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Abstract— Many cloud-service applications have a middle tier 

organized as micro-services or actors. Such applications have 

small objects that are spread over many servers and communicate 

via message passing. Transactions in such an application are 

necessarily distributed. However, distributed transactions usually 

perform poorly in this environment, primarily because locks must 

be held until after the forced-writes of two-phase commit, which 

are slow in cloud storage systems. We present a new transaction 

protocol that avoids this blocking by releasing all of a transaction’s 

locks during phase one of two-phase commit, and by tracking 

commit dependencies to implement cascading abort. While a 

transaction T runs phase one, later conflicting transactions batch 

their updates. After T is prepared, the delayed batch can prepare, 

enabling a distributed form of group commit. We describe how to 

implement our protocol in an object-oriented runtime such as 

JVM or .NET. The performance measurements of our 

implementation in the Orleans actor framework show throughput 

up to 20x that of two-phase locking and two-phase commit. 
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I. INTRODUCTION 

Many cloud  services have a 3-tier architecture with a 
stateless front-end, a stateful middle-tier that implements 
business logic, and a storage layer. The stateful middle-tier is 
needed due to its heavy CPU and memory requirements, which 
make it uneconomical to embed as stored procedures in the 
storage layer. Today, the middle-tier is frequently organized as 
a set of micro-services. This is driven in part by the popularity 
of container technology like Docker [26], which is offered by 
most major cloud providers [5][29][32][39]. An application 
built as micro-services is composed of small, independent 
services that are versioned, deployed, upgraded and scaled 
separately. Services communicate via well-defined APIs 
(usually REST) and do not have access to shared data. 

A similar model is actors, which are also popular in building 
middle-tier cloud applications, especially interactive ones such 
as games, social networks, Internet of Things, and telemetry 
[6][10]. Such applications are made of many actors, which are 
objects that do not share memory and interact via asynchronous 
messages. Actors are an extreme case of very small micro-
services. In what follows, we use the more familiar, generic term 
“object” unless talking about a specific actor system. 

It is often necessary to perform an operation that spans 
multiple objects with strong consistency and fault tolerance 
guarantees. Since objects are isolated from each other, multi-
actor operations require a transaction mechanism [14]. Since 
cloud services are distributed across many servers for scalability 
and availability, most transactions that access multiple objects 

will access multiple servers. Such transactions must be 
distributed. The well-known challenges of scaling distributed 
transactions, e.g. in [31][45], has led many cloud systems to 
offer limited transaction support (e.g., within a shard or with 
weak isolation) or no support at all. This puts the burden on 
developers to use ad-hoc methods to obtain cross-object 
consistency, which is hard to do well. 

To understand the scalability challenge, consider the most 
popular distributed transaction protocol, two-phase locking 
(2PL) for isolation with two-phase commit (2PC) for atomicity. 
To ensure isolation, a transaction holds locks until it finishes 
executing. Each object in its readset can release read-locks when 
it receives a prepare-request in phase-one of 2PC. However, 
each object in its writeset must hold its write locks until it 
receives a commit request in phase-two of 2PC. This technique, 
called strict 2PL, ensures that a transaction that aborts before 
phase-two can undo its writes easily, without cascading aborts.  

Two-phase commit does two synchronous writes to storage 
before phase-two, one to prepare and one to commit. Thus, a 
data item participating in a transaction needs to be locked and 
inaccessible for two round-trips to storage. This greatly limits 
throughput on write-hot data, which is a bottleneck in most 
transaction applications. For example, a typical cloud storage 
system has high latency due to networking, disk, and replication 
overhead. In our runs, a write to cloud storage takes on average 
~20 milliseconds (ms) within a single datacenter. Thus, a trans-
action holds locks for ~40 ms. This limits throughput to 25 trans-
actions/second (tps) on write-hot data, even though distributed 
transaction execution typically takes a few milliseconds. Low-
latency SSD-based cloud storage is faster [4][28], but it still 
incurs double-digit millisecond 2PC latencies, plus higher cost.  

This problem of lock-holding time also applies to system that 
use optimistic concurrency control (OCC). Like strict 2PL, an 
OCC validator needs to set write locks on a transaction T’s 
writeset before validating T and hold those locks until T is 
committed, to ensure T can be aborted without cascading aborts.  

In this paper we present a novel distributed transaction 
system that avoids these problems by allowing a transaction to 
release locks early, during phase-one of the 2PC protocol.  After 
a transaction T finishes executing, it will not acquire more locks, 
so holding locks after this point has no value from a 2PL 
perspective. But if T releases write locks before it commits, 
subsequent transactions can read “dirty” data that will be invalid 
if T aborts. To avoid this inconsistency, a transaction keeps track 
of its dependencies on uncommitted transactions. A central 
validator service, the Transaction Manager, makes sure that T 
commits only after all of T’s dependent transactions commit. If 
one of T’s dependent transactions aborts, then T will abort too. 
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After T releases its write lock on object O, suppose another 
transaction T1 updates O, terminates, and runs phase-one of 2PC. 
T1 can unlock O, but must wait for T to finish writing O to 
storage before it can write O to storage. This handshake ensures 
that T1’s storage write is applied after T’s storage write. Since O 
is unlocked, another transaction T2 can update O, terminate, run 
phase-one of 2PC, and unlock O. Thus, while T is writing to 
storage, a sequence of later transactions can update O, terminate, 
start phase-one of 2PC, and unlock O. After T’s storage write 
finishes, all of those later transactions can write their updates to 
O’s storage as a batch, in one round-trip.  

This batching of updates greatly increases transaction 
throughput on write-hot data. It is analogous to group commit, a 
popular technique for increasing transaction throughput in 
centralized systems. It also improves transaction latency. In a 
system that holds locks through 2PC, each transaction in a batch 
would have to wait for two synchronous writes by every 
transaction that precedes it in the batch, instead of just the one 
transaction that precedes the batch. Our performance 
measurements show throughput up to 20x that of strict 2PL/2PC, 
which we believe is sufficient for most real world applications. 

We describe a general implementation architecture for our 
protocol in an object-oriented runtime such as JVM or .NET. It 
uses a centralized transaction manager to validate dependencies 
and to assign a timestamp to each transaction. Centralizing the 
transaction manager simplifies recovery. Timestamp assignment 
enables snapshot reads of multiversion data, to avoid conflicts 
between read-only queries and update transactions.  

We also describe our implementation of that architecture in 
Orleans [10], a popular platform for building distributed 
applications using the actor model. In Orleans, actors are 
location transparent and can move between servers dynamically. 
This presents interesting challenges for keeping track of 
transaction execution and data access, challenges that apply to 
other actor platforms too. Finally, we present results and 
analysis of experiments measuring the performance of our 
implementation and comparing it to that of strict 2PL/2PC. 

In summary, our contributions are as follows: 

 We introduce a new optimization of 2PL/2PC for middle-

tier applications that enables high transaction throughput 

despite high storage latency. It applies to cloud storage or 

any system where storage latency is much higher than 

transaction execution time. 
 We describe a generic implementation architecture for the 

new mechanism (Sections II and III). 
 We describe an implementation in a commercial program-

ming framework, Orleans (Section IV). This is the first 

implementation we know of that supports cascading aborts. 
 We present an experimental study that substantiates our 

performance claims (Section V). 

Section VI covers related work. Section VII is the conclusion. 

II. OVERVIEW 

Conceptually there are two main entities in the system: 
Application Servers (or simply, servers) where transactions 

execute, and the Transaction Manager (TM), which is 
responsible for validating a transaction’s dependencies (see 
Figure 1). A transaction executes as a set of communicating 
objects. Stateful objects persist their state in cloud storage. The 
TM has a log, which also is in cloud storage. 

A transaction T starts by a client request to one of the servers 
to start a new transaction. That server acts as T’s coordinator. 
As T executes, it acquires locks on objects it accesses at the 
coordinator and other servers, and it records all dependencies. 
After T finishes executing, the coordinator starts the prepare-
phase of 2PC by asking each object O that T accessed to prepare.   

When O receives a Prepare request, it releases T’s lock. If T 
read but did not update O, then O replies “Prepared” to T’s 
coordinator. Otherwise, O has to write T’s update to storage. If 
O has another in-progress storage-write W, it waits for W to 
complete before persisting T’s update (and any other updates to 
O while W was in-progress). After persisting T’s update, O 
replies Prepared to T’s coordinator. After receiving a reply of 
Prepared from all objects that T accessed, T’s coordinator sends 
a description of T and T’s dependencies to the TM for validation.  

To process T’s validation request, the TM waits until T’s 
dependencies have committed. Then it assigns a (logical) 
timestamp to T, writes a commit record for T to its log, and 
notifies T’s coordinator. Finally, T’s coordinator replies to the 
client’s request that T committed.  

This design has several desirable characteristics that were 
mentioned in Section I. First, write locks are no longer held 
during the lengthy phases of 2PC that involve network round-
trips and writes to storage. Second, since all commit decisions 
are made in one place (i.e., the TM), as long as the TM is alive 
it is easy for a server to learn the fate of a transaction, for 
example, when it times out waiting for a decision or while 
recovering from a failure. To cope with TM failure, a warm- or 
hot-standby TM can be used. Finally, the TM can provide a safe 
timestamp to use for reading consistent snapshots, which allows 
read-only transactions to execute without locks, without the 
need for validation, and without 2PC.  

This design has three potential drawbacks: cascading aborts 
are possible, the centralized TM is a scalability bottleneck, and 
single-server transactions require validation. First, regarding 
cascading aborts, they will happen only due to server failures, 
e.g., a hardware or operating system failure, which are relatively 
rare. To see why, consider the other possible failures: 

Transaction 
Manager 

(TM) 

Log 

Application 

Distributed 
Runtime 
Services 

Object- 
Oriented 
Runtime 

Figure 1 System Architecture 
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 When a transaction releases its locks, it has already 

finished executing, so transaction program failures and 

deadlocks are no longer possible.  
 A controlled failure, such as a rolling upgrade, can be 

handled gracefully by waiting for all of a server’s 

transactions to finish before restarting the server. 
 If the TM fails, a watchdog detects that fact and recreates 

the TM, connecting it to the existing TM log. Since each 

transaction knows its dependencies, it can re-send its 

validation request to the new TM.  

When a server S fails, there is significant delay in cluster 
reconfiguration, since other servers need to wait long enough to 
be sure that S failed and is not simply slow. Then they must work 
around S’s failure  until S recovers. This typically takes a minute 
or so. Thus, independent of the existence of transactions, 
application execution will be disrupted. Cascading aborts will 
add to the period of unavailability, but the effect will be 
incremental, not a fundamentally new effect to be coped with.  

Second, regarding the TM as a potential bottleneck, we 
observe that the TM is a simple RPC server that is not involved 
during most of the transaction execution. By carefully 
controlling communications to the TM, as we describe in 
Section III.C, our TM implementation can process hundreds of 
thousands of transactions per second; we substantiate that with 
measurements in Section V.D. Percolator [40], Tango [8], and 
other systems have RPC servers similar in purpose to ours that 
achieve very high throughput as well. Therefore, the TM will 
not be a bottleneck for the vast majority of applications.  

The third issue is transactions that update just one object 
ordinarily do not need to execute 2PC. However, in our design, 
if a transaction T updates an object whose latest version is not 
yet committed, then the TM must validate T before T commits. 
This affects latency, but not throughput due to batching 

Like any transaction system (2PL or not), our design works 
best if transaction execution time is short, since it reduces the 
conflict rate. Ideally, a transaction T accesses objects that are 
already in memory before T starts. This avoids T waiting for 
objects to be loaded from cloud storage while it holds locks. If 
the data set is too large to fit in memory, the developer can plan 
data accesses to achieve high throughput for hot objects. One 
way is to pre-fetch objects before executing the transaction. 
Another is to arrange object accesses so that hot objects are the 
last to be accessed. This is beneficial because it minimizes the 
execution time during which an access to the hot object causes 
a transactions conflict. Other techniques are in [14], Chapter 6. 

III. RUNTIME ARCHITECTURE 

Our proposed implementation architecture assumes that 
applications are written in an object-oriented language that uses 
an object-oriented runtime library, such as the .NET Framework 
or Java Virtual Machine, and executes in a cluster of servers. We 
further assume the existence of a set of runtime services that run 
on each server in the cluster (collectively referred to as “the 
runtime”) that provide distributed systems functionality (e.g. 
directory services, RPC, and failure detection and recovery). To 
support transactions in this environment, we augment the 

runtime with the following abstractions: transactional object, 
transaction manager, transactional RPC, transaction context, 
and transaction agent. 

A. Transactional Object 

A transactional object is an object whose state is protected 
by ACID transactions. It has methods to read and write its state 
and to prepare, commit and abort, which are required for the 
2PC protocol. In effect, a transactional object acts as a mini-
database. It is the unit of access, meaning that a transaction that 
reads or writes any part of the object’s state is considered to have 
read or written its entire state. Examples of a transactional object 
could be a micro-service in a micro-services platform, or an 
actor in an actor-based system. 

A transactional object is multi-versioned, meaning that it can 
hold many versions of its state. This enables it to undo updates 
due to cascading aborts and to support snapshot queries [9], 
which we use for read-only transactions. Each version has a 
version id, e.g., the identity of the transaction that wrote it. 

We assume that transactions are implicitly bracketed by 
method tags, as in .NET’s COM+ and J2EE. Each method, M, 
of an object can have one of the following tags: 

RequiresNew – Every call to M starts a new transaction, T, and 
completes T on exit. 

Required – If M’s caller is executing a transaction, T, then M 
becomes part of T. If not, then M starts a new transaction, T', and 
completes T' on exit.  

NotSupported – M never executes within a transaction, even if 
its caller is executing a transaction.  

When M is invoked, the runtime uses M’s tag to determine 
whether to start a transaction or propagate the caller’s 
transaction to M. To start a transaction, the runtime sends a 
message to the Transaction Manager (TM), which dispenses a 
transaction id. If a method executing in object O1 is running in 
transaction T and O1 invokes a “Required” method in another 
object O2, then O2 should execute in T. This is called 
transactional RPC. Methods can also be tagged as ReadOnly. 

B. Transaction Context 

Each RPC made by a transactional object carries a hidden 
parameter called the transaction context. The transaction 
context includes the identity of the caller’s transaction, T, and of 
the objects and versions accessed by T. The runtime creates it 
when T starts. It contains: 

 T’s id 

 The identity and version of objects that T read (i.e., T’s 

readset) 

 The identity and version of the objects that T wrote (i.e., 

T’s writeset) 

 T’s dependencies (i.e. the transactions that must commit 

before T can commit) 

The transaction context is passed back and forth between the 
object that started T and other objects T accesses. The 
transaction context supports a Union method, which accepts 
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another transaction context with the same transaction id and 
unions its readset, writeset and dependencies with its own. After 
an RPC is completed, the callee returns an updated transaction 
context which the caller unions with its own. 

C. Transaction Agent 

The transaction agent (TA) is a service that runs on every 
server in the cluster. It provides interfaces to start a new 
transaction, commit a transaction, and query the status of a 
transaction. Transactional objects do not communicate with the 
TM directly, but use the TA to provide TM functionality. 

To start a new transaction, T, the runtime calls the TA with 
a few parameters (e.g., timeout), which the TA forwards to the 
TM. The TM starts T and returns a transaction id.  

To commit, T calls its TA, passing its transaction context, C. 
Then the TA runs our modified 2PC protocol. During the 
prepare-phase, the TA calls Prepare on each transactional object 

O participating in T, which it finds in C. Prepare unlocks O and, 

if T wrote O, persists O’s updated state. If all of T’s Prepare’s 
succeed, the TA forwards C to the TM to validate T’s 
dependencies and commit T. As in standard 2PC, if the prepare-
phase fails or the TM aborts T, the TA calls Abort on all 

participants. However, the TA does not call Commit on the 
participants if the TM replies with success. This is lazily done 
by the TM during checkpointing, which is described in Section 
III.G. 

The TA controls all communications with the TM. This is 
critical for system scalability. The system is limited by the rate 
at which one server can process messages. To enable the system 
to scale to a higher transaction rate than the maximum message 
rate, the TA groups many TM requests into a smaller number of 
messages. It sends the Start and Commit calls that it receives to 
the TM in batches. At any point in time the TA has two TM 
messages outstanding: one for transaction start requests and one 
for transaction commit requests. All requests received after the 
message is sent are queued until a response is received and then 
are batched in the next message. This prevents the TAs from 
overwhelming the TM. It also allows the TM to limit the rate of 
messages it receives from TA’s by increasing latencies as its 
load increases.  The TA can apply throttling if its queues grow 
beyond a threshold. 

D. Concurrency Control 

We propose using object-granularity locking for 
concurrency control. When the runtime propagates a transaction, 
T, to a transactional object, O, it locks O on behalf of T. While 
T holds the lock, only method calls that are part of T may 
execute. Other calls are queued. Any deadlock avoidance 
scheme can be used. We propose using Wait-Die [42]. We 
assume the runtime guarantees that there is only one active 
instance of O at any point in time. 

Since locks are not persisted, if a server hosting a 
transactional object O fails, a transaction T holding the lock on 
O will lose the lock and T’s in-flight updates of O. If O recovers 
before T starts 2PC, then T must avoid being fooled into commit-
ting and thereby breaking atomicity. The prepare-phase does this 
by checking whether T still holds its locks; if not, it aborts T 

(which might cause a cascading abort). It is also possible for T 
to lose a lock due to a failure and then re-acquire the lock by 
accessing O again before it finishes, perhaps via a different call-
path. In this case, T’s context will refer to two versions of O. To 
handle this, if the union operation on T’s transaction context has 
seen more than one version of any object, it will abort T. 

E. Managing Object State 

As mentioned in Section III.A, a transactional object acts as 
a mini-database, with methods to read and write state and 
Prepare, Commit and Abort its transaction. 

For each transactional object O, the runtime maintains two 
persistent logs: the Active versions log and Stable versions log. 
The active versions log is an ordered list of writes by 
transactions that have started the prepare-phase but have not yet 
told O whether they have committed. Each entry is a pair <S, T> 
where S is the value of the state written by transaction T. The 
stable version log is an ordered list of the writes that are known 
to be committed. Each entry is a triple < S, T, LSN> where S and 
T are the same as before, and LSN is the log sequence number 
assigned by the TM to T. The stable version log may have more 
than one version to enable snapshot reads at an older timestamp.  

Each transactional object, O, also has an in-memory working 
version that can be read or written by the transaction holding the 
lock on O. This working version eventually moves to the active 
versions log during the prepare-phase.  

The basic methods of transactional objects are shown in 
Figure 2. To service a read on object O by transaction T, the 
runtime invokes Recover(), which asks the TA for the status of 
transactions in O’s active versions log and removes all that are 
known to have aborted. This avoids creating a dependency that 
is sure to cause T to abort. If this is T’s first access of O, the 
runtime creates a working version for O, which is a copy of the 
latest write, and returns that working version for every 
subsequent access. It also updates T’s readset and dependencies 
in its transaction context. If T is a read-only transaction, it does 
snapshot reads, which are described in Section III.I. The write 
procedure just overwrites the working version with a new one. 
To simplify the description, we assume a transaction does at 
most one write to an object. In reality a transaction can do many 
writes, and the transaction context keeps track of the write count. 

As a mini-database, a transactional object also participates in 
2PC. Recall that the coordinator TA calls Prepare on every 
transactional object O that participates in a transaction, T. This 
method is responsible for ensuring that no failures happened 
since T accessed O, and that T’s writes to O (if any) are persisted 
so that T can commit even if failures happen later.  

Note that the object lock is released before the write is 
persisted. The write is queued on the persist_queue, which is 
drained by a background worker. It performs the write to 
persistent storage by appending the version to the active versions 
log, after which it notifies the caller of Prepare. The log-append 
is asynchronous, returning a promise. The worker writes all the 
versions in the queue in one batch operation, which is essential 
to enabling high write-throughput per object. 

Our design is unconventional, using a log-per-object, instead 
of a log-per-database. It makes sense with cloud storage because 
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storage writes scale out and because cloud storage systems do 
not currently offer a log abstraction. If write-bandwidth per-
server is a bottleneck, a per-database log could be beneficial by 
enabling batched writes over different objects; our design could 
exploit it as in [8]. However, our design can obtain the same 
benefit without a shared log by batching writes to objects in the 

same shard into one write, which is supported by most cloud 
storage systems. We suspect a per-database log would do no 
better than that, a possible topic for future work. 

F. Transaction Manager 

There is one (active) TM per application deployment, which 
is responsible for starting, validating, and committing 
transactions. It is also responsible for aborting transactions that 
do not finish executing within a timeout period (even if the 
transaction is not explicitly aborted), to handle coordinator fail-
ures among others. The TM must be fault tolerant so it can 
perform its duties even in the face of its own failure.   

The TM maintains a log of transaction state in persistent 
storage. It commits a transaction T by adding a log entry for T. 
It uses the well-known presumed-abort optimization where the 
absence of a commit record in the log implies T aborted and thus 
does not need to log aborts [40]. It also maintains an in-memory 
version of the log called the Transaction Table. When a TM 
starts up, it rebuilds the transaction table from the log. To avoid 
logging each transaction start, it logs a high-water mark and then 
assigns transaction ids up to that water mark in-memory. 

To commit a transaction T, the TM receives T’s context 
object. It queues T until all of T’s dependencies have committed. 
If any of T’s dependencies abort, the TM aborts T, too; 
transactions that depend on T will abort when they ask the TM 
to commit. After all dependencies are satisfied, the TM puts T 
on the group commit queue, to be picked up by a service 
running in the TM called the group commit worker and durably 
written to the log. After T is written to the log, the TM replies to 
the coordinator TA with success. For the purpose of evaluating 
dependencies, the TM treats T as committed once it is added to 
the group commit queue, without waiting for the log write to 

complete. This is safe because when a transaction T that 
depends on T commits, it will be appended later in the log. So if 

a TM or log failure prevents T from committing, T will not 
commit either. This is a variant of a well-known optimization 
described in [24] [34]. 

For each transaction T in the group commit queue, the group 
commit worker appends a record containing T’s transaction id 
and the identity of objects in its writeset to the durable log in 
queue order, and assigns T’s log sequence number (LSN).  

The unavailability of the TM will block the progress of all 
active transactions and prevent starting new ones. Thus, it is very 
important that the TM is made highly available, e.g., by enabling 
it to fail over to an active replica with little downtime after 
failure or upgrade. This can be done using standard replicated 
service designs [17][19], which we do not describe here. 

G. Checkpointing 

As the system runs, the TM and runtime continually append 
entries to the TM’s log and the object’s active version log. We 
need a process of checkpointing to trim these logs and remove 
old entries in order to prevent the logs from growing arbitrarily 
large. To do this, the TM puts all committed transactions on the 
checkpoint queue in LSN order to be picked up by a service in 
the TM called the checkpoint worker.  

Write(S) 

TC := Get Transaction Context 

working_version = S 

Add O to TC.write_set 

IF active_versions_log is not empty: 

        V = active_versions_log.last.T 

        Add V to TC.dependencies 

END IF 

 

Read  
TC := Get Transaction Context 

Recover() 

IF TC.transaction_id does not have working version: 

    State = DeepCopy (get_latest_from_logs()) 

    Add (O, V) to TC.read_set 

    IF active_versions_log is not empty: 

         Add V to TC.dependencies 

    END IF 

    working_version = State 

END IF 

RETURN working_version 
 

Recover  
FOR each entry E in active_versions_log: 

    IF TransactionAgent.IsAborted(E.Version): 

        Abort(E.Version) 

          BREAK 

    END IF 

END FOR 
 

Abort(transaction_id) 
IF active_versions_log contains transaction_id: 

        Remove entry and all subsequent entries from log 

END IF 
 

Prepare(transaction_id, read_version, write) 
lock_holder = get_current_lock_holder() 

IF lock_holder != transaction_id: 

    RETURN false 

END IF 

IF read_version != null and  

    read_version != get_latest_version(): 

    RETURN false 

END IF 

Release_lock() 

IF !write: 

    RETURN true 

END IF 

Task<bool>  promise  

           = active_version_log.append(working_version) 

RETURN promise 
 

Figure 2 Generic methods of transactional objects 
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This worker calls the Commit method on every object O in 
a transaction T’s writeset to notify O that T committed and 
informs O of T’s LSN. Then O adds T to its stable version log 
and removes T from its active version log. It also removes older 
versions from T’s stable version log if the log has grown too 
large or if the older versions will not be used for snapshot reads 
again. (See Section III.I for more detail.) Since the TM has 
limited computational resources and is a potential bottleneck, 
these calls are offloaded to the application servers and batched 
for efficiency. After every object in T’s writeset acknowledges 
having added T to its stable version log, the TM trims its own 
log by removing T’s entry. 

H. Garbage Collection 

To prevent the Transaction Table from growing too large 
and causing the TM to run out of memory, the TM needs to 
identify which transaction entries are no longer needed and can 
thus be removed from the table. 

The TM needs a Transaction Table entry for a transaction T 
for as long as T is active. Using presumed-abort, it presumes T 
aborted if it does not exist in the table; so the TM can remove 
T’s entry immediately after T aborts. If T commits, the TM needs 
to keep T’s entry until all transactions that depend on T have 
completed. To determine how long to keep T’s entry, after the 
TM checkpoints T, it records the largest transaction id tmax of all 
active transactions. No transaction with id greater than tmax will 
depend on T, because after T is checkpointed, all objects in T’s 
writeset know that T committed. Therefore, when transaction 
tmax completes, the TM can remove the entry for T. 

I. Snapshot Read 

The TM’s log totally orders the transactions, so each LSN 
defines the point-in-time of a consistent snapshot. We use LSNs 
as timestamps. To read a consistent snapshot at time t, for each 
object O in a transaction T’s readset, T reads the version in O’s 
stable version log that has the largest LSN ≤ t. 

The TM checkpoints transactions in LSN order. Thus, after 
it checkpoints a transaction whose LSN is t, all entries with LSN 
≤ t are already in the stable transaction logs. This makes t a safe 
timestamp to use for a snapshot read. Whenever the checkpoint 
worker successfully completes a batch, it sends the LSN of the 
last transaction the batch, tsafe, to the TAs in every message, so 
the TAs can use it for read-only transactions. 

A snapshot read with timestamp t fails if the object O has no 
version with LSN ≤ t in its stable version log. This can happen 
if O trimmed its log and removed old versions. To make this less 
likely, during checkpointing each object checks its TA’s value 
of tsafe to decide whether to remove an old version from its log.  

IV. ORLEANS IMPLEMENTATION 

This section describes our implementation of the 
architecture of Section III in Orleans, called Thorp. 

A. Introduction to Orleans 

Orleans is a programming framework that extends the .NET 
Framework to simplify the development of scalable and fault-

tolerant distributed applications. We briefly introduce Orleans 
here, just enough to understand how we added transactions to it. 

In Orleans, objects are called grains and have two important 
properties. First, grains are actors, so that they cannot share state 
and can communicate only via asynchronous method calls. 
Second, each grain has a location-transparent identity, which is 
the only way to reference it. These two properties enable the 
Orleans runtime to place each grain on any server. Typically, it 
distributes grains randomly across servers of a deployment, to 
minimize the chance that any server is a bottleneck. 

If a grain G is not currently running when one of its methods 
is invoked, the Orleans runtime chooses a server on which to 
activate G, executes the G’s constructor on that server, and then 
performs the method call. It retains a reference to G in its 
distributed grain directory so that future invocations can be 
directed to it. If a grain is idle for too long, the Orleans runtime 
calls the grain’s destructor and releases the grain’s resources. 
This model of activate-on-demand is very similar to the demand-
paging model of virtual memory. For this reason, Orleans calls 
it the Virtual Actor Model. 

Orleans offers a simple declarative model of grain 
persistence, where a grain class identifies its member variables 
that should be persisted. The Orleans runtime maps those 
variables to persistent storage, which the user specifies via a 
StorageProvider attribute. It uses that mapping to populate a 
grain state when it is activated and to write it back out when it is 
deactivated. It also allows a grain to save its state at any time, 
e.g., just before returning from a method call that modifies its 
state. Developers can ignore this declarative persistence model 
and write custom code to map object state to storage.  

B. Programming Model 

To ensure the programming model for transactions is natural 
to Orleans users, transactions are opt-in. They have no impact 
on programmers unless they use them. Transactional grains (i.e. 
transactional objects) are identical to regular grains except that 
accesses to their state occur within a transaction. For practical 
reasons, a second goal was to minimize modifications to the 
Orleans runtime. Therefore, much of the implementation is done 
in base classes that transactional grains use via inheritance. 

1) State 
For each grain class, the developer defines a class that 

represents the grain state to be protected by transactions. Each is 
an arbitrary C# class, expressed similarly to declarative 
persistence. See Figure 3. 

 

2) Transactional Grain 
For a grain to be declared transactional, its interface has to 

extend ITransactionalGrain; and the grain implementation has 
to extend TransactionalGrain<T>, where T is the class that 

defines its state. (See Figure 4.) This is analogous to a non-

public class BankAccountState  
{  
    long Balance { get; set; }       
    string Currency { get; set; }  
} 

Figure 3 State definition 
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transactional grain, whose interface has to extend IGrain and 
whose implementation has to extend Grain. The programmer 
declares the persistent store for the grain state using the 
StorageProvider attribute, just like in declarative persistence. 
To access the state, the grain uses a C# property field called 
State that is defined in the base TransactionalGrain<T>. 

An attribute on each grain method is used to describe where a 
transaction starts and how grain method calls compose within a 
transaction. There are three possible values of the attribute, 

which were described in Section III.A: Requires New, Required, 
and Not Supported. For example, in the class definition in Figure 
5, the Transfer method will always start a new transaction when 
called. Since BankAccountGrain is a transactional grain, its 
methods have the “Required” transaction attribute by default. 
This means the calls to Withdraw and Deposit will join the 
transaction started by Transfer. Note that ATMGrain can start 
transactions even though it is not a transactional grain itself.  

C. Implementation 

1) Transactional Grain 
Much of the runtime functionality in Section III is 

implemented via inheriting from TransactionalGrain. The class 
TransactionalGrain<T> implements Prepare, Commit, Abort, 

and Recover, as described in Sections IIIIII.A, III.C, and III.E.  
Write and Read are implemented as the setter and getter of the 
State property. Every transactional grain class inherits from 
TransactionalGrain<T> and hence picks up its behavior. 

Read and Write operate on the object’s state, which is of type 
T. They map state to storage using Orleans’ declarative 

persistence model, described in Section IV.A. Orleans 
serialization features are used to generate a deep copy of the 
state of arbitrary type T as required by the Write procedure. 

2) Runtime extensions 
The Orleans Runtime is a set of subsystems that run on each 

server of an Orleans cluster. It is responsible for turning grain 
method calls into messages, locating the server that has the grain 
instance (called an activation), forwarding the message to the 
activation, scheduling the messages to guarantee single-threaded 
access and finally running the grain code to execute the message 
and send back the result of the method call. We added the 
Transaction Agent (TA) as a subsystem to the runtime. 

We extend the runtime to provide transaction support. The 
runtime recognizes the transaction attribute. It calls the TA on 
the local server to start a transaction and get a transaction 
context. It passes that context along with calls to methods that 
have the “Required” attribute. Since a transaction can make 
concurrent calls to grains, it takes the union of contexts that are 
returned. Finally, when it is time for a transaction to commit, the 
context is passed to the TA.  The runtime is also modified to 
enforce the behavior described in Section IV.  

The runtime scheduler locks the activation while a method 
is executing until the method finishes. We modify this behavior 
for transactional grains, so that the lock is kept even after the 
method execution is complete, until explicitly released (or due 
to timeout, to handle failures). While the lock is held, only 
method calls that are part of the transaction holding the lock (and 
read-only methods) are allowed to execute; the rest are queued. 
Wait-Die is used to prevent deadlocks. 

3) Transaction Manager 
The TM is implemented in C# as a stand-alone multi-

threaded service. It uses the Orleans client library to 
communicate with the Orleans cluster and invoke grain 
methods. To offload work to the servers during the 
checkpointing process we described in Section III.G, the TM 
does not invoke methods directly on TransactionalGrain. 
Instead, it relies on grains called CheckpointHelper to call the 

Grain Interface 

public interface IBankAccountGrain : 
ITransactionalGrain  
{  
    Task<bool> Withdraw(long amount);  
    Task Deposit(long amount);  
} 

 

Grain Implementation 

[StorageProvider( 
     ProviderName = "AzureTableStore")]  
public class BankAccountGrain :  
        
TransactionalGrain<BankAccountState>,  
        IBankAccountGrain   
{  
  public Task<bool> Withdraw(long amount)  
  {  
    if (this.State.Balance >= amount)  
    {  
      this.State.Balance -= amount;  
      return Task.FromResult<bool>(true);  
    }  
    return Task.FromResult<bool>(false);  
  }  
  public Task Deposit(long amount)  
  {  
    this.State.Balance += amount;  
    return TaskDone.Done;  
    }  
} 

 Figure 4 Transactional grain 

public class ATMGrain : Grain, IATMGrain  
{  
   [Transaction("RequiresNew")]  
   public Task<bool> Transfer( 
   IBankAccountGrain from,  
   IBankAccountGrain to, 
   long amount)  
   {  
   bool can = await from.Withdraw(amount);  
   if (can)  
       await to.Deposit(amount);  
    return can;  
   }  
} 

Figure 5 Using transactions in Thorp 
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Commit method on each individual TransactionalGrain, which 
happens on the Orleans servers. 

V. EXPERIMENTS 

We present an experimental study of Thorp, our Orleans 
transactions implementation. First, we measure the performance 
of the TM to verify its scalability. We then compare the 
performance of transactions to non-transactional persistent 
Orleans grains to measure the transactions overhead. Finally, we 
compare Thorp to a traditional strict 2PL/2PC implementation. 
In this section, when we refer to 2PL, we mean strict 2PL. 

A. Experimental Setup and Workload 

In all experiments we deployed Orleans as a Microsoft 
Azure cloud service. The deployment has 3 roles: 

Orleans Silo: Orleans servers are called silos. Each one is 
configured as a Large Azure virtual machine (VM), which has 4 
cores and 7GB RAM. The number of instances varies depending 
on the experiment.  

Orleans TM: This is configured as an Extra-Large Azure 
VM (8 cores, 14GB RAM). There is always one TM instance.  

Workload Generator: This is where we run clients that 
generate the experiment’s workload. It is configured as an Extra-
Large Azure VM; the number of instances varies depending on 
the experiment. 

We use Azure Table Storage [38] as durable storage for all 
state. Each entity (i.e. row) in an Azure Table has a key and a 
schema-less dictionary as the value. We distribute the grain 
writes across multiple storage accounts to circumvent Azure’s 
limits for a single storage account. 

Each reported result is computed by running the experiment 
3 times for 2 minutes and averaging the results. For readability 
of graphs, we omit standard deviations, which in all cases are 
under 10%. 

B. Summary of Results 

The key findings of our experimental evaluation are: 

 Thorp’s TM can handle hundreds of silos and over 100K 
transactions per second. 

 Read-only transactions have very low overhead, whereas 
read-write transactions are expensive. 

 For a single write-hot grain, the throughput of Thorp is over 
20x the throughput of 2PL/2PC. 

 Thorp’s throughput far outperforms 2PL/2PC for workloads 
that have write-hot grains. For workloads where load is evenly 
distributed, Thorp’s throughput is similar to 2PL/2PC but it 
suffers from higher latencies due to batching. 

C. TM Transaction Processing 

In this experiment, we measure the throughput of the TM’s 
transaction processing pipeline. The workload generator calls 
the TM to get a transaction id, then creates a synthetic 
transaction and submits it to the TM to be committed. Synthetic 

transactions are created in groups, where each transaction takes 
a dependency on all transactions in the same group with smaller 
ids. We vary the number of transactions in each group, as well 
as the order in which the transactions within the group are 
submitted to the TM for commit, to measure their effects on the 
throughput. Note that in this experiment the workload generator 
is running in the same process as the TM, so there is no 
networking overhead.  

The results are shown in Figure 6. Each bar is labelled n/r 
where n is the size of the group and r is the order in which 
transactions are submitted within group. As expected, the 
throughput declines with an increase in the number of 
dependencies and when dependencies are satisfied out of order. 
The effect of reversing the order is larger than increasing the 
group size. Throughput drops significantly going from group 
size 1 to group size 3, because transactions that have no 
dependencies bypass a significant portion of the processing. 

Profiling revealed that insertion of new records in the 
transaction table becomes a bottleneck as the table grows larger. 
This can be mitigated by parallelizing the sequential garbage 
collection algorithm so it can remove old records faster as well 
as by partitioning the table, but we leave that for future work. 

D. TM Scalability 

Our goal is to measure the TM’s end-to-end performance, 
including networking and TM processing of requests. In this 
experiment, the TAs run on the workload generator machines. 
This allows us to run multiple TAs on each VM and thus be able 
to run with more TAs than if we ran one per silo. Each TA starts 
transactions and submits them to the TM for validation and 
commit at a fixed rate (1000 per second). Each transaction has a 
single grain in its readset and writesets.  

As shown in Figure 7, throughput scales linearly with each 
agent added until it reaches ~110k, after which it remains steady 
with increasing latency and variance. At that rate we are not 
limited by CPU utilization or the bottlenecks identified in 
Section V.A. By profiling, we discovered a bottleneck in the 
RPC server that causes the processing and deserialization of 
incoming messages to be single-threaded. We believe that TA to 
TM messaging can be greatly improved over the current 
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implementation (which we picked for simplicity not efficiency) 
to reduce overhead and obtain much higher numbers if needed. 

E. Transaction Overhead 

We measure transaction overhead by comparing the 
performance of transactional grains vs. non-transactional 
persistent grains. The setup for this experiment has one Orleans 
silo, where we activate 200 transactional grains, each with 1KB 
of state. The workload generator has multiple workers. Each 
worker repeatedly selects a grain id uniformly at random and 
issues one RPC to that grain, which could either be a read-only 
operation or a write. We vary the distribution of read-only and 
write operations for each run as shown in Figure 8. In these and 
other throughput measurements, the number of workers is 
chosen high enough to keep the silo CPU utilization above 90%. 
In latency measurements, the number of workers is fixed at 20. 

Read-only transactions have a relatively small effect on 
throughput, and virtually none on latency. This is expected, 
since the only additional work done by read-only transactions 
compared to ordinary reads is a deep copy of the grain state. By 
contrast, write operations (even non-transactional ones) are 
much costlier. Write transactions incur 2 extra RPCs, 2 writes to 
storage, a deep copy, and maintenance of multiple versions. In 
addition, the effect of batching commit requests to the TM 
significantly impacts latency. Therefore, a developer should use 
transactions only when they are really needed, and not just 
mindlessly do every operation within a transaction. 

F. Single-Grain Micro-benchmark 

Hot data is a worst case for transaction performance and 
often arises in practice. In this experiment we evaluate Thorp’s 
performance for a single hot grain and compare it to 2PL/2PC 
and non-transactional persistent grains. The setup is similar to 
that of Section V.E, except we only activate one grain whose 
state size is 100 bytes. We start by measuring read-only 
performance. The results are in Figure 9. As expected, the 
overhead of deep-copying grain state affects Thorp’s Read 
throughput. Read-2PL/2PC’s performance suffers because it has 
to do an extra RPC to release the locks, though it does not have 
to run 2PC. 

Since the grain is locked during the two storage writes of 
2PC, we can analytically model the write throughput of 
2PL/2PC using the following formula: 

1 / [2 * IO_Delay] 
where IO_Delay is the latency of writing to storage. If execution 
time is negligible compared to IO_Delay, then for an average 
IO_Delay of 10ms we expect 2PL/2PC throughput to be ~50 
transactions per second. 

In Thorp the write throughput is not directly tied to storage 
latency. However, there is a limit on the size of an Azure Table 
entity (64 KB) which limits how many versions a grain can hold 
onto before they are checkpointed and removed. We define Max 
Log Size as the maximum number of versions the grain can hold 
in its log before hitting this limit. We define the Checkpoint 
Rate of the grain as the number of checkpoints it performs per 
second. Then, analytically we can model the write throughput of 
Thorp using the formula: 

Checkpoint Rate * Max Log Size 

Figure 10 plots the results of running single-grain write 
workloads. Thorp’s write throughput beats 2PL/2PC by more 
than 20x. Moreover, it is higher than the plain persistent grain, 
because the latter is locked while the state is persisted to storage. 

The throughput of 2PL/2PC follows the analytical model 
closely, but not for Thorp. At first glance, one would expect a 
max log size of 640, since the max entity size is 64KB and the 
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grain state is 100 bytes. Given the observed checkpoint rate of 
16, the model predicts a throughput of approximately 10,000 
transactions per second. But we observe much less. One reason 
is that a single silo can perform about 1400 transactions per 
second, as we saw in Section V.E. While performing all 
operations on a single grain is more efficient due to increased 
batching of writes to storage, the execution is single-threaded 
and the CPU core is saturated at the observed throughput. 
Another reason is that the state that is written to the log is more 
than 100 bytes per version, due to versioning and serialization 
overhead, so the max log size is significantly less than 640. 

This experiment highlights Thorp’s ability to better handle 
what [1] calls “linchpin objects” which is one of the main 
challenges to adapting strongly consistent transactions at scale. 

G. Secondary Index 

The goal of this experiment is to use a realistic workload to 
study how load distribution affects the performance of Thorp 
compared to 2PL/2PC. We find database benchmarks to be 
unrealistic for a middle-tier actor system, since they are designed 
to run as stored procedures and stress database functionality. 
Instead, we chose a commonly requested feature in Orleans, 
namely, the ability to retrieve grains by the value of a property 
other than the primary key, which requires maintaining a 
secondary index. The consistency requirements differ from 
those found in classical database systems in that it is usually 
sufficient for indexes to be causally and eventually consistent 
[12]. That is, the index can only be updated after the grain update 
commits, and the index update should execute shortly after the 
grain update; some delay is acceptable as long as the index 
update is not lost or postponed indefinitely.  

The workload in this experiment centers around secondary 
index updates. In addition to being a real-world Orleans 
scenario, it is also representative of multi-step workflows. 
Workflow is a popular pattern in middle-tier applications, 
where transactions are needed to link successive steps reliably.  

There are three types of transactional grains in this work-
load, ValueGrain, IndexGrain and IndexUpdateWorkflow-
Grain. Each ValueGrain has a State that consists of two string 
properties, p and p_indexed. The IndexGrains collectively com-
prise a secondary index on the p_indexed value of ValueGrains; 
each IndexGrain’s state is a list of references to ValueGrains 
whose p_indexed value hashes to a key of IndexGrain. There 
are five types of transactions in this workload: 

1- ValueGrain property read: Read the value of property p 

of a single ValueGrain. 

2- ValueGrain property update: Update the value of 

property p of a single ValueGrain. 

3- ValueGrain indexed property update: Update the value 

of property p_indexed of a single ValueGrain vg. Send a 

message with the pair <vg, vg.p_indexed> to an 

IndexUpdateWorkflowGrain to process the index updates. 

4- IndexGrain removal: Read the value of p_indexed of a 

ValueGrain. If the value changed, remove the grain’s 

reference from the old IndexGrain. 

5- IndexGrain insertion: Read the value of p_indexed of a 

ValueGrain. and insert a reference into the appropriate 

IndexGrain. 

After transaction 3 commits, the IndexUpdateWorkflowGrain 
is responsible for executing transactions 4 and 5. Note that the 
ability to read the ValueGrain’s state and updating the index 
atomically means that transactions 4 and 5 are idempotent and 
the messages do not have to be processed in order. 

This experiment uses 20 Orleans silos. Like Section V.E, 
the workload generator has multiple workers, each repeatedly 
selecting a grain id uniformly at random and issuing one RPC 
to the ValueGrain with that id, which performs one of the 
ValueGrain transactions with distribution 50% read, 30% 
update and 20% indexed update. Since Orleans load-balances 
grains randomly, only 5% of ValueGrains are co-located with 
their old or new IndexGrain.  

Figure 10 Grain write throughput 
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We vary the number of grains in each experiment and 
measure the throughput (total transactions per second) and 
latency of index update operations (i.e. transactions 4 and 5). 
The results are in Figure 11. We measured the latency to 
perform the index update operations without transactions or 
persistence; the average latency is ~2 ms. 

Once again we see that the latency of Thorp is higher than 
2PL/2PC due to the effect of batching. The throughput for both 
implementations is similar when the load is distributed evenly 
across many grains, with Thorp having the advantage due to 
faster reads. However, when there is a small number of write-
hot grains, 2PL/2PC’s throughput drops significantly as it 
becomes limited by the high storage latency, while Thorp’s 
throughput actually improves due to increased batching 
efficiency. With 100 hot grains, Thorp performs ~7x better than 
2PL/2PC.  

VI. RELATED WORK 

Commit dependencies: The notion of commit dependency 
was introduced in the ACTA framework [21]. We know of two 
prior works that use the concept. In SL, if a transaction T1 
updates x and a later transaction T2 reads x, then T2 speculates 
by having two incarnations, T21 that reads T1’s before-image of 
x and T22 that reads its after-image [42]. T21 and T22 both take a 
commit dependency on T1. If T1 commits, T22 is retained, else 
T21 is retained. The simulation study in [42] of a distributed 
DBMS shows that SL gets better throughput than 2PL by 
overlapping speculative executions of T2 with T1, at the cost of 
more CPU load. By contrast, in Thorp, T2 only takes a depend-
ency on T1 after T1 terminates. Hence, it has no more CPU load, 
and its performance benefit derives from batching storage 
updates. Unlike SL, Thorp is implemented—not simulated—in 
commercial middle-tier programming framework, not a DBMS. 

 Microsoft’s Hekaton uses a more limited form of commit 
dependency [25]. It allows T2 to take a commit dependency on 
T1 if T2 started after T1 finished execution and entered the 
validation phase but has not yet committed. Thus, it benefits 
from overlapping T2’s execution with T1’s validation. Unlike 
Thorp, Hekaton is a DBMS, not a programming framework, and 
is not distributed. 

Actor Frameworks: An earlier design of Orleans had a 
transaction mechanism based on multi-master replication [18]. 
It only provided snapshot isolation, not serializability. It was 
dropped before Orleans was released because it performed 
poorly and users found it too complex [10]. Akka is a Java-based 
actor framework that has transactions, but only on a single 
machine [2]. Orleans is compared to Akka in [10]. 

Weak consistency models: Although the need for 
distributed transactions was a given 15 years ago, since then 
there has been a trend toward using alternative models that 
provide weaker consistency but better performance or partition 
tolerance. Some systems offer transactions only within a shard 
[7][11][19]. Some offer weaker consistency, either with 
transactions [33][35] [37] or without [20][23][36]. Some avoid 
transactions altogether and use a workflow model instead 
[27][46] [47]. By contrast, Thorp offers full ACID transactions. 

Distributed Transactions: Work on distributed trans-
actions started in the 1970’s [3][15]. Transactional middleware 
of the 1980’s offered distributed transactions using a centralized 
TM [14], which was standardized by X/Open [44]. Multi-
version concurrency control also began appearing in that period 
[13]. Recent examples of distributed ACID transaction systems 
include Calvin, Deuteronomy, and Spanner. 

Spanner is Google’s geo-replicated database system [22]. 
Like Thorp, it uses multi-versioning to support lock-free read-
only transactions and 2PL/2PC for read-write transactions. 
However, unlike Thorp it holds write locks until after a 
transaction commits, which limits throughput as we discussed 
earlier. Moreover, it uses the TrueTime API, enabled by GPS 
and atomic clocks, to assist in timestamp assignment. This 
makes it hard to adopt in a system like Thorp that is intended to 
run in public cloud environments that lack that support. 

Calvin provides scalable distributed transactions by having 
data servers agree on the ordering of transactions before 
executing them [45]. Its design depends on deterministically 
executing a transaction T once its position in the ordering is 
determined. That requires knowing the data items accessed by T 
beforehand, which is highly problematic for middle-tier micro-
services, since their behavior is dynamic and unpredictable. 

Deuteronomy is a distributed transaction system comprised 
of two components [34]: a Transaction Component (TC) that is 
responsible for concurrency control and recovery, and one or 
more Data Components (DC) that provide data storage and 
access. Although this architecture is targeted at database systems 
rather than middle-tier services, its componentization bears 
some similarities to Thorp’s. However, unlike our TM, the TC 
is heavily involved in the execution of every transaction.  

VII. CONCLUSION 

We presented an architecture and implementation of 
distributed transactions for cloud-based middle-tier applications 
composed of micro-services. In a cloud environment, storage 
latency limits performance, because each transaction requires 
two round-trips to storage and during that time no other 
transactions can update its readset or writeset. We showed how 
to avoid this performance limitation by allowing a transaction to 
release its write locks during phase-one of two-phase commit, 
tracking commit dependencies, and ensuring it does not commit 
until the transactions it depends on have committed. We 
implemented our architecture in Orleans, a middle-tier actor 
framework, and showed its throughput is much higher than that 
of the classical approach. We expect to release Thorp as open 
source before ICDE 2017. 

There is much that can be done to extend this work. On the 
research side, one could experiment with variations of our 
technique to identify further optimizations. For example, one 
could try multi-version optimistic concurrency control, so 
transactions can read or overwrite data that was last written by a 
still active transaction. This should increase the maximum 
throughput when the transaction conflict rate is low. On the 
practical side, it would be beneficial to add a hot standby TM, 
for faster failover. Scalability could be improved by 
parallelizing garbage collection of the transaction table and 
speeding up the RPC server (Sections V.C and V.D). 
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It would be beneficial to avoid deep copying the entire object 
state when a small update is made to a big structure, e.g., a 
dictionary. One way is to implement a custom transactional 
variation of the data structure that can log and undo incremental 
updates. To avoid altering the API, another way is to auto-gener-
ate wrappers that transparently handle log and undo operations. 
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