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Abstract— We address the problems of constructing quantum  Definition 1: Let C be a QCC defined by a full-rank sta-
convolutional codes (QCCs) and of encoding them. The first pilizer matrix as in eq.[{1). Them is called the frame

construction is a CSS-type construction which allows us to ffid size. k the number of logical qudits per frame. a
QCCs of rate 2/4. The second construction yields a quantum ’ 9 q P , andn

convolutional code by applying a product code construction the rate of the QCC. The constraint lengths are defined as

to an arbitrary classical convolutional code and an arbitray Vi = maxi<;<n(max(deg X;;(D),deg Z;;(D))), the overall

quantum block code. We show that the resulting codes have constraint length is the defined as the sum Z;:lk v;, and
highly structured and efficient encoders. Furthermore, we Bow  the memorym is given bym = maxi<;<n_ ;.

that the resulting quantum circuits have finite depth, independent S - . .
of the lengths of the input stream, and show that this depth is Like in the classical case, a QCC can also be described in

in F, x F,. First, we writeS(D) = > ) G; D" usingm + 1
|. INTRODUCTION matricesGo, G1, . . ., G, Which are of sizgn — k) x n each.

Similar to the classical case a quantum convolutional codéen we define the semi-infinite matrix
(QCC) encodes an incoming stream of quantum information G a G 0
. . . 0 1 . m .
into an outgoing stream. A basic theory of quantum convolu- 0 Gn G G 0
tional codes obtained from infinite stabilizer matrices basn Si= o " o -
developed recently, see [13]. : ' '

Only few constructions of quantum convolutional codes are .
known, see [2], [3], [4], [5], [6], [8], [13]. In this paper, ev Note thatS has a block band structure where gach block is of
construct some new quantum convolutional codes using a CS&€ (7 — k) x (m +1)n. A useful property ofS' is that every
type construction which uses the same principle as the c84¢dit in the semi-infinite stream of qudits is acted upon non-
construction for block codes [12]. Furthermore, we revisig  trivially by only a finite number of generators. Moreovense
product code construction introduced in [8] and show that f§€nerators have bounded support. Hence their eigenvalues
these codes the algorithm presented in [9] for computing®4" Pe measured as soon as the corresponding qudits have
non-catastrophic encoder takes a particularly simple fainis been received. Therefore, it is poss_lble to compqte ther erro
allows us to show that the depth of the encoding circuit fyndrome for the quantum convolutional code online.

polynomial in the frame size and the constraint length of the There is a condition to check whethgis well-defined;. e.,
code. if it defines a commutative subgroup 6f. [13]. If S(D) =

(X(D)|Z(D)) as in eq.[{L), then the condition of symplectic
Il. QUANTUM CONVOLUTIONAL CODES orthogonality ofS translates to

A. Basic definitions

QCCs are defined as infinite versions of quantum stabilizer
codes. The appropriate generalization of stabilizer btmmes  £yample 2:As an example we consider the QCC defined
to QCCs is provided by the polynomial formalism introducegy the stabilizer matrix (see [5])
in [13]. We briefly sketch this approa@h.

The code is specified by its stabilizer which is a subgroup
of the infinite versiong,, of the Pauli group, which consists (D)
of tensor products of generalized Pauli matrices actingron a_ . . . .
semi-infinite stream of qudits. The stabilizer can be descti | NS code is derived from the classidgl-linear code gener-

X(D)Z(1/D)" — Z(D)X(1/D)" = 0. (3)

(14D 1 1+D| 0 D D
~“\ 0 D D |1+D 1+D 1

by a matrix with polynomial entries ated by(1 +D,1+wD, 1+ w?D). We can easily check self-
orthogonality by computind (D)Z(1/D)t — Z(D)X (1/D)*
S(D) = (X(D)|Z(D)) € Fq[D]"F)>*2n, (1) which turns out to be the x 2 all zero matrix. Hence

the code indeed is self-orthogonal to all shifted versiofs o

1we describe the approach fordimensional subsystems (qudits) which is'tself* I.e, '_t defines a QCC Whgrez =3 k= _1* a”q
a straightforward generalization of the binary case. m = 1. To illustrate the structure in terms of Pauli matrices
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TABLE |
ACTION OF VARIOUS GENERALIZEDCLIFFORD OPERATIONS
CONJUGATION BY THE UNITARY U CORRESPONDS TO THE
ACTION OF U ON THE COLUMNS OFS(D) = (X (D)|Z(D)).

unitary gatel/ matrix U
i 5er_ (0 -1 22
Fourier transformDFT DFT=1{, , | €

multiplication gate)M.,

diagonal gateP,

ADDIH) £ 5 (mod n)

o _ ¢ =t
Py := CPHASE""+) ¢ £ 0 Z::<1D 1D )

we consider the corresponding semi-infinite stabilizerrimat

which is given (in Pauli form) as follows:

XXXXZY
Z Z Z ZY X
XXX
A A

N
N N e
N =< <N
N
N <
<N
<

I11. EFFICIENT ENCODERS FORCSSTYPE QCCs

The CSS-like construction of QCCs uses two classical
convolutional code€; = (n, k1) andCy = (n,n — ka) with
equal frame lengtm and C5- C ;. The stabilizer matrix
(X(D)|Z(D)) is of block diagonal form, given by

( HQ(()D) ‘ Hl(()D) > 6IF(][D](nka»kg)><2n7 (4)

whereH, (D), Hy(D) denote parity check matrices 6f and
C5, respectively. We assume that bofhy (D) and Hy(D)
correspond to non-catastrophic, delay-free encoders ane h
full ranksn — k; and ko, respectively. This implies that their
Smith normal form is(Z 0) with a suitable unit matriX (see
[10, Chapter 2]). In particular there are unimodular masic
Ai(D) € Fy[D]*>**2 and B, (D) € Fy*™ such that

A1(D)H2(D)B1(D) = (10). ©)

There is an algorithm for computing the Smith normal form
and the transformation matrices (D) and B, (D) whose bit-
complexity is polynomial in the size and degree of the matrix
Hy(D) [11]. This implies that the corresponding quantum
circuit implementing the matrixB; (D) can be realized using
polynomially many generalized Clifford gates. The trans-
formed stabilizer matrix is given by

xoizon= g ol ulp ) ©

The action of the gates results in a modifigepart as well.
From condition [(B) it follows thatZ,(D) is of the form
Zs(D) = (0 Z4(D)) with Z4(D) € F,[D]n—F)x(n=ks),
Using Fourier transformation (DFT) gates on the last &,
qudits, the stabilizer matrix reads

xoizon= g zinlo) O

Computing the Smith form o} (D) yields matricesA, (D)

It is easy to see that the QCC corresponding'toan correct 5.4 Bs(D) with Ay(D)Z,(D)Bo(D) = (I 0). Another

an arbitrary number of errors, as long as they do not ocqgyrier transform on the first — k; + ko qudits yields an
in bursts meaning in this example that at least six unaffectegl_omy stabilizer matrix of the form(0|0). The resulting

gubits are between two erroneous ones.

B. Encoding circuits

guantum code encodds — ks qudits per frame of size.
Overall, we obtain the following result.

Theorem 3:Let C be a quantum convolutional code con-
structed using the CSS-like construction from two cladsica

In [7] it has been shown that for any block quantum errogpnyolutional code<”; and Cs with stabilizer matrix as in

correcting codeC = [n,k,d], there is quantum circuit of eq. [2). Denote the frame size with and the constraint
polynomial size for encoding. In order to encddeudits into  |ength with». ThenC has an encoding circuit whose depth is
n qudits, the circuit acts on theinput qudits andh—k ancillae  finite, i. e, does not depend on the length of the input stream.
which are initialized in the stat®). The input state can be Furthermore, the depth of this circuit is upper bounded by
described by &-only stabilizer matrixSo = (X|Z) = (010),  poly(n, v).
wherel is an(n—k) x (n—k) identity matrix. The operation of

the encoding circuit corresponds to a transformation cimang IV. CSSTYPE QCCs OF RATE2/4

Sop into the stabilizerS of the quantum code. This idea can In [6], optimal quantum convolutional codes of rdté3 are
be adapted to quantum convolutional codes (see [9] for qubsted which are based on self-orthogonal binary convohal
codes). The encoding circuit can be realized by generalizeoldes of ratd /3. In order to construct quantum convolutional
Clifford gates whose action is summarized in Tdble I, for theodes of rate/4, we search for self-orthogonal binary convo-
gates and the corresponding actions, see [7, Theorem 2]. lutional codes” of rate1/4 which have a dual cod€-* with



v | 91(D) 92(D) 93(D) 94(D) d* | Ngv
31100 1110 1001 1101 3 |2
1 [ 11001 11101 10011 10111 1|1
4 | 10001 10101 11011 11111 4 |1
5| 110010 111010 100001 110111 5 |14
6 | 1010010 1111010 1000101 1100111 6 |63
710101001 11111001 10000011 11000111 6 |8
8 [ 101100001 100100101 111110011 111011011 |6 |2
9 [ 1001001001 1100111101 _ 1110110111 _ 1010101111 |7 |10
10 | 11011011001 10100001101 10011000011 11001001111 |8 |67
11 [ 101101100011 101010110011 111101001011 110001101111 |8 | 25

Fig. 1. Generators for self-orthogonal binary convolutibnodes of ratel /4 yielding quantum convolutional codes of rat¢4 found by random search.

high minimum distancel*. Applying the CSS construction B. Encoding product codes

with Cy = C = C, we then obtain a quantum convolutional |hstead of applying the general algorithm of [9] to the matri
code of rate2/4 and minimum distance. G(D) in order to compute an encoding circuit for the product
The results of a randomized search for such codes dgde, we will exploit the additional structure of the stisit
presented in Tablg€]1. The entries of the generator matfixatrix. The first step is to compute an inverse encoding itircu
9(D) = (91(D), 92(D), g3(D),9a(D)) of the codeC are forthe quantum codé with stabilizerS,. The quantum circuit
given in abbreviated form, listing the coefficients in ir@seg corresponds to a symplectic transformation yielding tiatr
order. For example, the generator matrix of the first code witz-only stabilizerS, — (0|7 0). Note that the trivial stabilizer
constraint lengthy = 3 is g(D) = (1+ D,14+ D+ D* 1+ s of this form, regardless whether the codeis a block
D?,1+ D + D?). The last column lists the numbe¥,. of or a convolutional quantum code. Omitting the final Fourier

sequences of minimum weight. Note that it is desirable tgansformation gates in the quantum circuit, we obtain¥an
have as few sequences of minimum weight as possible. Ty stabilizerS}, = (I 0/0).

size of the search space grows witi2*"), so we have only  Expanding the matrixG;(D) as semi-infinite matrix, we
performed an exhaustive search up to constraint lengths, g€t the following semi-infinite version of the stabilizer tma
and a randomized search for larger values of G(D) of eq. [8):

g11S52  g1252 ... gin, Se

2152 2252 cee Y2on S2
V. EFFICIENT ENCODERS FOR PRODUCT CODES g ) g o g !

A. Product code construction Gk1,152 Gk1,252 - - - Gky,ny 52

The following theorem, taken from [8], allows to construct 91152 1252 ... ginyS2
a quantum convolutional code using a classical convolation 92152 92252 - G2y S
code and a quantum code. : s

Theorem 4:LetCy = (n1, k1), be a classical convolutional Gk1,152 Gy 252 - - Gky,ng S2
code overF, with dual distanced; and let G;(D) be a :
generator matrix ofC; corresponding to a non-catastrophi
delay-free encoder. Furthermore, @tbe a quantum error-

c
This matrix indicates that we have to apply the inverse encod

correcting code fog-dimensional quantum systemg £ p?) ing circuit of the cod€ to every block of qudits corresponding

with minimum distancel, and stabilizer matrixs, = (X|2) to the submatriceg;;S-. This first step correspgnds to the
if Cis a block code orS, = (X(D)|Z(D)) if C is a leftmost boxes markedC in the example of Fig[14. The

stabilizer matrix is now of the form
G'(D) = G1(D) &, (10]0) = (G1(D) ® 10).  (9)

This X -only generator matrix corresponds to a CSS code (see

convolutional code. Then the stabilizer matrix
G(D) = G1(D) ®, Ss (8)

defines a quantum convolutional code with minimum distan&l- (4)) where

d < min(di, do). G1(D)
The tensor produc, corresponds to the Kronecker prod- Hy(D) =

uct of the stabilizer matrices. We use the ingeto stress that

the coefficients of the polynomials in the matii¥ (D) are G1(D)

in the prime fieldF, while the stabilizer matrixS, might be Using the algorithm of Sedf]Il, we obtain an inverse encod-

defined over an extension field, = IF,,.. ing circuit for the convolutional CSS code corresponding to



G1(D). This circuit has to be repeatedtimes if the identity The inner product of any two rows of this matrix is zero,
matrix in eq. [®) has rank. The j-th copy of this quantum as alreadyGs, - G} = 0. The dual distance of the dual of
circuits acts on quditg,j + r,j + 2r,... (see the blocks the convolution code defined by ed. {10) is lower bounded
marked CC; in the example of Figl]4). Overall, we obtainby the dual distance of’, as any sequence in the dual of
the following result. the convolutional code fulfills the parity checks given by th
Theorem 5:Let C be a quantum convolutional code whictmatrix G. Note that the encoder corresponding to the matrix
has been constructed using the product code construct{@f) might be catastrophic. Then, in some cases, the minimal
described in Theoreinl 4. Denote the frame size witnd non-catastrophic encoder can have constraint length zexp,
the constraint length witlv. ThenC has an encoding circuit corresponds to a block code.
whose depth is finitei. e., does not depend on the length of

the input stream. Furthermore, the depth of this circuipigar V1. ExamPLE

bounded bypoly(n, v). We illustrate the product construction and the correspamdi
encoding circuit using the five qubit codeé,1,3]. and a
C. QCCs from products of cyclic codes classical convolutional code of rafe = 2/3.
In [8, Theorem 8], we have shown that product codes
based on Reed-Solomon codes achieve the upper bound on [H— |0)
the minimum distance of the resulting quantum code. Here H- H— |0)
we consider the following variant: |bout) H-o— H— |0)
Theorem 6:Let _C be a cyclic code oveF, of composite o{H-o &—{H-& |0)
lengthn = nyny with ny|(¢—1). Furthermore, we assume that oA T |bin)
C can be decomposed 5= C; ® Cs whereCs, has generator
polynomialgs(X) = Hf;ll(X —a') whered —1 < ny/2 and Fig. 2. Inverse Encoding Circuit for the five qubit code.
a is anng-th root of unity inF,. Then the code” is self-
orthogonal and has dual distanéé > min(d;, d) whered; Using the inverse encoding circuit shown in Fid. 2, the
is the BCH bound ofC}-. stabilizer
Proof: The codeC; is generated by 1001 0/1 1110
W o el 0100 1l01 111
Qa2 o o2(na—1) § = 101 0 01 01 11 (11)
Go = 01 01 0|1 1 011
a'o ad',l aQ(t'i,l) a(d,l)'(nz,l) of the five qubit code is transformed into
. . . . 00 0 0 O0Of1 0O 0O0O0
The inner product of row and row; of Gs is o 00000l0100 0
”2*1(”” o 000 O0O0O1 1 100
Y at =0 0000001 110
{=0

Note that the two Hadamard transforms on the fourth qubit

ast+J # 0 mod n,. Henf:e_CQ IS s_elf-orthogonal and so cancel, but when omitting the final four Hadamard transfor-
is C. The bound on the minimum distance follows from th?nations we obtain ar-only stabilizer

two-dimensional BCH bound [1, p. 320]. In [10, Table 8.14] we find a nonsystematic rdte= 2/3

Starting with a generafor matrig = G1 ® G2 of a convolutional code with memory = 2 and free distance

(permuted) cyclic code as in Theordrh 6, we can constru%rtee: 3. An encoding matrix for that code is

convolutional quantum codes of CSS type. The semi-infinit

generator matrix of the corresponding self-orthogonaloen Ga(D) = ( D+ D? 1 1+ D? )
lutional code is formed by the copies of the generator matrix 1 D+D* 1+D+D?
G which overlap inun; positions. Foru = 2 we get A minimal polynomial generator matrix for the dual code is
given by
g11G2 g12G2 ... g1, G2 .
g21G2  g22G2 .. g2,n, G2 1+ D+ D*
: : : : H(D) = 1+D?*+D3+D* | . (12)
. . . . 2 4
9r11G2 gk, 2G2 ... Gk G2 1+D*+D
911Gz g12Ga .. gin,Go . o) If we apply our algorithm to the stabilizer code wilronly

stabilizer matrix(X (D)|Z(D)) := (H(D)|0) we obtain the
circuit shown in Fig[B. The resulting transformed stalitiss

: : : : of the simple form(X17)
Ik11G2 G 2G2 - Ghyim G Using the product construction, we take the tensor product
: ' of the stabilizer matrixS in eq. [11) and the generator matrix

921G2  g22G2 ... g2.n G2




|0) T THeo, T et et —H—|0)
A A - L 1 co, [ M ~H— |0)
block; N N [p11) 4 BC [— /L 7 CCs R —H] |0)
D |b12) T m o M " cc, —{H— [0)
. — I M It b
b 10) 1 — — I el
] L P — Jamt ——cc
blocksy g |p21) 4BC — —] E — ee®
D 4 |p22) 7 . o\ M — —— cc®
L . — M M M —bc(?
(e A N VN vy P o v ]
1 K — — — —— cc®
Fig. 3.  Quantum circuit transforming the stabilizéX (D)|Z (D)) = | BC— S\ S I\ f—cczi;
(H(D)|0) into the simple form(X1IT). 7] M /o S\ Yo —ccl
. — — ot M —be®

H(D) of the _bmary convolutional code in ed:d12). Thq:ig. 4. Schematic inverse encoding circuit for the quantwmvolutional
stabilizer matrix has the form code of rateR = 11/15 obtained by the product code from the quantum
block code[5, 1, 3] and a classical convolutional code with rdte= 2/3.

where Sy and Sz denote the corresponding parts .®f _ )
Note that the circuit shown in Fig] 2 corresponds to a classical convolutional code on the one hand and a quantum

binary symplectic matrix’ = 71T, i.e., ST = S', whereT block code on the other, it is possible to derive many example
corresponds to the last four Hadamard gates. Replicatiag fff QCCS- We show that these codes all have the property that
circuit without these Hadamard gates three times as ireticat 161" ncoder is of polynomial depth. We conjecture that any
in Fig.[d, we get the matrix; ® 71, wherel; denotes & x 3 stabilizer QCC has a polynomial depth encoder. It seems that

identity matrix. Now theZ-part of the stabilizer is zero, ang® More detailed study of the algorithm given in [9], which
the X-part has the form is based on iterative Smith normal form computation on the

stabilizer matrix, would be required to resolve this quasti

4 t 1 0 0 0 O
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