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Abstract

We present a novel approach to address the representa-

tion issue and the matching issue in face recognition (verifi-

cation). Firstly, our approach encodes the micro-structures

of the face by a new learning-based encoding method. Un-

like many previous manually designed encoding methods

(e.g., LBP or SIFT), we use unsupervised learning tech-

niques to learn an encoder from the training examples,

which can automatically achieve very good tradeoff be-

tween discriminative power and invariance. Then we ap-

ply PCA to get a compact face descriptor. We find that a

simple normalization mechanism after PCA can further im-

prove the discriminative ability of the descriptor. The re-

sulting face representation, learning-based (LE) descriptor,

is compact, highly discriminative, and easy-to-extract.

To handle the large pose variation in real-life scenar-

ios, we propose a pose-adaptive matching method that uses

pose-specific classifiers to deal with different pose combi-

nations (e.g., frontal v.s. frontal, frontal v.s. left) of the

matching face pair. Our approach is comparable with the

state-of-the-art methods on the Labeled Face in Wild (LFW)

benchmark (we achieved 84.45% recognition rate), while

maintaining excellent compactness, simplicity, and gener-

alization ability across different datasets.

1. Introduction

Recently, face recognition has attracted much research

effort [9, 25, 26, 10, 11, 13, 19, 20, 30, 32] due to the pro-

gresses of local descriptors [6, 16, 17, 22, 27, 28, 29, 30]

and increasing demands of real-world applications, such as

face tagging on the desktop [5] or the Internet1. There are

two main kinds of face recognition tasks: face identification

(who is who in a probe face set, given a gallery face set) and

face verification (same or not, given two faces). In this pa-

per, we focus on the verification task, which is more widely

∗Yin is affiliated with the Institute for Theoretical Computer Science
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Figure 1. Images from the same person may look quite different

due to pose (upper left), expression (upper right), illumination

(lower left), and occlusion (lower right).

applicable and is also the foundation of the identification

task.

Since face verification is a binary classification problem

on an input face pair, there are two major components of a

verification approach: face representation and face match-

ing. The extracted feature (descriptor) is required to be not

only discriminative but also invariant to apparent changes

and noise. The matching should be robust to variations

from pose, expression, and occlusion, as shown in Figure 1.

These requirements render face verification a challenging

problem.

Currently, descriptor-based approaches [10, 20, 31] have

been proven to be effective face representations producing

best performance [8, 18, 12]. Ahonen et al. [1] proposed

to use the histogram of Local Binary Pattern (LBP) [17]

to describe the micro-structures of the face. LBP encodes

the relative intensity magnitude between each pixel and

its neighboring pixels. It is invariant to monotonic pho-

tometric change and can be efficiently extracted. Since

LBP is encoded by a handcrafted design, many LBP va-

rieties [21, 30, 33] have been proposed to improve the

original LBP. SIFT [16] or Histogram of Oriented Gradi-

ents (HOG) [6] are other kinds of effective descriptors us-

ing handcrafted encoding. The atomic element in these de-

scriptors can be viewed as the quantized code of the image

gradients. Essentially, different encoding methods and de-

scriptors have to balance between the discriminant power



and the robustness against data variance.

However, existing handcrafted encoding methods suffer

two drawbacks. On one hand, manually getting an optimal

encoding method is difficult. Usually, using more contex-

tual pixels (higher dimension vector) can generate a more

discriminative code. But it is non-trivial to manually de-

sign an encoding method and determine the codebook size

to achieve reasonable tradeoff between discrimination and

robustness in a high dimension space. In addition, hand-

crafted codes are usually unevenly distributed as shown in

Figure 2. Some codes may rarely appear in real-life face

images. It means that the resulting code histogram will be

less informative and less compact, degrading the discrimi-

nant ability of the descriptor.

In this paper, to tackle the aforementioned difficulties,

we present a learning-based encoding method, which uses

unsupervised learning methods to encode the local micro-

structures of the face into a set of discrete codes. The

learned codes are more uniformly distributed (as shown

in Figure 2) and the resulting code histogram can achieve

much better discriminative power and robustness tradeoff

than existing handcrafted encoding methods. Furthermore,

to pursue the compactness, we apply the dimension re-

duction technique, PCA, to the code histogram. And we

find a proper normalization mechanism after PCA can im-

prove the discriminative ability of the code histogram. Us-

ing two simple unsupervised learning methods, we obtain a

highly discriminative and compact face representation, the

learning-based (LE) descriptor.

Many recent researches also apply learning approaches

in face recognition, such as subspace learning [25, 26], met-

ric learning [9], high-level trait learning [13], discriminant

model learning [20, 30, 31], but few of these works focus on

the issue of local feature encoding [14, 24] and the study of

descriptor compactness. Though Ahonen et al. [2] tried K-

means cluster to build local filter response codebook, they

argued manual thresholding is faster and more robust.

Besides the representation, the matching also plays an

important role. In most practices, the face is aligned by a

similarity or affine transformation using detected face land-

marks. Such 2D holistic alignment is not sufficient to han-

dle large pose deviations from the frontal pose. Further,

the large localization error of any landmark will result in

misalignment of the whole face. 3D alignment [3] is more

principled but error-prone and computationally intensive.

Wright et al. [32] recently encoded the geometric infor-

mation into descriptors and used an implicit matching al-

gorithm to deal with the misalignment and pose problem.

Gang [10] demonstrated that a simple elastic and partial

matching metric can also handle pose change and clutter

background.

To explicitly handle large pose-variance, we propose a

pose-adaptive matching method. We found that a specific
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Figure 2. The code uniformity comparison of LBP, HOG, and the

proposed LE code. We computed the distribution of code emer-

gence frequency for LBP (59 uniform codes), HOG (32 orienta-

tion bins) and LE (64 codes) in 1000 face images. Clearly, the

histogram distribution is uneven for LBP and HOG while our LE

code is close uniform.

face component contributes differently when the pose com-

binations of input face pairs are different. Based on this ob-

servation, we train a set of pose-specific classifiers, each for

one specific pose combination, to make the final decision.

Combining a powerful learning-based descriptor and a

pose-adaptive matching scheme, our system achieves the

leading performance on both the LFW [12] and the Multi-

PIE [8] benchmarks.

2. Overview of framework

Pipeline overview. Our system is a two-level pipeline:

the upper-level is the learning-based descriptor pipeline

while the bottom-level is the pose-adaptive face matching

pipeline.

As shown in Figure 3, we first use a standard fiducial

point detector [15] to extract face landmarks. Nine different

components (e.g., nose, mouth) are aligned separately based

on detected landmarks. The resulting component images

are fed into a DoG filter (with σ1 = 2.0 and σ2 = 4.0) [10]

to remove both low-frequency and high-frequency illumi-

nation variations. In each component image, a low-level

feature vector is obtained at each pixel and encoded by our

learning-based encoder. The final component representa-

tion is a compact descriptor (LE descriptor) generated by

the concatenated patch histogram of the encoded features

after PCA reduction and normalization. The component

similarity is measured by L2 distance between correspond-

ing LE descriptors of the face pair. The resulting 9 compo-

nent similarity scores are fed into a pose-adaptive classifier,
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Figure 3. The proposed LE descriptor pipeline and the pose-adaptive face matching framework.

consisting of a set of pose-specific classifiers. The pose-

specific classifier optimized to the pose combination of the

matching pair gives the final decision.

Experiment overview. We mainly use the LFW bench-

mark [12] in our experiments and follow their protocol. The

LFW standard test set consists of ten subsets and each sub-

set contains 300 intra-personal/extra-personal pairs. The

recognition algorithm needs to run ten times for formal eval-

uation purpose. At each time, one subset is chosen for test-

ing and the other nine are used for training. The final aver-

age recognition performance serves as the evaluation crite-

rion.

3. Learning-based descriptor extraction

In this section, we describe the critical steps in the

learning-based (LE) descriptor extraction. In order to study

the LE descriptor’s power precisely, all the experiments in

this section are conducted in holistic face level, without us-

ing component-level pose adaptive matching.

3.1. Sampling and normalization

At each pixel, we sample its neighboring pixels in the

ring-based pattern to form a low-level feature vector. We

sample r ∗ 8 pixels at even intervals on the ring of radius r.

Figure 4 shows four effective sampling patterns we found in

an empirical manner. We extensively varied the parameters

(e.g., ring number, ring radius, sampling number of each

ring) but found the differences among good patterns are not

significant - no more than 1% on the LFW benchmark. The

2nd pattern in Figure 4 is our best single pattern and we use

it as our default sampling method.

Although the performances of single patterns are similar,

combining them together may give us a chance to exploit

the complementary information captured by different sam-

pling methods. We will discuss the use of multiple patterns

later in this section.

After the sampling, we normalize the sampled feature

vector into unit length. Such normalization combined with

DoG preprocessing makes the feature vector invariant to lo-

cal photometric affine change.
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Figure 4. Four typical sampling methods used in our experiments:

(1) R1 = 1, with center; (2) R1 = 1, R2 = 2, with center; (3)

R1 = 3, no center; (4) R1 = 4, R2 = 7, no center. (The sam-

pling dots on the green-square labeled arcs are omitted for better

visuality).

3.2. Learning­based encoding and histogram rep­
resentation

Next, an encoding method is applied to encode the nor-

malized feature vector into discrete codes. Unlike many

handcrafted encoders, in our approach, the encoder is

specifically trained for the face in an unsupervised manner

from a set of training face images. We have tried three un-

supervised learning methods: K-means, PCA tree [7], and

random-projection tree [7]. While K-means is commonly

used to discover data clusters, random-projection tree and

PCA tree are recently proved effective for vector quanti-

zation. In our implementation, random-projection tree and

PCA tree recursively split the data based on uniform crite-

rion, which means each leaf of the tree is hit by the same

number of vectors. In other words, all the quantized codes

have a similar emergence frequency in the vector space (as

shown in Figure 2).

After the encoding, the input image is turned into a

“code” image (Figure 3). Following the method described

in Ahone et al.’s work [1], the encoded image is divided into

a grid of patches (5×7 patches for the holistic face (84×96)

used in this section). A histogram of the LE codes is com-

puted in each patch and the patch histogram is concatenated

to form the descriptor of the whole face image.

The choice of the learning method and the code num-

ber are important for our learning-based encoding. Fig-

ure 5 shows the performance comparison of the three learn-

ing methods under different code number setting. We se-

lect 1,000 images from the LFW training set to train our

learning-based encoders. On each image, a number of

8,064 (=84 × 96) feature vectors are sampled as train-

ing examples. We varied the code number from 4 to

131,072 (=217) and plotted the recognition rate (we stopped

testing K-means after reaching 29 codes since the compu-

tation becomes intractable). Notice that random-projection

tree slightly outperforms the other two and thus is adopted

in the following as default. We compare our LE descrip-

tor with LBP (59-bin), HOG (8-bin), and Gabor [29] on the

LFW. Our LE descriptors start to beat existing descriptors

(LBP 72.35%, HOG 71.25%, and Gabor 68.53%) when the

code number reaches 32. And our LE descriptor achieves

77.78% rate when the code number reaches 215.

3.3. PCA dimension reduction

If we use the concatenated histogram directly as the final

descriptor, the resulting face feature may be too large (e.g.,

256 codes × 35 patch = 8,960 dimension). A large feature

not only limits the number of faces which can be loaded into

memory, but also slows down the recognition speed. This

is very important for the applications that need to handle

a large number of faces, for example, recognizing all face

photos on a desktop. To reduce the feature size, we apply

Principle Component Analysis (PCA) [23] to compress the

concatenated histogram, and call the compressed descriptor

as our final learning-based (LE) descriptor.

Surprisingly, we found that PCA compression substan-

tially improves the performance if a simple normalization

is applied after the compression. Figure 6 shows the recog-

nition rates of LE descriptors with different normalization

methods. Without the normalization, the compressed fea-

ture is inferior to the uncompressed one by 6% points. But

with L1 or L2 normalization, the PCA version can be 5%

higher. This result reveals the angle difference between fea-

tures is most essential for the recognition in the compressed

space. To confirm this key observation, we also tried to ap-

ply PCA compression to LBP. We repeated the same com-

pression and normalization operations and also found sim-

ple normalization can boost uncompressed LBP’s perfor-

mance 3% points while skipping such step will detract it

5% points.

To obtain the optimal setting for the LE descriptor,

we extensively studied the parameter combination of code

number and PCA dimension. For large code number shows

little performance advantage after PCA compression, we

choose 256 code and 400 PCA-dimension as our default set-

ting in the following experiments.

Our default LE descriptor achieves recognition rate as

high as 81.22%, which significantly outperforms previous

descriptors, using only 400-dimension feature vector for

the holistic face, about 20% the size of the 59-code LBP

descriptor. This demonstrated that our descriptor extrac-

tion pipeline (pre-processing, sampling and normalizing,

learning-based encoding, and dimension reduction) is very

effective for producing a compact and highly discriminative

descriptor.

3.4. Multiple LE descriptors

As discussed in Section 3.1, our flexible sampling

method enables us to generate a class of complementary LE
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studied the recognition performance of the LE descriptors using

three learning methods (random projection tree, PCA-tree, and K-

means) under different code number settings. We also gave several

existing descriptors’ results for comparison.
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Figure 6. Investigate the effects of the PCA dimension with differ-

ent normalization methods. After applying PCA compression to

the concatenated patch histogram vector, we normalize the result-

ing vector with different normalization methods and then compute

the similarity score with L2 distance.

descriptors, and the combination of multiple LE descriptors

may achieve better performance. In this paper, we take a

simple approach by training a linear SVM [4] to combine

the similarity scores generated by different LE descriptors.

Generally, the combination can always achieve better result.

In our experiments, the combination of four LE descriptors

(shown in Figure 4) obtained the best performance on the

LFW. Figure 7 gives the comparison curves of different de-

scriptors.
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Figure 7. ROC curve comparison between our LE descriptors and

existing descriptors.

4. Pose-adaptive matching

In the previous section, we use 2D holistic alignment and

matching for the comparison purpose. In this section, we

will show that a pose-adaptive matching at the component-

level can effectively handle large pose variation and further

boost the recognition accuracy.

4.1. Component­level face alignment

Instead of using a 2D holistic (similarity) alignment on

the whole face, we align 9 face components (shown in Fig-

ure 8) separately using similarity transform. For each com-

ponent, two landmarks are selected from the five detected

fiducial landmarks (eyes, nose, and mouth corners) to de-

termine the similarity transformation (details in Table 1).

Compared with the 2D holistic alignment, the component-

level alignment presents advantages in large pose-variant

case. The component-level approach can more accurately

align each component without balancing across the whole

face. And the negative effect of landmark error will also be

reduced. Figure 8 shows aligned components and Table 2

compares the performance of different alignment methods.

4.2. Pose­adaptive matching

Using the component-level alignment, the face similar-

ity score is the sum of similarities between corresponding

components. We found that each component contributes

differently for the recognition when the pose combination

of the matching pair is different. For example, the left eye

is less effective when we match a frontal face and a left-

turned face. Based on this observation, we take a simple

pose-adaptive matching method.

Firstly, we categorize the pose of the input face to one of
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Figure 8. Fiducial points and component alignment.

Component Selected landmarks

Forehead left eye + right eye

Left eyebrow left eye + right eye

Right eyebrow left eye + right eye

Left eye left eye + right eye

Right eye left eye + right eye

Nose nose tip + nose pedal*

Left cheek left eye + nose tip

Right cheek right eye + nose tip

Mouth two mouth corners

Table 1. Landmark selection for component alignment. (* means

the pedal of the nose tip on the eye line.)

Alignment mode Recog. rate

2-Point holistic 79.85%± 0.42%

5-Point holistic 81.22%± 0.53%

Component 82.73%± 0.43%

Table 2. Recognition rate vs. alignment mode.

three poses (frontal (F), left (L), and right (R)). To handle

this pose category, three images are selected from the Multi-

PIE dataset, one image for each pose, and the other factors

in these three images, such as person identity, illumination,

expression remain the same. After measuring the similarity

between these three gallery images and the probe face, the

pose label of the most alike gallery image is assigned to the

probe face.

Given the estimated pose of each face, the pose combi-

nations of a face pair could be {FF, LL, RR, LR (RL), LF

(FL), RF (FR)}. Our final pose-adaptive classifier consists

of a set of linear SVM classifiers, each trained by a sub-

set of training pairs with a specific pose combination. The

“best-fit” classifier having the same pose combination with

the input matching pair makes the final decision. Through

pose-adaptive matching, we explicitly handle the large pose

variation by this “divide-and-conquer” method.

Component Image size Patch division

Forehead 76× 24 7× 2

Left eyebrow 46× 34 4× 3

Right eyebrow 46× 34 4× 3

Left eye 36× 24 3× 2

Right eye 36× 24 3× 2

nose 24× 76 2× 7

Left cheek 34× 46 3× 4

Right cheek 34× 46 3× 4

Mouth 76× 24 7× 2

Table 3. Patch division for face components.

4.3. Evaluations of pose­adaptive matching

To best evaluate the ability of pose change handling, we

constructed a new test set from the LFW dataset by ran-

domly sampling 3,000 intra-personal/extra-personal pairs

for each pose combination. The total pair number in our

new test set is 3, 000 × 6 = 18, 000. Note that this new

test set is more challenging than the standard test data in the

LFW due to the larger pose difference between the match-

ing pair. We use half of them as the training set and the

rest as the test set. Subjects are mutually exclusive in these

two sets. And the patch division in component-level setting

is shown in Table 3. Recognition performances were com-

pared before (76.20%±0.41%) and after (78.30%±0.42%)

pose-adaptive matching was adopted and results showed

that the proposed technique is useful in such large pose-

variant case.

5. Experimental results

In this section, we report our final face recognition per-

formance on the LFW benchmark systematically and then

validate the excellent generalization ability of our system

across different datasets.

5.1. Results on the LFW benchmark

We present our recognition results on the LFW bench-

mark in the form of ROC curves. Figure 9 shows com-

parison results for the validation of our proposed individual

techniques. In Figure 9, “single LE + holistic” means that

we only use the single best LE to represent the holistic face,

and it is the baseline to show the power of LE without other

techniques. “single LE + comp” indicates the application

of component-level, pose-adaptive matching to the baseline

single LE. Multiple LE descriptors are combined to form

“multiple LE + holistic”. And “multiple LE + comp” is our

best performer. The accuracies for these four methods are

81.22%± 0.53%, 82.72%± 0.43%, 83.43%± 0.55%, and

84.45% ± 0.46%. Despite the strong discriminant ability

of the LE descriptor itself, the pose-adaptive matching and
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Figure 9. Demonstrate the effects of our proposed techniques

on the LFW benchmark. Here, “holistic” means using holistic

face representation while “comp” means component-level, pose-

adaptive matching.
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Multiple LE + comp (our best)

Figure 10. Face recognition comparison on the LFW benchmark

in restrict protocol.

multiple descriptor combination further enhance the recog-

nition performance of our system.

Our best ROC curve is comparable with previous state-

of-the-art methods, as shown in Figure 10. On the LFW

benchmark, two new algorithms show the leading perfor-

mance. Wolf et al.’s work [31] adopts the background learn-

ing by using the identity information within the training

set. Kumar et al. [13] used the supervised learning to train

high-level classifications through a huge volume of train-

ing images outside of the LFW dataset. These two meth-

ods [13, 31] both use additional information outside the

LFW test protocol. So the comparison with other meth-

Descriptor Recog. rate on Multi-PIE

59-code LBP 84.30%± 0.89%

8-bin HOG 84.02%± 0.66%

Gabor 86.42%± 0.85%

single LE + holistic 91.58%± 0.50%

single LE + comp 92.12%± 0.52%

multiple LE + holistic 92.20%± 0.49%

multiple LE + comp 95.19%± 0.46%

Table 4. Recognition performance on the Multi-PIE dataset.

ods (including ours) in Figure 10 is not really fair. Addi-

tional training data or information may also improve other

approaches.

Our system achieves the best performance when the stan-

dard test protocol is strictly respected [12]. More impor-

tantly, our work focuses on low-level face representation,

which can be easily combined with previous algorithms to

produce better performance.

5.2. Results on Multi­PIE

We also perform extensive experiments on the Multi-PIE

dataset to verify the generalization ability of our approach.

The Multi-PIE dataset contains face images from 337 sub-

jects, imaged under 15 view points and 19 illumination con-

ditions in 4 recording sessions. Large differences exist be-

tween LFW and Multi-PIE, considering the pose compo-

sitions, illumination variance, and resolution. Moreover,

Multi-PIE is collected under a controlled setting systemat-

ically simulating the effects of pose, illumination, and ex-

pression. On the other hand, the LFW is more close to the

real-life setting since its faces are selected from news im-

ages. For these reasons, training on one dataset and testing

on the other can better demonstrate the generalization abil-

ity of a recognition system.

Similar to the LFW benchmark, we randomly generate

10 subsets of face images with Multi-PIE, each has 300

intra-personal and 300 extra-personal image pairs. The

identities of subjects are mutually exclusive among these

10 subsets, and cross-validation mode similar to LFW is

applied. The default “single LE” descriptor and “multiple

LE” descriptors trained on the LFW benchmark are adopted

in the experiments.

As shown in Table 4, the single LE with holistic face

representation outperforms the commonly used descriptors

more than 5 points, and pose-specific classifiers trained on

the LFW dataset also perform well on the Multi-PIE dataset.

All these results demonstrated the excellent generalization

ability of our system.

6. Conclusion and discussion

We have introduced a new approach for face recogni-

tion using learning-based (LE) descriptor and pose-adaptive



matching. We validated our recognition system on the LFW

benchmark and demonstrated its excellent generalization

ability on Multi-PIE.

In this work, the face micro-pattern encoding is learned

but the pattern sampling is still manually designed. Au-

tomating this step with learning techniques [27] may pro-

duce a more powerful descriptor for face recognition.
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