1 SymSGD Technical Report

1.1 Variance and Covariance of %M CA-AT . Aw

In here, for the sake of simplicity, we use w instead of Aw and instead of k for
the size of the projected space, we use r since k is used for summation indices
in here, heavily. We want to estimate v = M - w with %M -A-AT . w, where A
is a f X r matrix, where a;; is a random variable with the following properties.

E(a;;) =p=3 which makes the math simpler

Let mI be some row of M. Its estimation in M -w is vy = L -m? - A- AT .w.

It is easy to see that E(vs) = m! - w.
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We will use the notation ij = kl to mean i = kA j =1, and ij # kl to mean
its negation. Let mg, m; be two rows of M. We want to find the covariance of

the resulting vy and v;.
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The covariance Cov(a,b) = E(a - b) — E(a)E(b). Using this we have

Cov(vs, vt)
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Let C(v) be the covariance matrix of v. That is, C(v);; = Cov(v;,v;). So,
we have

Clv) = (M w) - (M- )"+~ (M - M) ol

Note that we can use this computation for matrix N = M — I as well since
we did not assume anything about the matrix M from the beginning. Therefore,
forv =w++iN-A-AT - w, C(v') = L(N-w) - (N-w)' + (N -NT) |[w]|3 since
w is a constant in v' and C(a + ) = C(x) for any constant vector a and any
probabilistic vector x. Next we try to bound C(v).



2 Bounding C(v)

We can bound C(v) by computing its trace since tr(C(v)) = >, var(v;), the
summation of the variance of elements of v.
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where A\, M - MT is the i*" largest eigenvalue of M - M7T which is the square
of it" largest singular value of M, o;(M)?. Since |\Mw||§ < ||u)||§ ||M||§ =
||w||§ Omaz(M)?, we can bound tr(C(v)) as follows:

(€)= 1 (Omar(M) + [l (3 0u(an)?)

It is trivial to see that:
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Combining the two inequalities, we have:

Sl (32 (M P?) < () man (M) + [l (- as(M1)?)

The same bounds can be derived when N = M — I is used.

3 Rank of Matrix M

Lemma 3.1. For the matriz My, = [[;_, (I — aXl X;), rank(M,p, — I) <
b—a.

Proof. The proof is by induction. The base case is when a = b and M,_,, = I.
It is clear that I — I = 0 which is of rank zero. For the inductive step, assume
that rank(M,,p—1 —I) <b—a — 1. We have

My —T=(I—aX]  Xp)Myspq —1I
= (Myssp—1 — 1) — aX] - (Xp - My—yp—1)

Term aX - (Xp - Ma—p—1) is a rank-1 matrix and term (M,p—1 — I) is
of rank b — a — 1 by induction hypothesis. Since for any two matrices A and
B, rank(A + B) < rank(A) + rank(B), rank(M,, — I) < rank(M,—p—1) +
rank(—a X! - (Xp - Myp-1)) <b—a—1+1=b—a. O
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