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Abstract— Perceptual user interfaces promise modes of fluid
computer-human interaction that complement the mouse and
keyboard, and have been especially motivated in non-desktop
scenarios, such as kiosks or smart rooms. Such interfaces,
however, have been slow to see use for a variety of reasons,
including the computational burden they impose, a lack of
robustness outside the laboratory, unreasonable calibration de-
mands, and a shortage of sufficiently compelling applications.
We have tackled some of these difficulties by using a fast stereo
vision algorithm for recognizing hand positions and gestures.
Our system uses two inexpensive video cameras to extract depth
information. This depth information enhances automatic object
detection and tracking robustness, and may also be used in
applications. We demonstrate the algorithm in combination with
speech recognition to perform several basic window management
tasks, report on a user study probing the ease of using the system,
and discuss the implications of such a system for future user
interfaces.

I. INTRODUCTION

Perceptual user interfaces use alternate sensing modalities
to replace or complement traditional mouse and keyboard
input. For example, video cameras may be used to sense the
presence of a user, track the user’s hands to control a cursor
or perform commands with gestures, in concert with speech
recognition processes. Often the goal of such research is for
the system to simulate natural modes of interaction, as in
conversational interfaces [1]. In the near term, however, we
are faced with a variety of rather more mundane, specialized
devices and applications that do not have the traditional mouse
and keyboard interface, including TabletPCs, media-center
PCs, kiosks, hand-held computers, home appliances, video-
games, and wall-sized displays. In these scenarios, perceptual
interfaces offer to replace the more traditional interaction
modalities. Perceptual user interfaces may also add value by
complementing traditional interfaces, by providing an alternate
channel for interaction, such as using voice to communicate
with an intelligent assistant [2] while working on a project or
dismissing a notification while working on a primary task.
Perceptual modalities can also be valuable in scenarios in
which the mouse and keyboard are clumsy and require more
effort than they should (e.g., adjusting the volume on the media
player). Finally, perception-based interaction can be leveraged
to assist disabled users who have lost the fine control of hand
musculature.

Unfortunately most examples of perceptual user interfaces
are still quite fragile; these systems often are based on unique
environmental circumstances (e.g. color models that highly
depend on the lighting conditions), rely on the use of mul-
tiple CPUs or specialized hardware, are usually installed and

Fig. 1. Perceptual interfaces enable “casual” and “10 foot” interfaces in
scenarios where mice and keyboards are not appropriate or available.

maintained in very limited quantities, and require laborious
calibration. We believe that for these novel interfaces to be
adopted, they must perform robustly outside of the laboratory,
be computationally inexpensive, rely on common hardware,
and be easy to set up and calibrate. Also, they cannot rely
on intrusive devices such as gloves, headsets or close-talk
microphones.

In this paper, we propose a real-time stereo vision algorithm
for perceptual user interfaces that is designed with these
constraints in mind. We review an application of the algorithm
in a multimodal system, named GWINDOWS, that allows users
to manipulate on-screen objects with gestures and voice.

II. RELATED WORK

Work on perceptual user interfaces draws on wide variety
of fields, including signal processing, user interface design,
computer vision, speech processing and behavior modeling [3].
Here we limit ourselves to considering perceptual user inter-
faces used to interact with on-screen objects.

Many perceptual interface systems have been developed for
intelligent room systems. For example, the ALIVE system [4]
used computer vision to track the users as they moved about
the room. The system had limited gesture recognition abilities,
which allowed the user to interact with a character on a large
wall display. Though the user was free to move about the
room, the need to attend to the display tended to limit the
user’s movements, which also limited the problem of detecting
the user’s gestures.

Perceptual user interfaces have been used to control house-
hold appliances. Freeman [5] used computer vision techniques
to find the user’s open hand from across the room. This was
applied to controlling a television. Seated on a couch, the
user could manipulate a graphical icon of a hand on-screen.
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To change the volume, the user moved the hand onto an on-
screen slider. Freeman found the feedback of the hand to be
very effective in assisting the user.

Kjeldsen [6] demonstrates the potential of manipulating on-
screen objects with hand gestures. In his system, movement
of the hand was sensed with computer vision techniques.
Gross movement was used for pointing, and the hand shape
was used to select commands. After an initial learning curve,
an experienced user could manipulate objects with speed
and comfort comparable to other popular devices, while new
users could be trained to select and move items accurately
within minutes. The ability to interact directly with on-screen
objects seemed to be more comfortable for some users than
the indirect pointing used in a mouse or joystick. Kjeldsen
highlighted the difficulties in constructing systems that meet
users’ expectations for responsiveness, particularly in pointing
tasks. Users found arbitrary mappings between gestures and
commands difficult to learn and remember. Difficulties with
responsiveness and accuracy lead to the conclusion that such
interfaces are more appropriate for selecting and manipulating
large on-screen objects. Finally, new users became fatigued
easily.

A variety of systems have been created to explore the use
of head motion to control on-screen interaction. For example,
Bérard [7] used a lightweight tracking system to detect fine
head movement, and used the system to control the viewpoint
as well as moving on-screen objects. As in the present work,
Bérard used a very simple, fast and robust technique that
resulted in very responsive system.

In our work on GWINDOWS, we have implemented a real-
time stereo vision system with the ability to sense users hand
positions. Stereo vision has a long history in the field of
computer vision, and has been applied in various perceptual
user interfaces. For example, the stereo system presented in [8]
used two precisely calibrated cameras and a skin color model
to find the position of the user’s head and hands. This was
applied to a variety of interaction scenarios where the user,
seated in front of a large display, manipulated objects on
screen. Jojic [9] used dedicated stereo hardware to match a
three dimensional articulated model of the user. This model
was then used to recover broad pointing motions, which could
be used to point at on-screen objects. Yoda and Sakaue propose
in [10] a system that simultaneously utilizes stereo disparity
and optical flow information to follow the head and hands of
the user. The authors claim that the system can discriminate the
face of the user, monitor the basic movements, and smoothly
learn an object presented by the user, and communicate with
users from hand signs learned in advance.

We also integrate speech commands into GWINDOWS.
There has been much interest in developing human-computer
interfaces that allow the use of speech and gesture. It has
been shown that gestures and speech are two complementary
modalities: Mignot et al. observe in [11] that gestures were
normally used to indicate objects and spots in the screen, as
well as simple moves, whereas speech was used for specifying
more abstract notions, actions or relations. They also note
that multimodal commands are less ambiguous than purely
oral or gestural ones. They conclude that spoken natural
language associated with unconstrained 2D gestures or direct

manipulations is a promising communication mode for users
interacting either with standard software or with ’intelligent’
systems.

The paper is structured as follows: In section III, we
describe our approach to sensing the user’s hand position. Sec-
tion IV shows this system applied to the task of manipulating
a GUI and examine the performance of this system in a user
study in section V. Lastly, we discuss in section VI various
extensions of this system, including implications for gesture
analysis, two-handed interaction, and accessible interaction for
peopled with disabilities.

III. OUR APPROACH

An important challenge in using computer vision for per-
ceptual user interfaces is the automatic real-time detection
and tracking of objects in the scene that are relevant to the
application, as well as their patterns of behavior. In many
scenarios, we would like to be aware of the presence of the
user, the user’s location, and the position of the user’s head
and hands.

For ease of deployment and robustness of operation we
prefer detection and recognition methods that make as few
assumptions as possible about the environment and the specific
appearance of objects like hands. Secondly, we would like to
use computationally inexpensive techniques, so that the system
does not prohibit the user from performing other tasks on the
same CPU. Lastly, we require that the system be sufficiently
responsive so that user’s experience is fluid.

In this section we describe our novel approach for com-
puting lightweight sparse stereo vision from images captured
by two inexpensive off-the-shelf cameras. Our framework will
let us build interfaces that achieve smooth, natural interaction
between the computer and the user.

A. Multiple Hypothesis Tracking

We use a multiple hypothesis tracking approach, in which
simple, fast techniques are used to track multiple objects
moving in the scene. We rely on domain specific constraints
to determine the actual object of interest. For example, for
a given application it may be reasonable to monitor only the
objects closest to the cameras, while ignoring all others. In our
hand-tracking application, if the user is facing the cameras
it is often the case that the objects closest to the cameras
are the hands. Another application may focus on objects that
behave in a particular way over time. One advantage of this
multiple hypothesis approach is that we may use a simple, fast,
and imperfect tracking algorithm and rely on the fact that if
one tracker fails, another may still be following the object of
interest.

We exploit the observation that our own attention is often
drawn to objects that start moving or exhibit some kind of
motion. Our algorithm initiates tracking of any objects in the
scene that move. These objects correspond to regions in the
image which undergo an amount of motion greater than some
threshold. Motion is detected by comparing a patch of the
current image centered about a given location to a patch at
the same location from the previous image. Throughout, we
use a simple image comparison function, the sum of absolute
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differences over square patches in two images. For a patch
from image I1 centered about image location(u1, v1) and
a patch inI2 centered about(u2, v2), we define the image
comparison functionSAD(I1, u1, v1, I2, u2, v2) as

∑

−D
2 ≤i,j≤ D

2

|I1(u1 + i, v1 + j) − I2(u2 + i, v2 + j)| (1)

where I(u, v) refers to the pixel at(u, v), D is the patch
width, and the absolute difference between two pixels is the
sum of the absolute differences taken over all available color
channels.

To find regions in the image with motion we
simply find points (u, v) such that SADmotion =
SAD(It−1, u, v, It, u, v) > τ . To limit computation,
this test for image motion may be conducted on a sparse,
regular grid on the image (e.g. every 16 pixels).

Once a given tracker has been seeded, the algorithm updates
the tracker’s position over time by finding the patch in the
current image which best matches the patch centered on the
object at the previous image. We defineSADmovement =
SAD(It−1, ut−1, vt−1, It, ut, vt) where (ut, vt) refers to the
object’s location at timet. A simple frame to frame tracker
finds (ut, vt) that minimizesSADmovement. We instead op-
timize a weighted sum ofSADmovement and SADmotion.
This combination combats drift problems common to simple
block-matching based trackers, where over time the tracker
may begin following some part of the image other than
that corresponding to the intended object. Intuitively, the
combination usesmotion to coarsely track the object as it
moves, while using the frame-to-frame tracking to precisely
“stick” on a given part of the moving object, as well as
maintain the tracker when the object is not moving. The
tracking search is conducted over a small window (typically 10
pixels) around the predicted location of the object, assuming
a linear dynamics model with noise (Kalman filter). Note that
we use the termmovement to imply a representation based on a
discrete object and its location over time, while we usemotion
to refer to change in image intensity values in a given region
of the image due to the movement of one or more objects.

If after some time (typically less than one second), a tracked
object exhibits very little movement, it is removed from the
set of object hypotheses. Furthermore, if the distance between
a given object hypothesis and any other object hypothesis falls
below a threshold (say, five inches in world coordinates), it is
supposed that that the two hypotheses are redundant, and one
of the two hypotheses is removed from consideration.

B. Stereo Disparity Computation

Binocular disparity is a primary means for recovering depth
information from two or more images taken from different
viewpoints. Given the 2D position of an object in two views,
it is a simple matter to compute the depth of the object. If
two cameras of focal lengthf are parallel to one another, the
3-d position(x, y, z) of the object may be computed from the
positions of the object in images from both cameras,(u l, vl)

and(ur, vr), by the perspective projection equations

u = ur = f
x

z
(2)

v = vr = f
y

z
(3)

d = ur − ul = f
b

z
(4)

where the disparityd, or shift in location of the object in one
view to the other, is related to the baselineb, the distance
between the two cameras [12].

Typically disparity is computed by matching an image
intensity pattern (patch) at a given location in the first image
to its pair in the second image. Most often such region-based
approaches are used to compute a depth map which gives the
depth in the scene at every location in the image. Computing
a depth map is a very computationally intensive process, and
often requires dedicated hardware to run in real-time [13, 14].

In fact, most applications do not require a complete depth
map. Our approach consists of using the region-based ap-
proach to find the disparity at only locations in the image
corresponding to object hypotheses. For a given point in the
image,(u, v), we find the value of disparityd such that the
sum of absolute differences over a patch in the right image
centered on(u, v) and a corresponding patch in the left image
centered over(u − d, v) is minimal, i.e. d that minimizes
SADdisparity = SAD(Il, u − d, v, Ir, u, v). Furthermore, if
we already have an estimate of the depth of the point from
a previous time step, we may limit the search over values of
d corresponding to a range of depth around the last known
depth. This search may be further narrowed by computing a
prediction of the object’s new location from a Kalman filter.

Note that in this stereo matching process, we assume that
both cameras are parallel (that is, their rasters are parallel).
If we wish to recover the depth in real world coordinates,
we must also know the distance between the pair of cameras
(baseline). In practice, both calibration issues may be dealt
with automatically by fixing the cameras on a prefabricated
mounting bracket, or semiautomatically by the user presenting
objects at known depth in a calibration routine that requires
a few minutes at most. Lastly, we improve the accuracy of
the transform to world coordinates by accounting for lens
distortion effects with a static, pre-computed calibration for
a given camera [15]. This camera calibration procedure also
gives the value of the focal lengthf .

C. Summary of the Vision Algorithm

Figure 2 illustrates the 3-d tracking and 3-d depth compu-
tations. In this process, each object hypothesis is supported
only by consistency of the object’s movement in 3-d. Unlike
many other computer vision algorithms, this does not rely on
fragile appearance models such as skin color models or hand
image templates, which are prone to fail when environmental
conditions change or when the system is confronted with a new
user. This robustness comes at a cost of relying on application
constraints to determine which object to follow. We believe
that this is a valuable trade-off in many circumstances.

In some cases there is a natural criterion to adopt. For
example, in an application where the cameras are placed in
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Fig. 2. Object hypotheses (indicated by square solid colored dots on the
image) are supported by frame to frame tracking through time in one view
and stereo matching across both views.

a common configuration above the display, and the goal is
to interact with objects on the display, the application may
simply focus its attention on the nearest objects. If by the
given application context the user is predisposed to use hand
gestures towards the display, in practice, the nearest object
hypotheses will fall on the hands. In other scenarios we may
wish to design more elaborate criteria for object selection. For
example, an application may select a particular object based on
its quality of movement over time. Or a two-handed interaction
application may select an object to the left of the dominant
hand (for right-handers) as the non-dominant hand.

Note that all the image operations use the same sum of
absolute difference function on the image patches. This detail
allows easy SIMD optimization of the algorithm’s implemen-
tation, which in turn allows it to run with sufficiently many
trackers while still leaving the user CPU time.

IV. GWINDOWS

We have developed GWINDOWS, an application that allows
users to conduct various window management tasks without
the mouse and keyboard. The GWINDOWS interface extends
the usual WIMP interface enabling users to “grab” a window
with their hands and move it across their desktop, close,
minimize, maximize windows as well as scroll the foreground
window.

GWINDOWS was designed with the view that perceptual
user interfaces may be applied to everyday GUI-based comput-
ing tasks, and thereby the system may serve to introduce and
evangelize perceptual interfaces to people otherwise unfamiliar
with the notion that their computer is capable of sensing their
activities and responding appropriately. Another motivation is
to offer an alternative user interface to applications in which
a keyboard and mouse are either undesirable or unavailable.
For example, in the so-called “10 foot” user experience
offered by media center PCs [16] GWINDOWS-like systems
may obviate or complement the IR remote control. Although
GWINDOWS is rather conservative in its extension of the user
experience (especially compared to conversational or agent-
based interfaces), it is interesting to note that the recent sci-
fi thriller Minority Report, set in the year 2054, shows the
main character using a very elegant two-handed interface
which relies on a similar sensing and interaction paradigm,
particularly in how objects are picked up and moved on-screen.

(a) (b)

Fig. 3. The GWINDOWS system allows the user select windows on the
display. (a) Feedback regarding the user’s hand position is provided by a
hand icon which moves to follow the user’s hand. (b) Any command mode
in effect is indicated by drawing the name of the mode below the hand.

Users explicitly initiate an interaction with GWINDOWS by
moving their hand across a predefined “engagement plane”, an
invisible plane about twenty inches in front of the display, and
parallel to the plane of the display. When the hand crosses the
engagement plane, feedback is given to the user by drawing a
large alpha-blended hand icon on the usual Windows desktop.
This icon is distinct from the usual Windows cursor and can
be viewed as an area cursor [17]. The engagement plane is
placed such that the user’s hands do not enter it during the
usual use of the mouse and keyboard. When the system is
“engaged”, the hand icon is moved to reflect the position of
the users hand. This is illustrated in Figure 3. A similar scheme
for hand position feedback was used in [5].

An open microphone used for speech recognition is placed
in front of and below the display. The user may invoke one of
a small set of verbal commands in order to act upon the current
window under the hand icon. When an utterance is understood
by the system, the token phrase is drawn along with the icon to
give feedback that the speech recognition system understood
the utterance.

The full functionality of GWINDOWS is as follows: (1)
MOVE: By uttering “move” the user initiates the continuous
movement of the window under the hand to follow the move-
ment of their hand. Movement of the window is terminated
when the user’s hand is disengaged by moving behind the
engagement plane, or when the user utters “release”. (2)
CLOSE, MINIMIZE , MAXIMIZE : By uttering “close”, “min-
imize”, or “maximize” the currently selected window is acted
upon appropriately. (3) RAISE, SEND TO BACK: By uttering
“raise”, the selected window is popped to the foreground,
while uttering “send to back” sends the selected window
behind all other windows. (4) SCROLL: By uttering “scroll”,
the user initiates a scrolling mode on the current window,
in which the rate of scrolling up and down on the window
is proportional to how far above or below the hand is in
relation to its position when scrolling mode was initiated,
similar to functionality often obtained with mouse wheels.
Scrolling is terminated when the user’s hand is disengaged
by moving behind the engagement plane, or when the user
utters “release”. A video figure of the system can be found
in [18].

When the user switches modes as described above, the
user is given feedback by the appearance of the mode name
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displayed in green lettering under the hand icon, as figure 3(b)
illustrates. In the case of using speech recognition, this mode
labelling offers valuable feedback to indicate the success of
the speech recognition process.

In addition to using speech to initiate modes of interaction
such as moving or raising windows, the user may additionally
operate GWINDOWS by using gestures. In this case, the user
may select the above interaction modes by pausing or dwelling
the hand over the target window. By dwelling a short amount
of time (about0.5 seconds), the target window is raised if its
not already the topmost window. If the hand dwells a longer
amount of time (about1 to 1.5 seconds), the hand icon text
then changes to “gesture”, and the user may move the hand
quickly left or right (a flick gesture) to send a window to
the adjacent (left or right) monitor in a multi-monitor system.
The system smoothly animates the movement of the window
with a “swish” sound. If there is no adjacent monitor, then
the window is minimized. If the user dwells even longer
(about 2 seconds), the mode changes to the “Move” mode
described previously. The user may exit the “Move” mode by
pausing again. This change of interaction mode by dwelling
relies on the continuous feedback of the mode label under
the icon: a user simply pauses and dwells long enough until
the desired mode is displayed. When the user then moves the
hand, the system effects the mode’s associated action (e.g.,
moving windows) and also exits the selection of modes.

A. Implementation Details

Our implementation of GWINDOWS uses the computer vi-
sion system described section III, with two Firewire webcams
acquiring 320x240 color images at a frame rate of 30Hz. The
multiple hypothesis tracking system is configured to handle at
most6 trackers simultaneously. Many more trackers may used,
but in our experience,6 trackers is sufficient for tracking the
user’s hands. Speech recognition is performed using Microsoft
SAPI 5.1, with a simple command and control grammar and
an inexpensive open microphone placed in front of and below
the display. Our sparse stereo implementation uses our own
MMX implementation of the sum of absolute differences
image function (Equation 1). The current system takes less
than20% of the CPU time on a 1GHz Pentium III.

The engagement and acquisition of the hand is implemented
in the sparse stereo system by simply looking for any object
hypothesis with depth less than20 inches. Any such hypothesis
is considered the active hand in GWINDOWS until it is moved
behind the engagement plane, or when it is removed from the
set of tracked object hypotheses, in which case the nearest
remaining object hypothesis is selected.

V. USER STUDY

A. Introduction

We performed a preliminary, qualitative user study to de-
termine how everyday users of GUIs find using GWINDOWS.
In this study, we confirm Kjeldsen’s observations on a related
system in which he found users become adept at selecting
and moving items on the display very quickly, while new users
tend to tire easily holding up their hand [6]. Unlike Kjeldsen’s
system, however, we rely on a small set of speech commands

Fig. 4. Experimental Setup. Study participants were seated in front of a
GWINDOWS-enabled display and an open microphone for speech recognition.

rather than requiring the user to put their hands in specific
configurations to change application function.

B. Participants

Eighteen people (eight women and ten men) participated in
the experiment. They ranged in age from late20s to early40s;
all were experienced computer users. Whereas all men worked
in computer-science related fields, the women worked in the
administrative or library-related fields.

C. Apparatus

The experiment was conducted on the implementation of
GWINDOWS described in the previous section, in which
the keyboard and mouse were removed (see Figure 4). The
participants had no access to keyboard and mouse. They could
only interact with the computer by hand motions and speech.
The experimenter was seated behind the participants, with
access to a second display, keyboard and mouse to open some
Internet Explorer windows on the participant’s display. Each
session was videotaped.

The early version of GWINDOWS used in this experiment
allowed the user to trigger commands only with speech, and
not the dwell time-based technique or gesture recognition
previously described. Additionally, the tracking algorithm used
in the experiment has been made more reliable since the user
study.

D. Procedure and design

Participants were tested individually in a single session that
lasted ten to fifteen minutes. Each participant performed two
kinds of tasks. After explaining the GWINDOWS system, the
experimenter demonstrated the engage/disengage interaction
with the computer using GWINDOWS. Finally she explained
verbally and with examples each of the following commands:
CLOSE, MOVE, RAISE, SEND TO BACK and SCROLL. The
participant was then invited to freely interact with the com-
puter using GWINDOWS and to practice each of the previously
mentioned commands.

After acknowledging proficiency with the system, the par-
ticipant was asked three questions to be answered using
the GWINDOWS interface by manipulating five Internet Ex-
plorer windows, some of which contained the answers to
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the questions. These windows were placed on the display
by the experimenter. The participants were asked to answer
the questions in any order and without any time constraints.
The questions were:(1) What is the weather forecast for
tomorrow? (2) What is playing at the Crossroads 8cinemas?
(3) What is the top story on the New York Times?

The experiment was considered successful if the participant
was able to correctly find the answers to the three questions
in the Internet Explorer windows. To do so, the participants
had to RAISE, SEND TO BACK, MOVE, CLOSE and SCROLL

the windows.
Finally, the participants were asked to answer a question-

naire with31 Likert scale questions (where1 corresponds to
strongly agree and5 to strongly disagree) about their experi-
ence using GWINDOWS and their general attitude regarding
perceptual interfaces.

E. Discussion

After three to five minutes of interaction with the system,
all but one of the users were comfortable managing windows
using GWINDOWS. In the question-answering task, some
participants used a strategy of reordering the windows with
SEND TO BACK and RAISE commands, while others preferred
to move the windows to reveal the information they were
looking for. All the participants successfully finished this
task (i.e. correctly answered the three questions) in a time
period of about three to seven minutes. On rare occasions,
if the system was not performing as expected, participants
tended to move even closer to the display, or move their
hands faster. Analogous to the Lombard effect in speech
recognition, this change in behavior in the extreme tends to
degrade performance. After realizing that such a strategy was
not helpful, they would come back to the “normal” way of
operation.

Users tended to have difficulty with the speech recognition,
which gave some errors, probably because it was not tuned
to individual users. Many used “Stop” or “No” instead of
“Release” to finish a MOVE or SCROLL command. Some users
found occasional jittering (due to a change of trackers in the
multiple hypothesis tracking) of the virtual hand troublesome.
Other users were impressed by the tracking ability. Some users
occluded the computer screen with their hand. They found
relatively quickly that they could change their body position to
avoid such a problem. One user suggested different hand icons
for each of the commands. Currently, GWINDOWS displays
the current command in green lettering under the virtual hand.
Many users thought that GWINDOWS would be a good system
for kiosk environments or at home,i.e. in 10ft interfaces.

We will briefly summarize the results of the survey as
average ratings± standard deviation in the Likert scale of
the answers of all participants. From the survey, we may
conclude that the participants enjoyed (1.3 ± 0.1) interacting
with the computer using GWINDOWS. They also wished there
were more systems available that used vision for interaction
(2.1±0.1) and they were not particularly concerned about the
privacy implications of having cameras in their environment
(3.5±0.31). Participants imagined GWINDOWS being used in
accessibility scenarios first (1.5 ± 0.15), then to control their

TV from across the room (2.1 ± 0.24) and finally to interact
with a kiosk in a public place (2.2 ± 0.23). As a curiosity,
they all had very positive reaction to the video user interface
that appears in the movieMinority Report (1.6 average rating).
GWINDOWS was rated as an intuitive way to manage windows
(2.3± 0.15), but not particularly comfortable (3.2± 0.23). In
particular, the participants found their arm getting tired after
a while (2 ± 0.26).

With respect to the experiment, participants were generally
satisfied with their performance (2.3 ± 0.24, 2 median) and
they thought they could improve their performance with more
practice (1.5 ± 0.2). Participants found it easy to understand
what the computer was doing in response to their actions
(2 ± 0.19) and had no trouble remembering how to perform
each of the commands (2±0.17). They all understood how to
“engage” and “disengage” with the system (1.3 ± 0.11) and
found they could reliably engage and disengage when they
wanted to (2.2 ± 0.27). They found the control of the virtual
hand on the screen more responsive (2.5 ± 0.24, 2 median)
than accurate (2.7± 0.23, 3 median). Even though the speech
recognition system was not found to be particularly reliable
(2.7±0.25), the participants enjoyed being able to use speech
commands in the experiment (2.1 ± 0.17), showing a slight
preference for gestures instead of speech (2.7 ± 0.26), even
though the present system provides no support for using ges-
tures to invoke commands. Finally, participants were confident
that they could CLOSE, MOVE, RAISE, SEND TO BACK any
window with average scores between1.9±0.09 and1.6±02.
The SCROLL command was the most difficult with an average
score of2.1 ± 0.28. We believe that the main reasons for the
difficulty in scrolling came from the rate-control mechanism
employed in the scrolling mode.

VI. EXTENDING GWINDOWS

GWINDOWS provides an auxiliary cursor which may be
used to select windows on the screen. The user study shows
that, although people found the interface very easy to learn,
fatigue and speech recognition errors were problematic. We
believe fatigue is due primarily to the fact that subjects had
to raise their arm and maintain their arm position for some
seconds in order to reach many regions of the screen and
move the GWINDOWS hand with some degree of precision.
Fatigue may be addressed partly by (per one of our subject’s
suggestions), scaling the movement of the hand, thus requiring
a smaller range of movement to reach all parts of the screen, or
changing the configuration of the cameras such that they track
object motion just above the keyboard. We have addressed the
speech recognition problems in part by using the dwelling time
and flick gestures to perform all the tasks except for scrolling.

In scenarios where a mouse is available, there may be more
value in considering how GWINDOWS can complement the
mouse and keyboard. Here we consider a number of promising
ideas.

A. More Complex Gestures

We have augmented the GWINDOWS interface with the
ability to understand gesturing beyond simple pointing and
movement. Our initial gesture recognition system recognizes
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dwell and left/right flick gestures. However, this is certainly
a rich and somewhat unexplored research area that we are
further investigating via more complex gestures.

In the simplest view, gestures play a symbolic communi-
cation role similar to speech, suggesting that for simple tasks
gesture may enhance or replace speech recognition. Secondly,
we believe that small gestures near the keyboard or mouse do
not induce fatigue as quickly as sustained whole arm postures.
Long et al [19] observe that users find gesture-based systems
highly desirable, but that users are also dissatisfied with
the recognition accuracy of gesture recognizers. Furthermore,
experimental results that users’ difficulty with gestures is in
part due to a lack of understanding of how gesture recognition
works. Finally, they highlight the ability of users to learn and
remember gestures as an important design consideration. In
light of these findings, we believe that one general approach
is to standardize a small set of easily learned gestures, the
semantics of which are determined by application context.

A small set of very simple gestures may offer significant
bits of functionality where they are needed most. For example,
dismissing a notification window may be accomplished by
a quick gesture to the one side or the other, as in shooing
a fly. Another example is gestures for “next” and “back”
functionality found in web browsers, PowerPoint and other
applications. In [20], Moyle and Cockburn show that adding a
simple gesture-based navigation facility to web browsers can
significantly reduce the time taken to carry out one of the most
common actions in computer use: using the “back” button to
return to previously visited pages. Users’ subjective ratings in
their experiments showed a strong preference for the “flick”
system, where the users would flick the mouse left or right to
go back or forward in the web browser.

Even when a mouse and keyboard are available, users may
find it attractive to manipulate often-used applications while
away from the keyboard, in what we call a “casual interface”
or “lean-back” posture. Browsing email over morning coffee
might be accomplished by mapping simple gestures to “next
message” and “delete message”.

Finally, gestures may compensate for the limitations of the
mouse when the display is several times larger than today’s
typical displays or in a multiple monitor situation. In such
a scenario, gestures can provide mechanisms to restore the
ability to quickly reach any part of the display, where once
a mouse was adequate with a small display. Similarly, in
a multiple display scenario it is desirable to have a fast
comfortable way to indicate a particular display. For example,
the foreground object may be “bumped” to another display by
gesturing in the direction of the target display. In our expe-
rience, our flick gestures let the user quickly send windows
from one monitor to the next without the need of large mouse
movements.

Note that in many cases the surface forms of these various
gestures may remain the same throughout these examples,
while the semantics of the gestures depends on the application
at hand. Providing a small set of standard gestures eases
problems users have in recalling how gestures are performed,
and also allows for simpler and more robust signal processing
and recognition processes.

B. Two-Handed, Mouse and Hand Interfaces

Mice are particularly suited to fine cursor control, and
most users have much experience with them. GWINDOWS can
provide a secondary, coarse control that may complement mice
in some applications. For example, in a map application, the
user might cause the viewpoint to change with GWINDOWS,
while using the mouse to select and manipulate particular
objects in the view. GWINDOWS may also provide a natural
“push-to-talk” or “stop-listening” signal to speech recognition
processes. In [21] users were shown to prefer using a percep-
tual user interface for push-to-talk.

Our multiple hypothesis tracking framework allows for the
detection and tracking of multiple objects. Thus we may
consider tracking both hands for a two-handed interface.
Theoretical studies show that people naturally assign different
tasks to each hand, and that the non-dominant hand can
support the task of the dominant hand [22]. Two-handed
interfaces are often used to specify spatial relationships that are
otherwise more difficult to describe in speech. For example, it
is natural to describe the relative sizes of objects by holding
up two hands, or to specify how an object (dominant hand)
is to be moved with respect to its environment (non-dominant
hand) [23].

C. Accessibility

Users with a number of motion impairment conditions
cannot cope with most current computer access systems.
Such conditions include Cerebral Palsy, Muscular Dystrophy,
Friedrich’s Ataxia and spinal injuries or disorders. Frequent
symptoms include tremor, spasm, poor coordination, restricted
movement, and reduced muscle strength. Similar symptoms
are also seen amongst the elderly able-bodied population.
Older adults are the fastest growing segment of the population
in the United States and Europe. It is known that as people
age, their cognitive, perceptual and motor skills decline, with
negative effects in their ability to perform many tasks [24].
Computers can play an increasingly important role in helping
older adults function well in society.

Graphical interfaces contribute to the ease of use of com-
puters. WIMP interfaces allow fairly non-trivial operations to
be performed with a few mouse motions and clicks. However,
at the same time, this shift in the user’s interaction from a
primarily text-oriented experience to a point-and-click experi-
ence has erected new barriers between people with disabilities
and the computer. For example, for older adults, there is
evidence that using the mouse can be quite challenging. There
is extensive literature demonstrating that the ability to make
small movements decreases with age [25]. This decreased
ability can have a major effect on the ability of older adults to
use a pointing device on a computer. It has been shown [26]
that even experienced older computer users move a cursor
much more slowly and less accurately than their younger
counterparts. In addition, older adults seem to have increased
difficulty (as compared to younger users) when targets become
smaller. For older computer users, positioning a cursor can be
a severe limitation.

One solution to the problem of decreased ability to position
the cursor with a mouse is to simply increase the size of
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the targets in computer displays, which can often be coun-
terproductive since less information is being displayed, re-
quiring more navigation. Another approach is to constrain the
movement of the mouse to follow on-screen objects, as with
sticky icons [17] or solid borders that do not allow cursors to
overshoot the target. There is evidence that performance with
area cursors (possibly translucent) is better than performance
with regular cursors for some target acquisition tasks [27,
28]. GWINDOWS combines area cursors with gesture-based
manipulation of on-screen objects. Currently GWINDOWS

may be configured to be driven by gross or fine movements,
and may be helpful to people with limited manual dexterity.

VII. CONCLUSION

As computers become more integrated in our daily lives, we
can expect to find users in a wide variety of contexts where
traditional mouse and keyboard interfaces are awkward, too
intrusive, or unavailable. Perceptual user interfaces have the
potential to fill new roles in user experiences opened by these
new scenarios, but there is presently an unfulfilled need for
lightweight, robust and responsive sensing algorithms. The
stereo vision technique proposed in this paper enables fast
and robust sensing of the user in depth, and provides a useful
resource for building future perceptual user interfaces. We note
that by making few assumptions other than consistency of an
object’s movement in depth, the technique itself is general
enough to be applicable to a wide range of scenarios.

GWINDOWS demonstrates the use of our sparse stereo
framework in everyday GUI tasks. Users were able to pick up
the system very quickly, and many were pleasantly surprised
to find how responsive the system is. We look forward to
exploring extensions to GWINDOWS that highlight interaction
scenarios in which perceptual user interfaces add value beyond
traditional interfaces.
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