs) whose output achieves the effect of ap-
plying individual IRs. For each source-listener pair, the acous-
tic filter we apply at run-time must reproduce the properties rep-
resented by its four parameter values. We exploit the freedom
available in choosing its exact form. Consider the ith source with
monaural signal si(t) (distinct from the preprocessed source sig-
nal s(t)), for which we obtain {LDS , LER, TER, TLR} for the
source and listener location, as above. We apply a stereo (binau-
ral) filter hi(t) which respects the four parameters, producing as
stereo output oi(t) = si ? hi, where ? denotes stereo convolu-
tion (si is input to both filter channels). hi can be broken into
three temporally contiguous parts as hi = hDSi + hERi + hLRi .
Rendering can thus be expressed as a sum of three convolutions:
oi(t) = oDSi + oERi + oLRi = hDSi ? si + hERi ? si + hLRi ? si.

Direct sound The direct sound filter, hDSi needs to scale si by
the encoded loudness LDS . Since distance attenuation is removed
during encoding (Section 4.2), it must also be applied. The net
scale factor is 10LDS/20/d, where d is source-to-listener distance.
Spatialization is performed based on the source location and the lis-
tener’s location and orientation. Game audio engines already pro-
vide these as low-latency operations, producing stereo output for
the direct sound, oDS (t).

The other two filters, hERi and hLRi , must together respect three
parameters, {LER, TER, TLR}, representing a loudness and two
slopes (dB/s), and satisfy the constraint that the energy decay of
hERi + hLRi be continuous where its components meet in time.

Early reflections We express the ER filter in terms of nER = 3
canonical filters

{
HER
j

}
. As described in Section 6, the set of CFs

are designed to have unit energy that decays exponentially with the
specified EDT T jER. Note that we index source sounds by i and
canonical filters by j. Given TER, we interpolate over the brack-

38:6 • N. Raghuvanshi et al.

ACM Transactions on Graphics, Vol. 33, No. 4, Article 38, Publication Date: July 2014

-0.5

0.0

0.5

0 0.05 0.1 0.15 0.2

p
re

ss
u

re
 (

P
a)

time (s)

-10

-8

-6

-4

-2

0

2

0 6000 12000 18000 24000

am
p

lit
u

d
e

 (
d

B
)

frequency (Hz)

-20

-15

-10

-5

0

5

0 0.05 0.1

e
n

e
rg

y
(d

B
)

time (s)

EDT=3.0

EDT=1.0

EDT=0.5

(b) canonical IR (𝑇𝐸𝑅 = 1.0), time domain (c) canonical IR (𝑇𝐸𝑅 = 1.0), frequency domain(a) energy decay profiles

𝑇𝐸𝑅 = 3.0

𝑇𝐸𝑅 = 1.0

𝑇𝐸𝑅 = 0.5

Figure 6: Canonical filters for the ER phase. The three filters satisfy the energy decay curves shown in (a). The left stereo channel for one of the three
(TER = 1.0s) is shown on the right, in both the time (b) and frequency (c) domains. Note the decay of its specular part and buildup of its diffuse part in the
time domain, and overall flat (colorless) frequency response.

eting CFs for which T jER ≤ TER ≤ T j+1
ER . We use EDT values

of 0.5, 1.0 and 3.0s; any TER outside this range is clamped. We
find the interpolation weights, αERj and αERj+1, by assuming that
all decay curves are perfectly exponential and requiring that the
linearly interpolated result match the ideal exponential decay for
TER at a “matching time”, t∗. We choose the middle of the ER:
t∗ = ∆ER/2 = 100ms. This choice ensures that the interpolated
filter’s early decay time has a maximum relative error less than 5%,
comparable to a JND as per the ISO. Finally, the weights are multi-
plied by a factor to enforce loudness, yielding

αERj = 10−LER/20 10−3 t∗/T j+1
ER − 10−3 t∗/TER

10−3 t∗/T j+1
ER − 10−3 t∗/T j

ER

, (6a)

αERj+1 = 10−LER/20 − αERj . (6b)

We approximate hERi as a linear combination of canonical filters,

hERi ≈
nER∑
j=1

αERj

(
LiER, T

i
ER

)
HER
j (t). (7)

Substituting this into the expression for rendered output oER(t) =∑
i

hERi ? si, and interchanging summations, we get

oER(t) ≈
nER∑
j=1

HER
j ?

∑
i

αERj

(
LiER, T

i
ER

)
si. (8)

This is the main idea of our run-time: express the filtering for all
sources as a sum of outputs of fixed filters applied to linear combi-
nations of the source signals, with weights determined by (dynam-
ically varying) per-source acoustic parameters.

Late reverberation Processing to compute the LR output is sim-
ilar. We use nLR = 3 CFs with decay times of 0.75, 1.5 and 3.0s,
and define the matching time as t∗ = 0.75TLR. These choices
yield relative error less than 5.7%, again comparable to the JND.
Unlike the case of the ER, loudness for the LR, which we denote
LLR, is not stored explicitly but instead derived by enforcing en-
ergy continuity at the end of the ER. We estimate energy in the
25ms tail of the interpolated filter hERi calculated above, given by
the linear combination hER =

∑
j α

ER
j HER

j . Denote as E∗j the
(precomputed) total energy in the last 25ms ofHER

j , averaged over

both stereo channels. We estimate E∗ =
(∑

j α
ER
j

√
E∗j

)2
, from

which LLR = 10 log10E
∗. Now, analogous to Eq. 6, we use LLR

and TLR to find the LR interpolation coefficients, αLRj and αLRj+1.

Optimized convolution We use partitioned convolution to apply
CFs to the weighted sum of source signals as required by Eq. 8.
Since the filters are fixed, we pre-transform them to the frequency
domain to avoid costly run-time FFTs. Increasing the partition size

n∗ reduces the per-sample computational cost but increases latency
because a partition must be full for frequency-domain convolution
to be performed. Fortunately, our filters include inherent delay with
respect to the direct sound: the first ∆DS seconds of HER

j and
∆DS + ∆ER seconds of HLR

j are zero. Choosing a partition size
equal to this delay and time-shifting the filter to remove its initial
zeroes increases performance while preserving the desired output.
A power-of-two partition size is desirable for FFTs. We choose
n∗ = 512 samples for HER

j and n∗ = 8192 samples for HLR
j .

At 44100Hz, this corresponds to an initial delay of 11ms in the ER
after the direct sound, and 185ms in the LR.

Advantages Most real-time research systems [Raghuvanshi et al.
2010; Mehra et al. 2013; Taylor et al. 2009] convolve a separate,
costly filter with each source signal. Using a few fixed and pre-
transformed filters makes our run-time substantially faster. Per-
source cost with our scheme is reduced from convolution to six
scale-and-sum operations for each CF.

Our method avoids interpolation artifacts with a fast-moving source
or listener. When the IR is updated, prior techniques discard as-yet
unprocessed output for older filters, which can clip the reverbera-
tion. Keeping all past filters active until they exhaust their output is
extremely costly. Our approach avoids this problem as each sound
source is processed with interpolation weights updated per video
frame, effectively rendering it with an up-to-date, untruncated IR.

Our technique integrates easily with current game audio engines,
which naturally support feeding a linear combination of signals to a
few fixed filters. In game audio terminology, the linear combination
is performed by buses that sum their inputs; our CFs are “effects”
on the buses and per-source scale factors are the bus “send values”.

Wideband extrapolation Though we simulate and extract pa-
rameters from frequencies only up to νmax = 500Hz due to prac-
tical limitations on precompute time, we apply wideband canonical
filters respecting the loudness and decay time parameters. Propa-
gation characteristics are thus extended into unmodeled higher fre-
quencies, producing approximate but plausible results.

Spatialization Our spatialization of direct sound is inaccurate
whenever the line of sight from source to listener is occluded. Our
stereo canonical filters use a fixed random set of reflection direc-
tions as described below. This scheme is plausible and has been
used in past work [Raghuvanshi et al. 2010], but it omits important
directional effects in many scenes especially outdoors. Directional
information can be extracted from wave simulations using vector
intensity, then explicitly encoded and rendered using the SIRR tech-
nique [Merimaa and Pulkki 2005]. This straightforward extension
would drastically increase our system’s memory usage; the chal-
lenge is compact directional encoding.

Parametric Wave Field Coding for Precomputed Sound Propagation • 38:7

ACM Transactions on Graphics, Vol. 33, No. 4, Article 38, Publication Date: July 2014

Scene
polys dimensions (m)

boxes # probes
sim. cyl. ∆xs ∆x` spatial compression ratios raw encoded bake

(million) L W H r, h (m) v, h (m) (m) LDS LER TER TLR net (TB) (MB) (h)
Citadel 0.4 224 187 53 27 1622 45, 20 3, 1.6 2 4.2 4.8 4.0 7.5 4.8 56 44.1 12
Deck 1.9 135 143 37 2 1263 45, 20 3, 1.6 2 6.9 8.2 6.3 12.6 7.9 44 20.8 13
Sanctuary 2.4 181 151 34 5 1613 45, 20 3, 1.6 2 4.6 5.1 4.2 7.8 5.1 56 41.1 15
Necropolis 2.1 358 169 31 42 2405 45, 15 4, 1.6 2 3.7 4.2 4.1 6.1 4.4 66 53.7 20
Foliage 2.6 144 149 15 3 662 35, 11 2, 1.8 1 6.0 8.0 8.3 11.1 8.0 9 33.0 4

Table 2: Precomputation statistics. For each demo scene, we report the number of polygons, bounding box dimensions for union of all simulation cylinders
across probes, the number of region-of-interest boxes, the number of source probes, size of the simulation cylinder (radius, height), source sample spacing
(vertical, horizontal), listener sample spacing, spatial compression ratios, estimated raw simulation data size, final encoded size, and total “bake” time in hours.

6 Canonical Filter Generation

Each set of stereo CFs,
{
HER
j

}
or
{
HLR
j

}
, must satisfy three

properties: it must allow linear interpolation, each of its members j
must have appropriately normalized energy, and each must match a
specific energy decay profile.

Early reflection CFs, HER
j , are generated as a sum of specular

(Sj) and diffuse (Dj) components such that Sj + Dj has unit en-
ergy and matches the targeted exponential energy decay curve, de-
notedEj(t). The diffuse signal is initialized toDj = t2G (t) , t ∈
[0,∆ER], where G is Gaussian white noise with zero mean and
unit variance. Next, Dj is scaled to constitute 10% of the target en-
ergy of 1. Now we divideDj into non-overlapping time bins, 10ms
each. Within each bin, if Dj’s energy is larger than Ej(t), we scale
its signal to match that smaller energy. The resulting signal’s energy
quadratically increases in time until it meets Ej(t), after which it
exponentially decays to match Ej(t).

The specular signal Sj then accounts for the energy difference be-
tweenDj andEj(t). It is sparse, generated using a set of 250 peaks
with random amplitudes and prime number sample delays. This
standard technique [Valimaki et al. 2012] minimizes coloration ar-
tifacts from periodic delays (Figure 6c). Within each 10ms time bin
as above, the signal Sj is scaled so that its energy equals the differ-
ence of the bin’s target energy determined byEj (t), and the diffuse
energy computed fromDj . So specular peaks in the summed result
Sj + Dj decrease in amplitude over time and smoothly disappear
into an entirely diffuse signal, as shown in Figure 6. Each ER filter
thus makes a smooth transition to the subsequent LR.

To generate stereo filters, each peak in Sj is assigned a random
incidence direction, spatialized using the cardioid directivity func-
tion, and accumulated into the corresponding (left/right) channel of
the output. Diffuse stereo is generated by computing two channels
of G (t) with different random number seeds. The left and right
channels of the diffuse and specular components are then summed.

To support linear interpolation, all CFs
{
HER
j

}
share the same

peak delays in the specular filter Sj and the same directions for
spatialization. Diffuse noise G (t) is computed independently for
each stereo channel but shared across j.

Late reverberation CFs, HLR
j , are generated as Gaussian white

noise with an exponential envelope determined by their respective
decay rate [Valimaki et al. 2012]. As with the ER, the underlying
noise signals are decorrelated between channels but shared across
j. We modify the LR filters to model frequency-dependent atmo-
spheric attenuation. A filter sample at time t corresponds to the
propagation distance d = c t. Using ISO 9613-1, we can com-
pute the per-frequency attenuation at distance d. We use a sliding
window to compute STFTs, filter each window via atmospheric ab-
sorption at d, and accumulate results over all windows. The absorp-
tion model assumes a temperature of 20◦ C, atmospheric pressure
of 101.325Pa and 50% relative humidity. Finally, each channel is
normalized to have unit energy in its first 25ms.

0

2000

4000

6000

8000

10000

12000

0 10000 20000 30000 40000 50000 60000 70000

d
at

a
si

ze
 (

K
B

)

surface area (m2)

uncompressed

compressed Citadel

compressed Citadel (linefit)

compressed Deck

compressed Deck (linefit)

Figure 7: Observed memory scaling with scene size. Our encoding scheme
scales linearly in the surface area A of the cylindrical simulation domain,
which is proportional to the included surface area of the scene. Uncom-
pressed storage scales with volume, implying super-linear growth via A1.5.
Results for two scene examples are plotted. For the Citadel scene, the source
was placed outside the cathedral as shown in Figure 9, second row. For
Deck, it was located as shown in Figure 1.

7 Results

Figures 1 and 9 show parameter fields for three of our scenes. See
the supplemental video for real-time captures of our system.

Implementation We precompute on a 140 machine cluster. Com-
putation time is comparable to high-quality light-baking in games
(see Table 2); the same compute clusters can be re-used for acous-
tics. Our run-time is integrated with Unreal Engine 3TM. Parameters
are decoded (Section 5.1) in the main game thread and converted to
send values. Parameters are rendered (Section 5.2) via a custom
XAudio2 effect (APO) that implements partitioned convolution us-
ing vectorized (SIMD) FFT and complex-vector multiplication. At
game-load time, the six canonical filters are read from disk to ini-
tialize corresponding effect instances. Effect ownership is trans-
ferred to the XAudio2 engine, which runs in a separate thread and
executes our filters as part of its audio processing loop.

Memory use Our technique is practical on large, complex scenes
with millions of polygons (Table 2). The supplemental video shows
acoustic effects in these scenes. Storage for acoustic data is less
than 54MB. This is an extremely large compression factor relative
to the raw wave field. For Sanctuary, 56TB of raw data encoded
to 41MB, a compression factor of over a million. Our encoding
automatically allocates less memory to spatially smoother fields;
for example, TLR compresses better than LDS in all cases.

38:8 • N. Raghuvanshi et al.

ACM Transactions on Graphics, Vol. 33, No. 4, Article 38, Publication Date: July 2014

Ref 4000HzCathedral entrance Input 500Hz Run−time

Inside cathedral

en
er

gy
 (d

B)
 →

Outside, between houses

0 0.2 0.4 0.6 0.8
−120
−100

−80
−60 Outside Citadel

time (seconds) →

Figure 8: Comparison of simulated vs. run-time IRs. The four rows represent IRs for different listener positions in the Citadel scene, with fixed source located
as shown in Figure 9, second row. Left to right, we show the IR from a 4000Hz reference simulation, the 500Hz simulated IR corresponding to the actual input
to our system, and the effective run-time IR applied by our system via interpolation of canonical filters. The latter has been low-passed at 4000Hz to aid visual
comparison to the reference. The green curve represents the IR’s energy decay, using equal weighting over three octave bands (62.5-500Hz). The red curve
shows our extracted acoustic parameters, visualized as in Figure 3. We obtain good quantitative agreement between input and rendered acoustic parameters.
See the supplementary video for auralization comparisons with the high-frequency reference.

Comparing our memory use to [Raghuvanshi et al. 2010], both
techniques sample in the space of source×listener locations with
similar spatial resolution. We therefore compare cost per sampled
IR. We represent each sample with 4 one-byte parameters. Spatial
compression is typically 4-8×, yielding [0.5-1.0] bytes. [Raghu-
vanshi et al. 2010, page 6] stores 20-50 peaks as pairs of single-
precision delay and amplitude, and a residual frequency trend for
10 octave bands. The per-sample cost is [20-50] · 2 · 4 + 10 · 4 =
[200-440] bytes. The reduction is substantial: 200-880×.

Memory scaling As scenes get larger, we have experimentally
verified that the resulting encoded size for each probe scales as the
scene’s surface area rather than its volume. This indicates that our
method has removed one spatial dimension from the problem in ad-
dition to time, going from 7D (volume × volume × time) to 5D
(volume× area). Our experiment scaled up the cylindrical simu-
lation region along with the contained scene geometry and recorded
the resulting encoded size. (For a linear scale factor l, the number
of simulation cells scales as l3: wave simulations over bigger vol-
umes are costlier to compute.) Figure 7 shows the result for two
scenes, Citadel and Deck. In both cases, the encoded size scales
linearly with the surface area of the bounding cylinder. The unen-
coded size scales with the scene volume, and so has super-linear
growth in surface area. The Kirchoff-Helmholtz integral theorem
for monochromatic wave fields suggests that scaling by surface area
may be optimal in general scenes, since it is proportional to the in-
formation content of the boundary conditions.

Performance Parameter decoding (including decompression and
visibility-aware 6D interpolation) is very fast. We benchmarked
the parameter decode step based on 100,000 random pairs-of-points
and observed an average compute time of about 100µs on an Intel
Xeon E5540@2.53GHz, for all scenes. This is a pessimistic esti-
mate which obviates our cache. The calculation can be performed
on the same main core in which the game runs, supporting ~100
active sounds due to numerous agents making footsteps, gunshots
and other sounds, along with ambient sounds. The acoustic param-
eters are updated every frame, contributing to the smoothness of the
sound even with fast moving sources, as illustrated in the Necropo-
lis segment in the supplementary video.

Our decoding performance is similar to that in [Raghuvanshi et al.
2010]; both systems perform spatial lookup and interpolation. Our
convolutional rendering, which comprises most of the run-time for
both techniques, is faster as discussed in Section 5.2. On-the-fly
geometric acoustics systems supporting dynamic geometry, such as
[Taylor et al. 2009](Table 1) and [Schröder 2011](Table 6.1, Fig.
11.7), require a second or more of simulation time using multi-
ple cores to compute the IR of a single moving source, on simple
models (400 and 50,000 polygons respectively) with restricted path
order (~3). We robustly handle practical game scenes containing
millions of polygons. Our method, while restricted to static scenes,
is 10,000× faster, within the audio budget for compute-intensive
desktop graphical applications.

Comparison to an uncompressed reference We compare our
system’s run-time results to the unencoded (νmax = 500Hz) sim-
ulation we precomputed, as well as to a higher-frequency (νmax =
4000Hz) reference simulation. Atmospheric attenuation, neglected
by our simulator, is applied using the technique in Section 6. The
results of the 4000Hz simulation were scaled to match the 500Hz
simulation’s octave-averaged loudness in the 0-500Hz range. In
Figure 8, we compare parameters re-extracted from the rendered
run-time IR with that from the raw 500Hz simulation, as well as an
octave-averaged energy decay curve. Since simulation does not di-
rectly provide directional information, we compare against monau-
ral canonical filters. We use the unspatialized sum Sj + Dj (Sec-
tion 6) for the ER and choose a single stereo channel for the LR.

Across our entire system including encoding, spatial interpolation
of parameters, and application of interpolated canonical filters, we
observe mean errors of 3.3dB and 22.5% for the loudness and de-
cay rate parameters respectively, over all points shown in the sup-
plementary video. These errors are close to our chosen quantization
levels, also compared visually as the red traces in Figure 8. Refer to
the supplementary video to hear the comparison. While our system
reproduces spatial variation in occlusion and reverberation effects
well, it sounds overly “bright” because we neglect low-pass filtering
effects which accompany occlusion. Furthermore, the reference re-
verberation exhibits significantly higher decay rates at frequencies
above 500Hz, especially when the listener is inside the cathedral.

Parametric Wave Field Coding for Precomputed Sound Propagation • 38:9

ACM Transactions on Graphics, Vol. 33, No. 4, Article 38, Publication Date: July 2014

Citadel

Sanctuary

1a 1b 1c 1d

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c 4d
LDS LER TER TLR

Figure 9: Parameter fields for the Citadel and Sanctuary scenes. A 2D slice of the parameter field is visualized at two fixed probe source points (blue dot) for
each scene, indoors (odd rows) and outdoors (even rows). Notice in 1a the shadowing in direct sound (LDS) caused by pillars in the cathedral and the steep
falloff by the time sound gets to the exit – each diffraction around an edge substantially reduces its energy. The corresponding LER field in 1b subsumes a
large number of reflected paths and so is smoother inside the cathedral. Notice multiple shadowing in 2a and 4a. Unlike light rays which extinguish after a
single hit, a sound wavefront bends around objects and can be shadowed repeatedly. In 4a notice the oval peak around the source: this represents a loudness
boost due to ground reflections from an oval platform. Also note the clear far-field shadowing patterns. In all cases, TER exhibits more spatial variation than
TLR. Observe in the top row that TER and TLR vary significantly outside the cathedral due to slope estimation on weak signals. The low loudness renders
this variance inaudible, as shown in the supplementary video.

8 Conclusions and Future Work

We presented a new parametric approach for precomputed sound
propagation. By encoding chaotic time-evolving pressure as per-
ceptual parameter fields, it greatly reduces computation and mem-
ory demands and becomes practical for many applications includ-
ing 3D games. Our approach has two advantages. First, it re-
moves the wave field’s time dependence and exposes its perceptual
smoothness, exploited by our compressor. Second, it allows render-
ing of acoustic parameters by feeding linear combinations of source
signals to a small set of canonical filters. This avoids costly per-
source convolution and IR interpolation artifacts, yielding a fast,
artifact-free run-time supporting hundreds of sounds.

Much remains for future work. Our current parameter set is based
solely on energy decay and could be augmented. Encoding direc-
tional information (spatialization) would do much to increase our
system’s realism. The same is true for the IR’s “diffuseness” which
we currently fix in our system at 10%, and for the spectral effects
we neglect such as low-pass filtering from occlusion and frequency-
dependent reverberation. We note that acoustic parameters can be
separately coded over multiple octave bands for increased quality at
the cost of more memory. Our parameter set is plainly insufficient
for outdoor reverberation and echoes; compared to the extensive
literature on indoor room acoustics, little work has investigated a
perceptually sufficient parameterization for outdoor IRs. We expect
our system may be extended to handle limited dynamic geometry
such as open/closed doors. Large scene changes such as destroying
walls or buildings are precluded by our precomputed approach. Fi-
nally, parametric wave field coding might have application to com-
pressing acoustic radiation fields [James et al. 2006].

Acknowledgments

Thanks to Jimmy Smith, John Tennant, John Morgan, and Mike
Rayner for their indispensable feedback and guidance. We are
grateful to our steadfast collaborator, Kristofor Mellroth, for his
advice, help, and expert ears.

References

AJDLER, T., SBAIZ, L., AND VETTERLI, M. 2006. The Ple-
nacoustic Function and Its Sampling. Signal Processing, IEEE
Transactions on 54, 10 (Oct.), 3790–3804.

ALLEN, J. B., AND BERKLEY, D. A. 1979. Image method for
efficiently simulating small-room acoustics. J. Acoust. Soc. Am
65, 4, 943–950.

BERANEK, L. L. 2003. Subjective Rank-Orderings and Acousti-
cal Measurements for Fifty-Eight Concert Halls. Acta Acustica
united with Acustica (May), 494–508.

BRADLEY, J. S., AND HALLIWELL, R. E. 1988. Accuracy and
reproducibility of auditorium acoustics measures. In British In-
stitute of Acoustics, vol. 10, 399–406.

CALAMIA, P. 2009. Advances in Edge-Diffraction Modeling for
Virtual-Acoustic Simulations. PhD thesis, Princeton University.

CHANDAK, A., LAUTERBACH, C., TAYLOR, M., REN, Z., AND
MANOCHA, D. 2008. AD-Frustum: Adaptive Frustum Tracing
for Interactive Sound Propagation. IEEE Transactions on Visu-
alization and Computer Graphics 14, 6, 1707–1722.

DAVY, J. L., DUNN, I. P., AND DUBOUT, P. 1979. The Variance
of Decay Rates in Reverberation Rooms. Acta Acustica united
with Acustica (Aug.), 12–25.

FUNKHOUSER, T., TSINGOS, N., CARLBOM, I., ELKO, G.,

38:10 • N. Raghuvanshi et al.

ACM Transactions on Graphics, Vol. 33, No. 4, Article 38, Publication Date: July 2014

SONDHI, M., WEST, J. E., PINGALI, G., MIN, P., AND NGAN,
A. 2004. A beam tracing method for interactive architectural
acoustics. The Journal of the Acoustical Society of America 115,
2, 739–756.

GADE, A. 2007. Acoustics in Halls for Speech and Music.
In Springer Handbook of Acoustics, T. Rossing, Ed., 2007 ed.
Springer, May, ch. 9.

IASIG, 3D WORKING GROUP. 1999. Interactive 3D Audio Ren-
dering Guidlelines, Level 2.0, Sept.

ISO 3382-1:2009. Acoustics - Measurement of room acoustic
parameters - Part 1: Performance spaces. International Organi-
zation for Standardization.

JAMES, D. L., BARBIC, J., AND PAI, D. K. 2006. Precomputed
acoustic transfer: output-sensitive, accurate sound generation for
geometrically complex vibration sources. ACM Transactions on
Graphics 25, 3 (July), 987–995.

KOLARIK, A. J., CIRSTEA, S., AND PARDHAN, S. 2011. Perceiv-
ing auditory distance using level and direct-to-reverberant ratio
cues. The Journal of the Acoustical Society of America 130, 4
(Oct.), 2545.

KOWALCZYK, K., AND VAN WALSTIJN, M. 2010. Room
acoustics simulation using 3-D compact explicit FDTD schemes.
IEEE Transactions on Audio, Speech and Language Processing.

KROKSTAD, A. 2008. The Hundred Years Cycle in Room Acous-
tic Research and Design. In Reflections on sound, P. Svensson,
Ed. Norwegian University of Science and Technology (NTNU),
Trondheim, Norway, June, ch. 5.

KUTTRUFF, H. 2000. Room Acoustics, 4 ed. Taylor & Francis.

LAINE, S., SILTANEN, S., LOKKI, T., AND SAVIOJA, L. 2009.
Accelerated beam tracing algorithm. Applied Acoustics 70, 1
(Jan.), 172–181.

MEHRA, R., RAGHUVANSHI, N., SAVIOJA, L., LIN, M. C., AND
MANOCHA, D. 2012. An efficient GPU-based time domain
solver for the acoustic wave equation. Applied Acoustics 73, 2
(Feb.), 83–94.

MEHRA, R., RAGHUVANSHI, N., ANTANI, L., CHANDAK, A.,
CURTIS, S., AND MANOCHA, D. 2013. Wave-based Sound
Propagation in Large Open Scenes Using an Equivalent Source
Formulation. ACM Trans. Graph. 32, 2 (Apr.).

MERIMAA, J., AND PULKKI, V. 2005. Spatial Impulse Response
Rendering I: Analysis and Synthesis. J. Audio Eng. Soc 53, 12,
1115–1127.

MURPHY, D., KELLONIEMI, A., MULLEN, J., AND SHELLEY, S.
2007. Acoustic Modeling Using the Digital Waveguide Mesh.
IEEE Signal Processing Magazine 24, 2 (Mar.), 55–66.

RAGHUVANSHI, N., NARAIN, R., AND LIN, M. C. 2009. Effi-
cient and Accurate Sound Propagation Using Adaptive Rectan-
gular Decomposition. IEEE Transactions on Visualization and
Computer Graphics 15, 5, 789–801.

RAGHUVANSHI, N., SNYDER, J., MEHRA, R., LIN, M. C., AND
GOVINDARAJU, N. K. 2010. Precomputed Wave Simulation
for Real-Time Sound Propagation of Dynamic Sources in Com-
plex Scenes. ACM Transactions on Graphics (proceedings of
SIGGRAPH 2010) 29, 3 (July).

RINDEL, J. H., AND CHRISTENSEN, C. L. 2013. The use of
colors, animations and auralizations in room acoustics. In Inter-
noise 2013.

SABINE, H. 1953. Room acoustics. Audio, Transactions of the IRE
Professional Group on 1, 4, 4–12.

SAKAMOTO, S., NAGATOMO, H., USHIYAMA, A., AND
TACHIBANA, H. 2008. Calculation of impulse responses and
acoustic parameters in a hall by the finite-difference time-domain
method. Acoustical Science and Technology 29, 4.

SAVIOJA, L., RINNE, T., AND TAKALA, T. 1994. Simulation of
room acoustics with a 3-D finite difference mesh. In Proceedings
of the International Computer Music Conference, 463–466.

SAVIOJA, L. 2010. Real-Time 3D Finite-Difference Time-Domain
Simulation of Mid-Frequency Room Acoustics. In 13th Interna-
tional Conference on Digital Audio Effects (DAFx-10).

SCHRÖDER, D. 2011. Physically Based Real-Time Auralization of
Interactive Virtual Environments. Logos Verlag, Dec.

SILTANEN, S., LOKKI, T., KIMINKI, S., AND SAVIOJA, L. 2007.
The room acoustic rendering equation. The Journal of the Acous-
tical Society of America 122, 3 (Sept.), 1624–1635.

SILTANEN, S., LOKKI, T., AND SAVIOJA, L. 2009. Frequency
Domain Acoustic Radiance Transfer for Real-Time Auralization.
Acta Acustica united with Acustica 95, 1, 106–117.

SILTANEN, S., LOKKI, T., AND SAVIOJA, L. 2010. Rays or
Waves? Understanding the Strengths and Weaknesses of Com-
putational Room Acoustics Modeling Techniques. In Proc. Int.
Symposium on Room Acoustics.

SILTANEN, S., LOKKI, T., AND SAVIOJA, L. 2010. Room acous-
tics modeling with acoustic radiance transfer. Proc. ISRA Mel-
bourne.

SILTANEN, S. 2005. Geometry Reduction in Room Acoustics Mod-
eling. Master’s thesis, Helsinki University of Technology.

SOUTHERN, A., SILTANEN, S., MURPHY, D. T., AND SAVIOJA,
L. 2013. Room Impulse Response Synthesis and Validation
Using a Hybrid Acoustic Model. Audio, Speech, and Language
Processing, IEEE Transactions on 21, 9, 1940–1952.

STEPHENSON, U. M., AND SVENSSON, U. P. 2007. An improved
energetic approach to diffraction based on the uncertainty prin-
ciple. In 19th Int. Cong. on Acoustics (ICA).

STETTNER, A., AND GREENBERG, D. P. 1989. Computer Graph-
ics Visualization for Acoustic Simulation. SIGGRAPH Comput.
Graph. 23, 3 (July), 195–206.

SVENSSON, U. P., FRED, R. I., AND VANDERKOOY, J. 1999.
An analytic secondary source model of edge diffraction impulse
responses. The Journal of the Acoustical Society of America 106,
5 (Nov.), 2331–2344.

TAKALA, T., AND HAHN, J. 1992. Sound rendering. SIGGRAPH
Comput. Graph. 26, 2 (July), 211–220.

TAYLOR, M. T., CHANDAK, A., ANTANI, L., AND MANOCHA,
D. 2009. RESound: interactive sound rendering for dynamic vir-
tual environments. In Proceedings of ACM conference on Multi-
media, ACM, New York, NY, USA, 271–280.

TSINGOS, N. 2009. Pre-computing geometry-based reverberation
effects for games. In 35th AES Conference on Audio for Games.

VALIMAKI, V., PARKER, J. D., SAVIOJA, L., SMITH, J. O., AND
ABEL, J. S. 2012. Fifty Years of Artificial Reverberation. Audio,
Speech, and Language Processing, IEEE Transactions on 20, 5
(July), 1421–1448.

YEH, H., MEHRA, R., REN, Z., ANTANI, L., MANOCHA, D.,
AND LIN, M. 2013. Wave-ray Coupling for Interactive Sound
Propagation in Large Complex Scenes. ACM Trans. Graph. 32,
6 (Nov.).

Parametric Wave Field Coding for Precomputed Sound Propagation • 38:11

ACM Transactions on Graphics, Vol. 33, No. 4, Article 38, Publication Date: July 2014

