

October 31, 2016

Transactions for Distributed Actors in the Cloud

Tamer Eldeeb

Columbia University

tamer.eldeeb@columbia.edu

Philip A. Bernstein

Microsoft Research

philbe@microsoft.com

Abstract— Many cloud-service applications have a middle tier

organized as micro-services or actors. Such applications have

small objects that are spread over many servers and communicate

via message passing. Transactions in such an application are

necessarily distributed. However, distributed transactions usually

perform poorly in this environment, primarily because locks must

be held until after the forced-writes of two-phase commit, which

are slow in cloud storage systems. We present a new transaction

protocol that avoids this blocking by releasing all of a transaction’s

locks during phase one of two-phase commit, and by tracking

commit dependencies to implement cascading abort. While a

transaction T runs phase one, later conflicting transactions batch

their updates. After T is prepared, the delayed batch can prepare,

enabling a distributed form of group commit. We describe how to

implement our protocol in an object-oriented runtime such as

JVM or .NET. The performance measurements of our

implementation in the Orleans actor framework show throughput

up to 20x that of two-phase locking and two-phase commit.

Keywords—database system, transaction, two-phase locking

I. INTRODUCTION

Many cloud services have a 3-tier architecture with a
stateless front-end, a stateful middle-tier that implements
business logic, and a storage layer. The stateful middle-tier is
needed due to its heavy CPU and memory requirements, which
make it uneconomical to embed as stored procedures in the
storage layer. Today, the middle-tier is frequently organized as
a set of micro-services. This is driven in part by the popularity
of container technology like Docker [26], which is offered by
most major cloud providers [5][29][32][39]. An application
built as micro-services is composed of small, independent
services that are versioned, deployed, upgraded and scaled
separately. Services communicate via well-defined APIs
(usually REST) and do not have access to shared data.

A similar model is actors, which are also popular in building
middle-tier cloud applications, especially interactive ones such
as games, social networks, Internet of Things, and telemetry
[6][10]. Such applications are made of many actors, which are
objects that do not share memory and interact via asynchronous
messages. Actors are an extreme case of very small micro-
services. In what follows, we use the more familiar, generic term
“object” unless talking about a specific actor system.

It is often necessary to perform an operation that spans
multiple objects with strong consistency and fault tolerance
guarantees. Since objects are isolated from each other, multi-
actor operations require a transaction mechanism [14]. Since
cloud services are distributed across many servers for scalability
and availability, most transactions that access multiple objects

will access multiple servers. Such transactions must be
distributed. The well-known challenges of scaling distributed
transactions, e.g. in [31][45], has led many cloud systems to
offer limited transaction support (e.g., within a shard or with
weak isolation) or no support at all. This puts the burden on
developers to use ad-hoc methods to obtain cross-object
consistency, which is hard to do well.

To understand the scalability challenge, consider the most
popular distributed transaction protocol, two-phase locking
(2PL) for isolation with two-phase commit (2PC) for atomicity.
To ensure isolation, a transaction holds locks until it finishes
executing. Each object in its readset can release read-locks when
it receives a prepare-request in phase-one of 2PC. However,
each object in its writeset must hold its write locks until it
receives a commit request in phase-two of 2PC. This technique,
called strict 2PL, ensures that a transaction that aborts before
phase-two can undo its writes easily, without cascading aborts.

Two-phase commit does two synchronous writes to storage
before phase-two, one to prepare and one to commit. Thus, a
data item participating in a transaction needs to be locked and
inaccessible for two round-trips to storage. This greatly limits
throughput on write-hot data, which is a bottleneck in most
transaction applications. For example, a typical cloud storage
system has high latency due to networking, disk, and replication
overhead. In our runs, a write to cloud storage takes on average
~20 milliseconds (ms) within a single datacenter. Thus, a trans-
action holds locks for ~40 ms. This limits throughput to 25 trans-
actions/second (tps) on write-hot data, even though distributed
transaction execution typically takes a few milliseconds. Low-
latency SSD-based cloud storage is faster [4][28], but it still
incurs double-digit millisecond 2PC latencies, plus higher cost.

This problem of lock-holding time also applies to system that
use optimistic concurrency control (OCC). Like strict 2PL, an
OCC validator needs to set write locks on a transaction T’s
writeset before validating T and hold those locks until T is
committed, to ensure T can be aborted without cascading aborts.

In this paper we present a novel distributed transaction
system that avoids these problems by allowing a transaction to
release locks early, during phase-one of the 2PC protocol. After
a transaction T finishes executing, it will not acquire more locks,
so holding locks after this point has no value from a 2PL
perspective. But if T releases write locks before it commits,
subsequent transactions can read “dirty” data that will be invalid
if T aborts. To avoid this inconsistency, a transaction keeps track
of its dependencies on uncommitted transactions. A central
validator service, the Transaction Manager, makes sure that T
commits only after all of T’s dependent transactions commit. If
one of T’s dependent transactions aborts, then T will abort too.

2

After T releases its write lock on object O, suppose another
transaction T1 updates O, terminates, and runs phase-one of 2PC.
T1 can unlock O, but must wait for T to finish writing O to
storage before it can write O to storage. This handshake ensures
that T1’s storage write is applied after T’s storage write. Since O
is unlocked, another transaction T2 can update O, terminate, run
phase-one of 2PC, and unlock O. Thus, while T is writing to
storage, a sequence of later transactions can update O, terminate,
start phase-one of 2PC, and unlock O. After T’s storage write
finishes, all of those later transactions can write their updates to
O’s storage as a batch, in one round-trip.

This batching of updates greatly increases transaction
throughput on write-hot data. It is analogous to group commit, a
popular technique for increasing transaction throughput in
centralized systems. It also improves transaction latency. In a
system that holds locks through 2PC, each transaction in a batch
would have to wait for two synchronous writes by every
transaction that precedes it in the batch, instead of just the one
transaction that precedes the batch. Our performance
measurements show throughput up to 20x that of strict 2PL/2PC,
which we believe is sufficient for most real world applications.

We describe a general implementation architecture for our
protocol in an object-oriented runtime such as JVM or .NET. It
uses a centralized transaction manager to validate dependencies
and to assign a timestamp to each transaction. Centralizing the
transaction manager simplifies recovery. Timestamp assignment
enables snapshot reads of multiversion data, to avoid conflicts
between read-only queries and update transactions.

We also describe our implementation of that architecture in
Orleans [10], a popular platform for building distributed
applications using the actor model. In Orleans, actors are
location transparent and can move between servers dynamically.
This presents interesting challenges for keeping track of
transaction execution and data access, challenges that apply to
other actor platforms too. Finally, we present results and
analysis of experiments measuring the performance of our
implementation and comparing it to that of strict 2PL/2PC.

In summary, our contributions are as follows:

 We introduce a new optimization of 2PL/2PC for middle-

tier applications that enables high transaction throughput

despite high storage latency. It applies to cloud storage or

any system where storage latency is much higher than

transaction execution time.
 We describe a generic implementation architecture for the

new mechanism (Sections II and III).
 We describe an implementation in a commercial program-

ming framework, Orleans (Section IV). This is the first

implementation we know of that supports cascading aborts.
 We present an experimental study that substantiates our

performance claims (Section V).

Section VI covers related work. Section VII is the conclusion.

II. OVERVIEW

Conceptually there are two main entities in the system:
Application Servers (or simply, servers) where transactions

execute, and the Transaction Manager (TM), which is
responsible for validating a transaction’s dependencies (see
Figure 1). A transaction executes as a set of communicating
objects. Stateful objects persist their state in cloud storage. The
TM has a log, which also is in cloud storage.

A transaction T starts by a client request to one of the servers
to start a new transaction. That server acts as T’s coordinator.
As T executes, it acquires locks on objects it accesses at the
coordinator and other servers, and it records all dependencies.
After T finishes executing, the coordinator starts the prepare-
phase of 2PC by asking each object O that T accessed to prepare.

When O receives a Prepare request, it releases T’s lock. If T
read but did not update O, then O replies “Prepared” to T’s
coordinator. Otherwise, O has to write T’s update to storage. If
O has another in-progress storage-write W, it waits for W to
complete before persisting T’s update (and any other updates to
O while W was in-progress). After persisting T’s update, O
replies Prepared to T’s coordinator. After receiving a reply of
Prepared from all objects that T accessed, T’s coordinator sends
a description of T and T’s dependencies to the TM for validation.

To process T’s validation request, the TM waits until T’s
dependencies have committed. Then it assigns a (logical)
timestamp to T, writes a commit record for T to its log, and
notifies T’s coordinator. Finally, T’s coordinator replies to the
client’s request that T committed.

This design has several desirable characteristics that were
mentioned in Section I. First, write locks are no longer held
during the lengthy phases of 2PC that involve network round-
trips and writes to storage. Second, since all commit decisions
are made in one place (i.e., the TM), as long as the TM is alive
it is easy for a server to learn the fate of a transaction, for
example, when it times out waiting for a decision or while
recovering from a failure. To cope with TM failure, a warm- or
hot-standby TM can be used. Finally, the TM can provide a safe
timestamp to use for reading consistent snapshots, which allows
read-only transactions to execute without locks, without the
need for validation, and without 2PC.

This design has three potential drawbacks: cascading aborts
are possible, the centralized TM is a scalability bottleneck, and
single-server transactions require validation. First, regarding
cascading aborts, they will happen only due to server failures,
e.g., a hardware or operating system failure, which are relatively
rare. To see why, consider the other possible failures:

Transaction
Manager

(TM)

Log

Application

Distributed
Runtime
Services

Object-
Oriented
Runtime

Figure 1 System Architecture

3

 When a transaction releases its locks, it has already

finished executing, so transaction program failures and

deadlocks are no longer possible.
 A controlled failure, such as a rolling upgrade, can be

handled gracefully by waiting for all of a server’s

transactions to finish before restarting the server.
 If the TM fails, a watchdog detects that fact and recreates

the TM, connecting it to the existing TM log. Since each

transaction knows its dependencies, it can re-send its

validation request to the new TM.

When a server S fails, there is significant delay in cluster
reconfiguration, since other servers need to wait long enough to
be sure that S failed and is not simply slow. Then they must work
around S’s failure until S recovers. This typically takes a minute
or so. Thus, independent of the existence of transactions,
application execution will be disrupted. Cascading aborts will
add to the period of unavailability, but the effect will be
incremental, not a fundamentally new effect to be coped with.

Second, regarding the TM as a potential bottleneck, we
observe that the TM is a simple RPC server that is not involved
during most of the transaction execution. By carefully
controlling communications to the TM, as we describe in
Section III.C, our TM implementation can process hundreds of
thousands of transactions per second; we substantiate that with
measurements in Section V.D. Percolator [40], Tango [8], and
other systems have RPC servers similar in purpose to ours that
achieve very high throughput as well. Therefore, the TM will
not be a bottleneck for the vast majority of applications.

The third issue is transactions that update just one object
ordinarily do not need to execute 2PC. However, in our design,
if a transaction T updates an object whose latest version is not
yet committed, then the TM must validate T before T commits.
This affects latency, but not throughput due to batching

Like any transaction system (2PL or not), our design works
best if transaction execution time is short, since it reduces the
conflict rate. Ideally, a transaction T accesses objects that are
already in memory before T starts. This avoids T waiting for
objects to be loaded from cloud storage while it holds locks. If
the data set is too large to fit in memory, the developer can plan
data accesses to achieve high throughput for hot objects. One
way is to pre-fetch objects before executing the transaction.
Another is to arrange object accesses so that hot objects are the
last to be accessed. This is beneficial because it minimizes the
execution time during which an access to the hot object causes
a transactions conflict. Other techniques are in [14], Chapter 6.

III. RUNTIME ARCHITECTURE

Our proposed implementation architecture assumes that
applications are written in an object-oriented language that uses
an object-oriented runtime library, such as the .NET Framework
or Java Virtual Machine, and executes in a cluster of servers. We
further assume the existence of a set of runtime services that run
on each server in the cluster (collectively referred to as “the
runtime”) that provide distributed systems functionality (e.g.
directory services, RPC, and failure detection and recovery). To
support transactions in this environment, we augment the

runtime with the following abstractions: transactional object,
transaction manager, transactional RPC, transaction context,
and transaction agent.

A. Transactional Object

A transactional object is an object whose state is protected
by ACID transactions. It has methods to read and write its state
and to prepare, commit and abort, which are required for the
2PC protocol. In effect, a transactional object acts as a mini-
database. It is the unit of access, meaning that a transaction that
reads or writes any part of the object’s state is considered to have
read or written its entire state. Examples of a transactional object
could be a micro-service in a micro-services platform, or an
actor in an actor-based system.

A transactional object is multi-versioned, meaning that it can
hold many versions of its state. This enables it to undo updates
due to cascading aborts and to support snapshot queries [9],
which we use for read-only transactions. Each version has a
version id, e.g., the identity of the transaction that wrote it.

We assume that transactions are implicitly bracketed by
method tags, as in .NET’s COM+ and J2EE. Each method, M,
of an object can have one of the following tags:

RequiresNew – Every call to M starts a new transaction, T, and
completes T on exit.

Required – If M’s caller is executing a transaction, T, then M
becomes part of T. If not, then M starts a new transaction, T', and
completes T' on exit.

NotSupported – M never executes within a transaction, even if
its caller is executing a transaction.

When M is invoked, the runtime uses M’s tag to determine
whether to start a transaction or propagate the caller’s
transaction to M. To start a transaction, the runtime sends a
message to the Transaction Manager (TM), which dispenses a
transaction id. If a method executing in object O1 is running in
transaction T and O1 invokes a “Required” method in another
object O2, then O2 should execute in T. This is called
transactional RPC. Methods can also be tagged as ReadOnly.

B. Transaction Context

Each RPC made by a transactional object carries a hidden
parameter called the transaction context. The transaction
context includes the identity of the caller’s transaction, T, and of
the objects and versions accessed by T. The runtime creates it
when T starts. It contains:

 T’s id

 The identity and version of objects that T read (i.e., T’s

readset)

 The identity and version of the objects that T wrote (i.e.,

T’s writeset)

 T’s dependencies (i.e. the transactions that must commit

before T can commit)

The transaction context is passed back and forth between the
object that started T and other objects T accesses. The
transaction context supports a Union method, which accepts

4

another transaction context with the same transaction id and
unions its readset, writeset and dependencies with its own. After
an RPC is completed, the callee returns an updated transaction
context which the caller unions with its own.

C. Transaction Agent

The transaction agent (TA) is a service that runs on every
server in the cluster. It provides interfaces to start a new
transaction, commit a transaction, and query the status of a
transaction. Transactional objects do not communicate with the
TM directly, but use the TA to provide TM functionality.

To start a new transaction, T, the runtime calls the TA with
a few parameters (e.g., timeout), which the TA forwards to the
TM. The TM starts T and returns a transaction id.

To commit, T calls its TA, passing its transaction context, C.
Then the TA runs our modified 2PC protocol. During the
prepare-phase, the TA calls Prepare on each transactional object

O participating in T, which it finds in C. Prepare unlocks O and,

if T wrote O, persists O’s updated state. If all of T’s Prepare’s
succeed, the TA forwards C to the TM to validate T’s
dependencies and commit T. As in standard 2PC, if the prepare-
phase fails or the TM aborts T, the TA calls Abort on all

participants. However, the TA does not call Commit on the
participants if the TM replies with success. This is lazily done
by the TM during checkpointing, which is described in Section
III.G.

The TA controls all communications with the TM. This is
critical for system scalability. The system is limited by the rate
at which one server can process messages. To enable the system
to scale to a higher transaction rate than the maximum message
rate, the TA groups many TM requests into a smaller number of
messages. It sends the Start and Commit calls that it receives to
the TM in batches. At any point in time the TA has two TM
messages outstanding: one for transaction start requests and one
for transaction commit requests. All requests received after the
message is sent are queued until a response is received and then
are batched in the next message. This prevents the TAs from
overwhelming the TM. It also allows the TM to limit the rate of
messages it receives from TA’s by increasing latencies as its
load increases. The TA can apply throttling if its queues grow
beyond a threshold.

D. Concurrency Control

We propose using object-granularity locking for
concurrency control. When the runtime propagates a transaction,
T, to a transactional object, O, it locks O on behalf of T. While
T holds the lock, only method calls that are part of T may
execute. Other calls are queued. Any deadlock avoidance
scheme can be used. We propose using Wait-Die [42]. We
assume the runtime guarantees that there is only one active
instance of O at any point in time.

Since locks are not persisted, if a server hosting a
transactional object O fails, a transaction T holding the lock on
O will lose the lock and T’s in-flight updates of O. If O recovers
before T starts 2PC, then T must avoid being fooled into commit-
ting and thereby breaking atomicity. The prepare-phase does this
by checking whether T still holds its locks; if not, it aborts T

(which might cause a cascading abort). It is also possible for T
to lose a lock due to a failure and then re-acquire the lock by
accessing O again before it finishes, perhaps via a different call-
path. In this case, T’s context will refer to two versions of O. To
handle this, if the union operation on T’s transaction context has
seen more than one version of any object, it will abort T.

E. Managing Object State

As mentioned in Section III.A, a transactional object acts as
a mini-database, with methods to read and write state and
Prepare, Commit and Abort its transaction.

For each transactional object O, the runtime maintains two
persistent logs: the Active versions log and Stable versions log.
The active versions log is an ordered list of writes by
transactions that have started the prepare-phase but have not yet
told O whether they have committed. Each entry is a pair <S, T>
where S is the value of the state written by transaction T. The
stable version log is an ordered list of the writes that are known
to be committed. Each entry is a triple < S, T, LSN> where S and
T are the same as before, and LSN is the log sequence number
assigned by the TM to T. The stable version log may have more
than one version to enable snapshot reads at an older timestamp.

Each transactional object, O, also has an in-memory working
version that can be read or written by the transaction holding the
lock on O. This working version eventually moves to the active
versions log during the prepare-phase.

The basic methods of transactional objects are shown in
Figure 2. To service a read on object O by transaction T, the
runtime invokes Recover(), which asks the TA for the status of
transactions in O’s active versions log and removes all that are
known to have aborted. This avoids creating a dependency that
is sure to cause T to abort. If this is T’s first access of O, the
runtime creates a working version for O, which is a copy of the
latest write, and returns that working version for every
subsequent access. It also updates T’s readset and dependencies
in its transaction context. If T is a read-only transaction, it does
snapshot reads, which are described in Section III.I. The write
procedure just overwrites the working version with a new one.
To simplify the description, we assume a transaction does at
most one write to an object. In reality a transaction can do many
writes, and the transaction context keeps track of the write count.

As a mini-database, a transactional object also participates in
2PC. Recall that the coordinator TA calls Prepare on every
transactional object O that participates in a transaction, T. This
method is responsible for ensuring that no failures happened
since T accessed O, and that T’s writes to O (if any) are persisted
so that T can commit even if failures happen later.

Note that the object lock is released before the write is
persisted. The write is queued on the persist_queue, which is
drained by a background worker. It performs the write to
persistent storage by appending the version to the active versions
log, after which it notifies the caller of Prepare. The log-append
is asynchronous, returning a promise. The worker writes all the
versions in the queue in one batch operation, which is essential
to enabling high write-throughput per object.

Our design is unconventional, using a log-per-object, instead
of a log-per-database. It makes sense with cloud storage because

5

storage writes scale out and because cloud storage systems do
not currently offer a log abstraction. If write-bandwidth per-
server is a bottleneck, a per-database log could be beneficial by
enabling batched writes over different objects; our design could
exploit it as in [8]. However, our design can obtain the same
benefit without a shared log by batching writes to objects in the

same shard into one write, which is supported by most cloud
storage systems. We suspect a per-database log would do no
better than that, a possible topic for future work.

F. Transaction Manager

There is one (active) TM per application deployment, which
is responsible for starting, validating, and committing
transactions. It is also responsible for aborting transactions that
do not finish executing within a timeout period (even if the
transaction is not explicitly aborted), to handle coordinator fail-
ures among others. The TM must be fault tolerant so it can
perform its duties even in the face of its own failure.

The TM maintains a log of transaction state in persistent
storage. It commits a transaction T by adding a log entry for T.
It uses the well-known presumed-abort optimization where the
absence of a commit record in the log implies T aborted and thus
does not need to log aborts [40]. It also maintains an in-memory
version of the log called the Transaction Table. When a TM
starts up, it rebuilds the transaction table from the log. To avoid
logging each transaction start, it logs a high-water mark and then
assigns transaction ids up to that water mark in-memory.

To commit a transaction T, the TM receives T’s context
object. It queues T until all of T’s dependencies have committed.
If any of T’s dependencies abort, the TM aborts T, too;
transactions that depend on T will abort when they ask the TM
to commit. After all dependencies are satisfied, the TM puts T
on the group commit queue, to be picked up by a service
running in the TM called the group commit worker and durably
written to the log. After T is written to the log, the TM replies to
the coordinator TA with success. For the purpose of evaluating
dependencies, the TM treats T as committed once it is added to
the group commit queue, without waiting for the log write to

complete. This is safe because when a transaction T that
depends on T commits, it will be appended later in the log. So if

a TM or log failure prevents T from committing, T will not
commit either. This is a variant of a well-known optimization
described in [24] [34].

For each transaction T in the group commit queue, the group
commit worker appends a record containing T’s transaction id
and the identity of objects in its writeset to the durable log in
queue order, and assigns T’s log sequence number (LSN).

The unavailability of the TM will block the progress of all
active transactions and prevent starting new ones. Thus, it is very
important that the TM is made highly available, e.g., by enabling
it to fail over to an active replica with little downtime after
failure or upgrade. This can be done using standard replicated
service designs [17][19], which we do not describe here.

G. Checkpointing

As the system runs, the TM and runtime continually append
entries to the TM’s log and the object’s active version log. We
need a process of checkpointing to trim these logs and remove
old entries in order to prevent the logs from growing arbitrarily
large. To do this, the TM puts all committed transactions on the
checkpoint queue in LSN order to be picked up by a service in
the TM called the checkpoint worker.

Write(S)

TC := Get Transaction Context

working_version = S

Add O to TC.write_set

IF active_versions_log is not empty:

 V = active_versions_log.last.T

 Add V to TC.dependencies

END IF

Read
TC := Get Transaction Context

Recover()

IF TC.transaction_id does not have working version:

 State = DeepCopy (get_latest_from_logs())

 Add (O, V) to TC.read_set

 IF active_versions_log is not empty:

 Add V to TC.dependencies

 END IF

 working_version = State

END IF

RETURN working_version

Recover
FOR each entry E in active_versions_log:

 IF TransactionAgent.IsAborted(E.Version):

 Abort(E.Version)

 BREAK

 END IF

END FOR

Abort(transaction_id)
IF active_versions_log contains transaction_id:

 Remove entry and all subsequent entries from log

END IF

Prepare(transaction_id, read_version, write)
lock_holder = get_current_lock_holder()

IF lock_holder != transaction_id:

 RETURN false

END IF

IF read_version != null and

 read_version != get_latest_version():

 RETURN false

END IF

Release_lock()

IF !write:

 RETURN true

END IF

Task<bool> promise

 = active_version_log.append(working_version)

RETURN promise

Figure 2 Generic methods of transactional objects

6

This worker calls the Commit method on every object O in
a transaction T’s writeset to notify O that T committed and
informs O of T’s LSN. Then O adds T to its stable version log
and removes T from its active version log. It also removes older
versions from T’s stable version log if the log has grown too
large or if the older versions will not be used for snapshot reads
again. (See Section III.I for more detail.) Since the TM has
limited computational resources and is a potential bottleneck,
these calls are offloaded to the application servers and batched
for efficiency. After every object in T’s writeset acknowledges
having added T to its stable version log, the TM trims its own
log by removing T’s entry.

H. Garbage Collection

To prevent the Transaction Table from growing too large
and causing the TM to run out of memory, the TM needs to
identify which transaction entries are no longer needed and can
thus be removed from the table.

The TM needs a Transaction Table entry for a transaction T
for as long as T is active. Using presumed-abort, it presumes T
aborted if it does not exist in the table; so the TM can remove
T’s entry immediately after T aborts. If T commits, the TM needs
to keep T’s entry until all transactions that depend on T have
completed. To determine how long to keep T’s entry, after the
TM checkpoints T, it records the largest transaction id tmax of all
active transactions. No transaction with id greater than tmax will
depend on T, because after T is checkpointed, all objects in T’s
writeset know that T committed. Therefore, when transaction
tmax completes, the TM can remove the entry for T.

I. Snapshot Read

The TM’s log totally orders the transactions, so each LSN
defines the point-in-time of a consistent snapshot. We use LSNs
as timestamps. To read a consistent snapshot at time t, for each
object O in a transaction T’s readset, T reads the version in O’s
stable version log that has the largest LSN ≤ t.

The TM checkpoints transactions in LSN order. Thus, after
it checkpoints a transaction whose LSN is t, all entries with LSN
≤ t are already in the stable transaction logs. This makes t a safe
timestamp to use for a snapshot read. Whenever the checkpoint
worker successfully completes a batch, it sends the LSN of the
last transaction the batch, tsafe, to the TAs in every message, so
the TAs can use it for read-only transactions.

A snapshot read with timestamp t fails if the object O has no
version with LSN ≤ t in its stable version log. This can happen
if O trimmed its log and removed old versions. To make this less
likely, during checkpointing each object checks its TA’s value
of tsafe to decide whether to remove an old version from its log.

IV. ORLEANS IMPLEMENTATION

This section describes our implementation of the
architecture of Section III in Orleans, called Thorp.

A. Introduction to Orleans

Orleans is a programming framework that extends the .NET
Framework to simplify the development of scalable and fault-

tolerant distributed applications. We briefly introduce Orleans
here, just enough to understand how we added transactions to it.

In Orleans, objects are called grains and have two important
properties. First, grains are actors, so that they cannot share state
and can communicate only via asynchronous method calls.
Second, each grain has a location-transparent identity, which is
the only way to reference it. These two properties enable the
Orleans runtime to place each grain on any server. Typically, it
distributes grains randomly across servers of a deployment, to
minimize the chance that any server is a bottleneck.

If a grain G is not currently running when one of its methods
is invoked, the Orleans runtime chooses a server on which to
activate G, executes the G’s constructor on that server, and then
performs the method call. It retains a reference to G in its
distributed grain directory so that future invocations can be
directed to it. If a grain is idle for too long, the Orleans runtime
calls the grain’s destructor and releases the grain’s resources.
This model of activate-on-demand is very similar to the demand-
paging model of virtual memory. For this reason, Orleans calls
it the Virtual Actor Model.

Orleans offers a simple declarative model of grain
persistence, where a grain class identifies its member variables
that should be persisted. The Orleans runtime maps those
variables to persistent storage, which the user specifies via a
StorageProvider attribute. It uses that mapping to populate a
grain state when it is activated and to write it back out when it is
deactivated. It also allows a grain to save its state at any time,
e.g., just before returning from a method call that modifies its
state. Developers can ignore this declarative persistence model
and write custom code to map object state to storage.

B. Programming Model

To ensure the programming model for transactions is natural
to Orleans users, transactions are opt-in. They have no impact
on programmers unless they use them. Transactional grains (i.e.
transactional objects) are identical to regular grains except that
accesses to their state occur within a transaction. For practical
reasons, a second goal was to minimize modifications to the
Orleans runtime. Therefore, much of the implementation is done
in base classes that transactional grains use via inheritance.

1) State
For each grain class, the developer defines a class that

represents the grain state to be protected by transactions. Each is
an arbitrary C# class, expressed similarly to declarative
persistence. See Figure 3.

2) Transactional Grain
For a grain to be declared transactional, its interface has to

extend ITransactionalGrain; and the grain implementation has
to extend TransactionalGrain<T>, where T is the class that

defines its state. (See Figure 4.) This is analogous to a non-

public class BankAccountState
{
 long Balance { get; set; }
 string Currency { get; set; }
}

Figure 3 State definition

7

transactional grain, whose interface has to extend IGrain and
whose implementation has to extend Grain. The programmer
declares the persistent store for the grain state using the
StorageProvider attribute, just like in declarative persistence.
To access the state, the grain uses a C# property field called
State that is defined in the base TransactionalGrain<T>.

An attribute on each grain method is used to describe where a
transaction starts and how grain method calls compose within a
transaction. There are three possible values of the attribute,

which were described in Section III.A: Requires New, Required,
and Not Supported. For example, in the class definition in Figure
5, the Transfer method will always start a new transaction when
called. Since BankAccountGrain is a transactional grain, its
methods have the “Required” transaction attribute by default.
This means the calls to Withdraw and Deposit will join the
transaction started by Transfer. Note that ATMGrain can start
transactions even though it is not a transactional grain itself.

C. Implementation

1) Transactional Grain
Much of the runtime functionality in Section III is

implemented via inheriting from TransactionalGrain. The class
TransactionalGrain<T> implements Prepare, Commit, Abort,

and Recover, as described in Sections IIIIII.A, III.C, and III.E.
Write and Read are implemented as the setter and getter of the
State property. Every transactional grain class inherits from
TransactionalGrain<T> and hence picks up its behavior.

Read and Write operate on the object’s state, which is of type
T. They map state to storage using Orleans’ declarative

persistence model, described in Section IV.A. Orleans
serialization features are used to generate a deep copy of the
state of arbitrary type T as required by the Write procedure.

2) Runtime extensions
The Orleans Runtime is a set of subsystems that run on each

server of an Orleans cluster. It is responsible for turning grain
method calls into messages, locating the server that has the grain
instance (called an activation), forwarding the message to the
activation, scheduling the messages to guarantee single-threaded
access and finally running the grain code to execute the message
and send back the result of the method call. We added the
Transaction Agent (TA) as a subsystem to the runtime.

We extend the runtime to provide transaction support. The
runtime recognizes the transaction attribute. It calls the TA on
the local server to start a transaction and get a transaction
context. It passes that context along with calls to methods that
have the “Required” attribute. Since a transaction can make
concurrent calls to grains, it takes the union of contexts that are
returned. Finally, when it is time for a transaction to commit, the
context is passed to the TA. The runtime is also modified to
enforce the behavior described in Section IV.

The runtime scheduler locks the activation while a method
is executing until the method finishes. We modify this behavior
for transactional grains, so that the lock is kept even after the
method execution is complete, until explicitly released (or due
to timeout, to handle failures). While the lock is held, only
method calls that are part of the transaction holding the lock (and
read-only methods) are allowed to execute; the rest are queued.
Wait-Die is used to prevent deadlocks.

3) Transaction Manager
The TM is implemented in C# as a stand-alone multi-

threaded service. It uses the Orleans client library to
communicate with the Orleans cluster and invoke grain
methods. To offload work to the servers during the
checkpointing process we described in Section III.G, the TM
does not invoke methods directly on TransactionalGrain.
Instead, it relies on grains called CheckpointHelper to call the

Grain Interface

public interface IBankAccountGrain :
ITransactionalGrain
{
 Task<bool> Withdraw(long amount);
 Task Deposit(long amount);
}

Grain Implementation

[StorageProvider(
 ProviderName = "AzureTableStore")]
public class BankAccountGrain :

TransactionalGrain<BankAccountState>,
 IBankAccountGrain
{
 public Task<bool> Withdraw(long amount)
 {
 if (this.State.Balance >= amount)
 {
 this.State.Balance -= amount;
 return Task.FromResult<bool>(true);
 }
 return Task.FromResult<bool>(false);
 }
 public Task Deposit(long amount)
 {
 this.State.Balance += amount;
 return TaskDone.Done;
 }
}

 Figure 4 Transactional grain

public class ATMGrain : Grain, IATMGrain
{
 [Transaction("RequiresNew")]
 public Task<bool> Transfer(
 IBankAccountGrain from,
 IBankAccountGrain to,
 long amount)
 {
 bool can = await from.Withdraw(amount);
 if (can)
 await to.Deposit(amount);
 return can;
 }
}

Figure 5 Using transactions in Thorp

8

Commit method on each individual TransactionalGrain, which
happens on the Orleans servers.

V. EXPERIMENTS

We present an experimental study of Thorp, our Orleans
transactions implementation. First, we measure the performance
of the TM to verify its scalability. We then compare the
performance of transactions to non-transactional persistent
Orleans grains to measure the transactions overhead. Finally, we
compare Thorp to a traditional strict 2PL/2PC implementation.
In this section, when we refer to 2PL, we mean strict 2PL.

A. Experimental Setup and Workload

In all experiments we deployed Orleans as a Microsoft
Azure cloud service. The deployment has 3 roles:

Orleans Silo: Orleans servers are called silos. Each one is
configured as a Large Azure virtual machine (VM), which has 4
cores and 7GB RAM. The number of instances varies depending
on the experiment.

Orleans TM: This is configured as an Extra-Large Azure
VM (8 cores, 14GB RAM). There is always one TM instance.

Workload Generator: This is where we run clients that
generate the experiment’s workload. It is configured as an Extra-
Large Azure VM; the number of instances varies depending on
the experiment.

We use Azure Table Storage [38] as durable storage for all
state. Each entity (i.e. row) in an Azure Table has a key and a
schema-less dictionary as the value. We distribute the grain
writes across multiple storage accounts to circumvent Azure’s
limits for a single storage account.

Each reported result is computed by running the experiment
3 times for 2 minutes and averaging the results. For readability
of graphs, we omit standard deviations, which in all cases are
under 10%.

B. Summary of Results

The key findings of our experimental evaluation are:

 Thorp’s TM can handle hundreds of silos and over 100K
transactions per second.

 Read-only transactions have very low overhead, whereas
read-write transactions are expensive.

 For a single write-hot grain, the throughput of Thorp is over
20x the throughput of 2PL/2PC.

 Thorp’s throughput far outperforms 2PL/2PC for workloads
that have write-hot grains. For workloads where load is evenly
distributed, Thorp’s throughput is similar to 2PL/2PC but it
suffers from higher latencies due to batching.

C. TM Transaction Processing

In this experiment, we measure the throughput of the TM’s
transaction processing pipeline. The workload generator calls
the TM to get a transaction id, then creates a synthetic
transaction and submits it to the TM to be committed. Synthetic

transactions are created in groups, where each transaction takes
a dependency on all transactions in the same group with smaller
ids. We vary the number of transactions in each group, as well
as the order in which the transactions within the group are
submitted to the TM for commit, to measure their effects on the
throughput. Note that in this experiment the workload generator
is running in the same process as the TM, so there is no
networking overhead.

The results are shown in Figure 6. Each bar is labelled n/r
where n is the size of the group and r is the order in which
transactions are submitted within group. As expected, the
throughput declines with an increase in the number of
dependencies and when dependencies are satisfied out of order.
The effect of reversing the order is larger than increasing the
group size. Throughput drops significantly going from group
size 1 to group size 3, because transactions that have no
dependencies bypass a significant portion of the processing.

Profiling revealed that insertion of new records in the
transaction table becomes a bottleneck as the table grows larger.
This can be mitigated by parallelizing the sequential garbage
collection algorithm so it can remove old records faster as well
as by partitioning the table, but we leave that for future work.

D. TM Scalability

Our goal is to measure the TM’s end-to-end performance,
including networking and TM processing of requests. In this
experiment, the TAs run on the workload generator machines.
This allows us to run multiple TAs on each VM and thus be able
to run with more TAs than if we ran one per silo. Each TA starts
transactions and submits them to the TM for validation and
commit at a fixed rate (1000 per second). Each transaction has a
single grain in its readset and writesets.

As shown in Figure 7, throughput scales linearly with each
agent added until it reaches ~110k, after which it remains steady
with increasing latency and variance. At that rate we are not
limited by CPU utilization or the bottlenecks identified in
Section V.A. By profiling, we discovered a bottleneck in the
RPC server that causes the processing and deserialization of
incoming messages to be single-threaded. We believe that TA to
TM messaging can be greatly improved over the current

0

50000

100000

150000

200000

250000

300000

Tr
an

sa
ct

io
n

s
/

se
co

n
d

Figure 6 TM Throughput

9

implementation (which we picked for simplicity not efficiency)
to reduce overhead and obtain much higher numbers if needed.

E. Transaction Overhead

We measure transaction overhead by comparing the
performance of transactional grains vs. non-transactional
persistent grains. The setup for this experiment has one Orleans
silo, where we activate 200 transactional grains, each with 1KB
of state. The workload generator has multiple workers. Each
worker repeatedly selects a grain id uniformly at random and
issues one RPC to that grain, which could either be a read-only
operation or a write. We vary the distribution of read-only and
write operations for each run as shown in Figure 8. In these and
other throughput measurements, the number of workers is
chosen high enough to keep the silo CPU utilization above 90%.
In latency measurements, the number of workers is fixed at 20.

Read-only transactions have a relatively small effect on
throughput, and virtually none on latency. This is expected,
since the only additional work done by read-only transactions
compared to ordinary reads is a deep copy of the grain state. By
contrast, write operations (even non-transactional ones) are
much costlier. Write transactions incur 2 extra RPCs, 2 writes to
storage, a deep copy, and maintenance of multiple versions. In
addition, the effect of batching commit requests to the TM
significantly impacts latency. Therefore, a developer should use
transactions only when they are really needed, and not just
mindlessly do every operation within a transaction.

F. Single-Grain Micro-benchmark

Hot data is a worst case for transaction performance and
often arises in practice. In this experiment we evaluate Thorp’s
performance for a single hot grain and compare it to 2PL/2PC
and non-transactional persistent grains. The setup is similar to
that of Section V.E, except we only activate one grain whose
state size is 100 bytes. We start by measuring read-only
performance. The results are in Figure 9. As expected, the
overhead of deep-copying grain state affects Thorp’s Read
throughput. Read-2PL/2PC’s performance suffers because it has
to do an extra RPC to release the locks, though it does not have
to run 2PC.

Since the grain is locked during the two storage writes of
2PC, we can analytically model the write throughput of
2PL/2PC using the following formula:

1 / [2 * IO_Delay]
where IO_Delay is the latency of writing to storage. If execution
time is negligible compared to IO_Delay, then for an average
IO_Delay of 10ms we expect 2PL/2PC throughput to be ~50
transactions per second.

In Thorp the write throughput is not directly tied to storage
latency. However, there is a limit on the size of an Azure Table
entity (64 KB) which limits how many versions a grain can hold
onto before they are checkpointed and removed. We define Max
Log Size as the maximum number of versions the grain can hold
in its log before hitting this limit. We define the Checkpoint
Rate of the grain as the number of checkpoints it performs per
second. Then, analytically we can model the write throughput of
Thorp using the formula:

Checkpoint Rate * Max Log Size

Figure 10 plots the results of running single-grain write
workloads. Thorp’s write throughput beats 2PL/2PC by more
than 20x. Moreover, it is higher than the plain persistent grain,
because the latter is locked while the state is persisted to storage.

The throughput of 2PL/2PC follows the analytical model
closely, but not for Thorp. At first glance, one would expect a
max log size of 640, since the max entity size is 64KB and the

0

20

40

60

80

100

120

0

5000

10000

15000

20000

25000

30000

M
il

li
se

co
n

d
s

T
ra

n
sa

ct
io

n
s

/
se

co
n

d

Throughput (Tx/sec) 50%-ile Latency (ms)

95%-ile Latency (ms)

Figure 8 Performance of a single Orleans silo

0

1

2

3

4

5

0

5000

10000

15000

20000

Read Read
2PL/2PC

Read Thorp

M
ill

is
ec

o
n

d
s

Tr
a

n
sa

ct
io

n
s

/
se

co
n

d

Throughput (Tx/sec) 50%-ile Latency (ms)

95%-ile Latency (ms)Figure 9 Grain read throughput

Figure 7 TM Throughput w.r.t # Transaction Agents

10

grain state is 100 bytes. Given the observed checkpoint rate of
16, the model predicts a throughput of approximately 10,000
transactions per second. But we observe much less. One reason
is that a single silo can perform about 1400 transactions per
second, as we saw in Section V.E. While performing all
operations on a single grain is more efficient due to increased
batching of writes to storage, the execution is single-threaded
and the CPU core is saturated at the observed throughput.
Another reason is that the state that is written to the log is more
than 100 bytes per version, due to versioning and serialization
overhead, so the max log size is significantly less than 640.

This experiment highlights Thorp’s ability to better handle
what [1] calls “linchpin objects” which is one of the main
challenges to adapting strongly consistent transactions at scale.

G. Secondary Index

The goal of this experiment is to use a realistic workload to
study how load distribution affects the performance of Thorp
compared to 2PL/2PC. We find database benchmarks to be
unrealistic for a middle-tier actor system, since they are designed
to run as stored procedures and stress database functionality.
Instead, we chose a commonly requested feature in Orleans,
namely, the ability to retrieve grains by the value of a property
other than the primary key, which requires maintaining a
secondary index. The consistency requirements differ from
those found in classical database systems in that it is usually
sufficient for indexes to be causally and eventually consistent
[12]. That is, the index can only be updated after the grain update
commits, and the index update should execute shortly after the
grain update; some delay is acceptable as long as the index
update is not lost or postponed indefinitely.

The workload in this experiment centers around secondary
index updates. In addition to being a real-world Orleans
scenario, it is also representative of multi-step workflows.
Workflow is a popular pattern in middle-tier applications,
where transactions are needed to link successive steps reliably.

There are three types of transactional grains in this work-
load, ValueGrain, IndexGrain and IndexUpdateWorkflow-
Grain. Each ValueGrain has a State that consists of two string
properties, p and p_indexed. The IndexGrains collectively com-
prise a secondary index on the p_indexed value of ValueGrains;
each IndexGrain’s state is a list of references to ValueGrains
whose p_indexed value hashes to a key of IndexGrain. There
are five types of transactions in this workload:

1- ValueGrain property read: Read the value of property p

of a single ValueGrain.

2- ValueGrain property update: Update the value of

property p of a single ValueGrain.

3- ValueGrain indexed property update: Update the value

of property p_indexed of a single ValueGrain vg. Send a

message with the pair <vg, vg.p_indexed> to an

IndexUpdateWorkflowGrain to process the index updates.

4- IndexGrain removal: Read the value of p_indexed of a

ValueGrain. If the value changed, remove the grain’s

reference from the old IndexGrain.

5- IndexGrain insertion: Read the value of p_indexed of a

ValueGrain. and insert a reference into the appropriate

IndexGrain.

After transaction 3 commits, the IndexUpdateWorkflowGrain
is responsible for executing transactions 4 and 5. Note that the
ability to read the ValueGrain’s state and updating the index
atomically means that transactions 4 and 5 are idempotent and
the messages do not have to be processed in order.

This experiment uses 20 Orleans silos. Like Section V.E,
the workload generator has multiple workers, each repeatedly
selecting a grain id uniformly at random and issuing one RPC
to the ValueGrain with that id, which performs one of the
ValueGrain transactions with distribution 50% read, 30%
update and 20% indexed update. Since Orleans load-balances
grains randomly, only 5% of ValueGrains are co-located with
their old or new IndexGrain.

Figure 10 Grain write throughput

0

20

40

60

80

100

120

0

200

400

600

800

1000

1200

Write Write
2PL/2PC

Write
Thorp

M
ill

is
e

co
n

d
s

T
ra

n
sa

ct
io

n
s

/
se

co
n

d

Throughput (Tx/sec) 50%-ile Latency (ms)

95%-ile Latency (ms)

Figure 11 Secondary index workload results

2PL/2PC Thorp

50%-ile Latency(ms) 27 51

95%-ile Latency(ms) 85 112

11

We vary the number of grains in each experiment and
measure the throughput (total transactions per second) and
latency of index update operations (i.e. transactions 4 and 5).
The results are in Figure 11. We measured the latency to
perform the index update operations without transactions or
persistence; the average latency is ~2 ms.

Once again we see that the latency of Thorp is higher than
2PL/2PC due to the effect of batching. The throughput for both
implementations is similar when the load is distributed evenly
across many grains, with Thorp having the advantage due to
faster reads. However, when there is a small number of write-
hot grains, 2PL/2PC’s throughput drops significantly as it
becomes limited by the high storage latency, while Thorp’s
throughput actually improves due to increased batching
efficiency. With 100 hot grains, Thorp performs ~7x better than
2PL/2PC.

VI. RELATED WORK

Commit dependencies: The notion of commit dependency
was introduced in the ACTA framework [21]. We know of two
prior works that use the concept. In SL, if a transaction T1
updates x and a later transaction T2 reads x, then T2 speculates
by having two incarnations, T21 that reads T1’s before-image of
x and T22 that reads its after-image [42]. T21 and T22 both take a
commit dependency on T1. If T1 commits, T22 is retained, else
T21 is retained. The simulation study in [42] of a distributed
DBMS shows that SL gets better throughput than 2PL by
overlapping speculative executions of T2 with T1, at the cost of
more CPU load. By contrast, in Thorp, T2 only takes a depend-
ency on T1 after T1 terminates. Hence, it has no more CPU load,
and its performance benefit derives from batching storage
updates. Unlike SL, Thorp is implemented—not simulated—in
commercial middle-tier programming framework, not a DBMS.

 Microsoft’s Hekaton uses a more limited form of commit
dependency [25]. It allows T2 to take a commit dependency on
T1 if T2 started after T1 finished execution and entered the
validation phase but has not yet committed. Thus, it benefits
from overlapping T2’s execution with T1’s validation. Unlike
Thorp, Hekaton is a DBMS, not a programming framework, and
is not distributed.

Actor Frameworks: An earlier design of Orleans had a
transaction mechanism based on multi-master replication [18].
It only provided snapshot isolation, not serializability. It was
dropped before Orleans was released because it performed
poorly and users found it too complex [10]. Akka is a Java-based
actor framework that has transactions, but only on a single
machine [2]. Orleans is compared to Akka in [10].

Weak consistency models: Although the need for
distributed transactions was a given 15 years ago, since then
there has been a trend toward using alternative models that
provide weaker consistency but better performance or partition
tolerance. Some systems offer transactions only within a shard
[7][11][19]. Some offer weaker consistency, either with
transactions [33][35] [37] or without [20][23][36]. Some avoid
transactions altogether and use a workflow model instead
[27][46] [47]. By contrast, Thorp offers full ACID transactions.

Distributed Transactions: Work on distributed trans-
actions started in the 1970’s [3][15]. Transactional middleware
of the 1980’s offered distributed transactions using a centralized
TM [14], which was standardized by X/Open [44]. Multi-
version concurrency control also began appearing in that period
[13]. Recent examples of distributed ACID transaction systems
include Calvin, Deuteronomy, and Spanner.

Spanner is Google’s geo-replicated database system [22].
Like Thorp, it uses multi-versioning to support lock-free read-
only transactions and 2PL/2PC for read-write transactions.
However, unlike Thorp it holds write locks until after a
transaction commits, which limits throughput as we discussed
earlier. Moreover, it uses the TrueTime API, enabled by GPS
and atomic clocks, to assist in timestamp assignment. This
makes it hard to adopt in a system like Thorp that is intended to
run in public cloud environments that lack that support.

Calvin provides scalable distributed transactions by having
data servers agree on the ordering of transactions before
executing them [45]. Its design depends on deterministically
executing a transaction T once its position in the ordering is
determined. That requires knowing the data items accessed by T
beforehand, which is highly problematic for middle-tier micro-
services, since their behavior is dynamic and unpredictable.

Deuteronomy is a distributed transaction system comprised
of two components [34]: a Transaction Component (TC) that is
responsible for concurrency control and recovery, and one or
more Data Components (DC) that provide data storage and
access. Although this architecture is targeted at database systems
rather than middle-tier services, its componentization bears
some similarities to Thorp’s. However, unlike our TM, the TC
is heavily involved in the execution of every transaction.

VII. CONCLUSION

We presented an architecture and implementation of
distributed transactions for cloud-based middle-tier applications
composed of micro-services. In a cloud environment, storage
latency limits performance, because each transaction requires
two round-trips to storage and during that time no other
transactions can update its readset or writeset. We showed how
to avoid this performance limitation by allowing a transaction to
release its write locks during phase-one of two-phase commit,
tracking commit dependencies, and ensuring it does not commit
until the transactions it depends on have committed. We
implemented our architecture in Orleans, a middle-tier actor
framework, and showed its throughput is much higher than that
of the classical approach. We expect to release Thorp as open
source before ICDE 2017.

There is much that can be done to extend this work. On the
research side, one could experiment with variations of our
technique to identify further optimizations. For example, one
could try multi-version optimistic concurrency control, so
transactions can read or overwrite data that was last written by a
still active transaction. This should increase the maximum
throughput when the transaction conflict rate is low. On the
practical side, it would be beneficial to add a hot standby TM,
for faster failover. Scalability could be improved by
parallelizing garbage collection of the transaction table and
speeding up the RPC server (Sections V.C and V.D).

12

It would be beneficial to avoid deep copying the entire object
state when a small update is made to a big structure, e.g., a
dictionary. One way is to implement a custom transactional
variation of the data structure that can log and undo incremental
updates. To avoid altering the API, another way is to auto-gener-
ate wrappers that transparently handle log and undo operations.

ACKNOWLEDGMENTS

We thank Sergey Bykov, Gabi Kliot, and Jorgen Thelin for
design suggestions and for helping us with Orleans. We also
thank Doug Terry for his help.

REFERENCES

[1] Ajoux, P., N. Bronson, S. Kumar, W. Lloyd and K. Veeraraghavan,
"Challenges to Adopting Stronger Consistency at Scale," HotOS 2015.

[2] Akka documentation, http://akka.io/docs/

[3] Alsberg, P., J. D. Day: A Principle for Resilient Sharing of Distributed
Resources. ICSE 1976: 562-570.

[4] Amazon: "DynamoDB," https://aws.amazon.com/dynamodb/.

[5] Amazon: "Amazon Elastic Container Service,"
https://aws.amazon.com/ecs/.

[6] Armstrong, J.: “Erlang,” CACM 53, 9: 68-75 (2010).

[7] Baker, J. C. Bond, J.C. Corbett, JJ Furman, A. Khorlin, J. Larson, J-M.
Leon, Y. Li, A. Lloyd, V. Yushprakh: “Megastore: Providing Scalable,
Highly Available Storage for Interactive Services”. CIDR 2011: 223–234.

[8] Balakrishnan, M., D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M.
Wei, J.D. Davis, S. Rao, T. Zou, A. Zuck: “Tango: distributed data
structures over a shared log.” SOSP 2013: 325-340

[9] Berenson, H., P. Bernstein, J. Gray, J. Melton, E. O'Neil and P. O'Neil,
"A critique of ANSI SQL isolation levels.," SIGMOD 1995.

[10] Bernstein, P.A., S. Bykov, A. Geller, G. Kliot, J. Thelin, “Orleans:
Distributed Virtual Actors for Programmability and Scalability,” MSR-
TR-2014-14, http://research.microsoft.com/apps/pubs?id=210931.

[11] Bernstein, P., I. Cseri, N. Dani, N. Ellis, A. Kalhan, G. Kakivaya, D.B.
Lomet, R. Manne, L. Novik, T. Talius: “Adapting Microsoft SQL server
for cloud computing.” ICDE 2011: 1255-1263.

[12] Bernstein, P.A., M. Dashti, T. Kiefer, D. Maier: “Indexing in an Actor-
Oriented Database.” CIDR 2017, to appear. Draft available on request.

[13] Bernstein, P.A., N. Goodman: “Multiversion Concurrency Control -
Theory and Algorithms.” TODS 8(4): 465-483 (1983).

[14] Bernstein, P.A., V. Hadzilacos, N. Goodman: “Concurrency Control and
Recovery in Database Systems.” Addison-Wesley, 1987.

[15] Bernstein, P. A., E. Newcomer: “Principles of Transaction Processing”,
Morgan Kaufmann, 2nd ed., 2009.

[16] Bernstein, P.A., D.W. Shipman, J.B. Rothnie Jr.: “Concurrency Control
in a System for Distributed Databases.” TODS 5(1): 18-51 (1980)

[17] Burrows, M.: “The Chubby lock service for loosely-coupled distributed
systems.” OSDI 2006: 335-350.

[18] Bykov, S., A. Geller, G. Kliot, J. Larus, R. Pandya, and J. Thelin:
“Orleans: Cloud Computing for Everyone.” SOCC 2011, 16:1-16:14

[19] Calder, B., J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, . M. Fahim
ul Haq, . M. Ikram ul Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M.
McNett, S. Sankaran, K. Manivannan, L. Rigas: “Windows Azure
Storage: a highly available cloud storage service with strong
consistency.” SOSP 2011: 143-157.

[20] Chang, F., J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M.
Burrows, T. Chandra, A. Fikes, R.E. Gruber, “Bigtable: A Distributed
Storage System for Structured Data”, ACM TOCS 26(2): 4:1-4:26 (2008).

[21] Chrysanthis, P.K., K. Ramamritham, "ACTA: a framework for specifying
and reasoning about transaction structure and behavior," SIGMOD 1990:
194-203.

[22] Corbett, J.C., J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S.
Ghemawat, A/ Gubarev, C. Heiser, P. Hochschild, W.C. Hsieh, S.
Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S.
Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang,
D. Woodford: “Spanner: Google's Globally-Distributed Database.” ACM
Trans. Comput. Syst. 31(3): 8 (2013).

[23] DeCandia, G., D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.
Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels: “Dynamo:
amazon's highly available key-value store.” SOSP 2007: 205-220.

[24] DeWitt, D.J., R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, D.
Wood: “Implementation Techniques for Main Memory Database
Systems.” SIGMOD 1984: 1-8.

[25] Diaconu, C., C. Freedman, E. Ismert, P. Larson, P. Mittal, R. Stonecipher,
N. Verma, M. Zwilling: “Hekaton: SQL Server’s Memory-Optimized
OLTP Engine.” SIGMOD 2013

[26] Docker. [Online]. Available: http://www.docker.com/.

[27] Garcia-Molina, H., K. Salem: “Sagas.” SIGMOD 1987: 249-259.

[28] Google: "Google Cloud BigTable," https://cloud.google.com/bigtable.

[29] Google: "Google Container Engine," https://cloud.google.com/container-
engine/.

[30] Gray, J., A. Reuter: “Transaction Processing: Concepts and Techniques.”
Morgan Kaufmann 1993.

[31] Helland, P.: “Life beyond Distributed Transactions: an Apostate’s
Opinion.” CIDR 2007.

[32] Kubernetes. http://kubernetes.io/.

[33] Lakshman, A., P. Malik: “Cassandra – A Decentralized Structured
Storage System.” Operating Systems Review 44(2):35-40 (2010).

[34] Levandoski, J.J., D. Lomet, M.F. Mokbel, K. K. Zhao, "Deuteronomy:
Transaction Support for Cloud Data," CIDR 2011.

[35] Li, C., D. Porto, A. Clement, J. Gehrke, N. Preguic, R. Rodrigues:
“Making Geo-Replicated Systems Fast if Possible, Consistent when
Necessary.” OSDI 2012: 265-278.

[36] Lloyd, W., M.J. Freedman, M. Kaminsky, D.G. Andersen: “Don't settle
for eventual: scalable causal consistency for wide-area storage with
COPS.” SOSP 2011: 401-416.

[37] Lloyd, W., M.J. Freedman, M. Kaminsky, D.G. Andersen: “Stronger Se-
mantics for Low-Latency Geo-Replicated Storage.” NSDI 2013: 313-328.

[38] Microsoft: "Microsoft Azure Storage," https://azure.microsoft.com/en-
us/services/storage/.

[39] Microsoft: "Azure Service Fabric," https://azure.microsoft.com/en-
us/services/service-fabric/.

[40] Mohan, C., B.G. Lindsay, R, Obermarck: “Transaction Management in
the R* Distributed DBMS.” TODS 11(4): 378-396 (1986).

[41] Peng, D., F. Dabek: “Large-scale Incremental Processing Using
Distributed Transactions and Notifications.” OSDI 2010: 351-264

[42] Reddy, P.K., M. Kitsuregawa: “Speculative Locking Protocols to
Improve Performance for Distributed Database System.” IEEE TKDE.
16(2): 154-169 (2004)

[43] Stearns, R.E., P.M. Lewis II, D.J. Rosenkrantz. “Concurrency Controls
for Database Systems.” IEEE FOCS 1976: 19-32.

[44] The Open Group: Distributed Transaction Processing: Reference Model,
Version 3. https://www2.opengroup.org/ogsys/catalog/G504

[45] Thomson, A., T. Diamond, S-C Weng, K. Ren, P. Shao, D.J. Abadi:
“Calvin: fast distributed transactions for partitioned database systems.”
SIGMOD 2012: 1-12.

[46] Xie, C., C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh, L. Alvisi, P.
Mahajan: “Salt: Combining ACID and BASE in a Distributed Database.”
OSDI 2014: 495-509.

[47] Zhang, Y., R. Power, S. Zhou, Y. Sovran, M.K. Aguilera, J. Li:
“Transaction chains: achieving serializability with low latency in geo-
distributed storage systems.” SOSP 2013: 276–291.

