
ar
X

iv
:0

81
0.

36
95

v1
  [

qu
an

t-
ph

]  
20

 O
ct

 2
00

8

An Efficient Quantum Algorithm for the Hidden
Subgroup Problem over Weyl-Heisenberg Groups

Hari Krovi and Martin Rötteler
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Abstract. Many exponential speedups that have been achieved in quantum com-
puting are obtained via hidden subgroup problems (HSPs). Weshow that the
HSP over Weyl-Heisenberg groups can be solved efficiently ona quantum com-
puter. These groups are well-known in physics and play an important role in
the theory of quantum error-correcting codes. Our algorithm is based on non-
commutative Fourier analysis of coset states which are quantum states that arise
from a given black-box function. We use Clebsch-Gordan decompositions to
combine and reduce tensor products of irreducible representations. Furthermore,
we use a new technique of changing labels of irreducible representations to ob-
tain low-dimensional irreducible representations in the decomposition process. A
feature of the presented algorithm is that in each iterationof the algorithm the
quantum computer operates on two coset states simultaneously. This is an im-
provement over the previously best known quantum algorithmfor these groups
which required four coset states.
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1 Introduction

Exponential speedups in quantum computing have hitherto been shown for only a few
classes of problems, most notably for problems that ask to extract hidden features of cer-
tain algebraic structures. Examples for this are hidden shift problems [DHI03], hidden
non-linear structures [CSV07], and hidden subgroup problems (HSPs). The latter class
of hidden subgroup problems has been studied quite extensively over the past decade.
There are some successes such as the efficient solution of theHSP for any abelian group
[Sho97,Kit97,BH97,ME98], including factoring and discrete log as well as Pell’s equa-
tion [Hal02], and efficient solutions for some non-abelian groups [FIM+03,BCD05].
Furthermore, there are some partial successes for some non-abelian groups such as the
dihedral groups [Reg04,Kup05] and the affine groups [MRRS04]. Finally, it has been
established that for some groups, including the symmetric group which is connected
to the graph isomorphism problem, a straightforward approach requires a rather ex-
pensive quantum processing in the sense that entangling operations on a large number
of quantum systems would be required [HMR+06]. What makes matters worse, there
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are currently no techniques, or even promising candidates for techniques, to implement
these highly entangling operations.

The present paper deals with the hidden subgroup problem fora class of non-abelian
groups that—in a precise mathematical sense that will be explained below—is not too
far away from the abelian case, but at the same time has some distinct non-abelian
features that make the HSP over these groups challenging andinteresting.

The hidden subgroup problem is defined as follows: we are given a functionf :
G → S from a groupG to a setS, with the additional promise thatf takes constant
and distinct values on the left cosetsgH , whereg ∈ G, of a subgroupH ≤ G. The task
is to find a generating system ofH . The functionf is given as a black-box, i. e., it can
only be accessed through queries and in particular whose structure cannot be further
studied. The input size to the problem islog |G| and for a quantum algorithm solving
the HSP to be efficient means to have a running time that ispoly(log |G|) in the number
of quantum operations as well as in the number of classical operations.

We will focus on a particular approach to the HSP which provedto be successful
in the past, namely the so-calledstandard method, see [GSVV04]. Here the functionf
is used in a special way, namely it is used to generatecoset stateswhich are states of
the form1/

√

|H |
∑

h∈H |gh〉 for randomg ∈ G. The task then becomes to extract a
generating system ofH from a polynomial number of coset states (for random values
of g). A basic question about coset states is how much information aboutH they indeed
convey and how this information can be extracted from suitable measurements.1 A fixed
POVM M operates on a fixed numberk of coset states at once and ifk ≥ 2 andM
does not decompose into measurements of single copies, we say that the POVM is an
entangled measurement. As in [HMR+06], we call the parameterk the “jointness” of
the measurement. It is known that information-theoretically for any groupG jointness
k = O(log |G|) is sufficient [EHK04]. While the true magnitude of the requiredk can
be significantly smaller (abelian groups serve as examples for whichk = 1), there are
cases for which indeed a high order ofk = Θ(log |G|) is sufficientand necessary.
Examples for such groups are the symmetric groups [HMR+06]. However, on the more
positive side, it is known that some groups require only a small, sometimes even only
constant, amount of jointness. Examples are the Heisenberggroups of orderp3 for a
prime p for which k = 2 is sufficient [BCD05,Bac08a]. In earlier work [ISS07], it
has been shown that for the Weyl-Heisenberg groups orderp2n+1, k = 4 is sufficient
[ISS07].

The goal of this paper is to show that in the latter case the jointness can be improved.
We give a quantum algorithm which is efficient in the input size (given bylog p andn)
and which only requires a jointness ofk = 2.

Our results and related work: The family of groups we consider in the present
paper are well-known in quantum information processing under the name of gener-
alized Pauli groups or Weyl-Heisenberg groups [NC00]. Their importance in quan-
tum computing stems from the fact that they are used to define stabilizer codes, the
class of codes most widely used for the construction of quantum error-correcting codes
[CRSS97,Got96,CRSS98].

1 Recall that the most general way to extract classical information from quantum states is given
by means of positive operator valued measures (POVMs) [NC00].
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In a more group-theoretical context, the Weyl-Heisenberg groups are known as ex-
traspecialp-groups (actually, they constitute one of the two families of extraspecial
p-groups [Hup83]). A polynomial-time algorithm for the HSP for the extraspecialp-
groups was already given by Ivanyos, Sanselme, and Santha, [ISS07]. Our approach
differs to this approach in two aspects: first, our approach is based on Fourier sam-
pling for the non-abelian groupG. Second, and more importantly, we show that the
jointnessk, i. e., the number of coset states that the algorithm has to operate jointly
on, can be reduced fromk = 4 to k = 2. Crucial for our approach is the fact that in
the Weyl-Heisenberg group the labels of irreducible representations can be changed.
This is turn can be used to “drive” Clebsch-Gordan decompositions in such a way that
low-dimensional irreducible representations occur in thedecomposition.

It is perhaps interesting to note that for the Weyl-Heisenberg groups the states that
arise after the measurement in the Fourier sampling approach (also called Fourier coef-
ficients) are typically of a very large rank (i. e., exponential in the input size). Generally,
large rank usually is a good indicator of the intractabilityof the HSP, such as in case
of the symmetric group whenH is a full support involution. Perhaps surprisingly, in
the case of the Weyl-Heisenberg group it still is possible toextractH efficiently even
though the Fourier coefficients have large rank. We achieve this at the price of operating
on two coset states at the same time. This leaves open the question whetherk = 1 is
possible, i. e., if the hidden subgroupH can be identified from measurements on single
coset states. We cannot resolve this question but believe that this will be hard. Our rea-
soning is as follows. Having Fourier coefficients of large rank implies that the random
basis method [RRS05,Sen06] cannot be applied. The random basis method is a method
to derive algorithms withk = 1 whose quantum part can be shown to be polynomial,
provided that the rank of the Fourier coefficients is constant.2 Based on this we there-
fore conjecture that any efficient quantum algorithm for theextraspecial groups will
require jointness ofk ≥ 2.

Finally, we mention that a similar method to combine the two registers in each run
of the algorithm has been used by Bacon [Bac08a] to solve the HSP in the Heisenberg
groups of orderp3. The method uses a Clebsch-Gordan transform which is a unitary
transform that decomposes the tensor product of two irreducible representations [Ser77]
into its constituents. The main difference between the Heisenberg group and the Weyl-
Heisenberg groups is that the Fourier coefficients are no longer pure states and are of
possibly high rank.

Organization of the paper: In Section 2 we review the Weyl-Heisenberg group
and its subgroup structure. The Fourier sampling approach and the so-called standard
algorithm are reviewed in Section 3. In Section 4 we provide necessary facts about the
representation theory that will be required in the subsequent parts. The main result of
this paper is the quantum algorithm for the efficient solution of the HSP in the Weyl-
Heisenberg groups presented in Section 5. Finally, we offerconclusions in Section 6.

2 This can be obtained by combining the random basis method [Sen06] with the derandomiza-
tion results of [AE07].
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2 The Weyl-Heisenberg groups

We begin by recalling some basic group-theoretic notions. Recall that the centerZ(G)
of a groupG is defined as the set of elements which commute with every element of the
group i.e.,Z(G) = {c : [c, g] = cgc−1g−1 = e for all g ∈ G}, wheree is the identity
element ofG. The derived (or commutator) subgroupG′ is generated by elements of
the type[a, b] = aba−1b−1, wherea, b ∈ G. The reader is invited to recall the definition
of semidirect productsG = N ⋊ H , see for instance [Hup83,Ser77]. In the following
we give a definition of the Weyl-Heisenberg groups as a semidirect product and give
two alternative ways of working with these groups.

Definition 1. Let p be a prime and letn be an integer. The Weyl-Heisenberg group of
order p2n+1 is defined as the semidirect productZn+1

p ⋊φ Zn
p , where the actionφ in

the semidirect product is defined onx = (x1, . . . , xn) ∈ Zn
p as the(n + 1) × (n + 1)

matrix given by

φ(x) =















1 . . . 0 0
0 1 . . . 0

. . .
. . .

0 . . . 1 0
x1 x2 . . . xn 1















. (1)

Any group element ofZn+1
p ⋊φ Zn

p can be written as a triple(x, y, z) wherex and
y are vectors of lengthn whose entries are elements ofZp andz is in Zp. To relate this
triple to the semidirect product, one can think of(y, z) ∈ Zn+1

p andx ∈ Zn
p . Then, the

product of two elements in this group can be written as

(x, y, z) · (x′, y′, z′) = (x + x′, y + y′, z + z′ + x′ · y), (2)

wherex · y =
∑

i xiyi is the dot product of two vectors (denoted asxy in the rest of
the paper).

Fact 1 [Hup83] For any p prime, andn ≥ 1, the Weyl-Heisenberg group is an ex-
traspecialp group. Recall that a groupG is extraspecial ifZ(G) = G′, the center is
isomorphic toZp, andG/G′ is a vector space.

Up to isomorphism, extraspecialp-groups are of two types: groups of exponentp
and groups of exponentp2. The Weyl-Heisenberg groups are the extraspecialp-groups
of exponentp. It was shown in [ISS07] that an algorithm to find hidden subgroups in
the groups of exponentp can be used to find hidden subgroups in groups of exponent
p2. Therefore, it is enough to solve the HSP in groups of exponent p. In this paper, we
present an efficient algorithm for the HSP over groups of exponentp.

Realization via matrices overZp: First, we recall that the Heisenberg group of order
p3 (which is the group of3 × 3 upper triangular matrices with ones on the main diag-
onal and other entries inZp) is a Weyl-Heisenberg group and can be regarded as the
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semidirect productZ2
p ⋊Zp. An efficient algorithm for the HSP over this group is given

in [BCD05]. Elements of this group are of the type




1 y z
0 1 x
0 0 1



 . (3)

The product of two such elements is




1 y z
0 1 x
0 0 1









1 y′ z′

0 1 x′

0 0 1



 =





1 y + y′ z + z′ + x′y
0 1 x + x′

0 0 1



 (4)

Thus, such a matrix can be identified with a triple(x, y, z) in Z2
p ⋊ Zp. This matrix

representation of the Heisenberg group can be generalized for anyn. We can associate
a triple(x, y, z) wherex, y ∈ Zn

p andz ∈ Zp with the(n + 2) × (n + 2) matrix















1 y1 . . . yn z
0 1 . . . 0 x1

. . .
. . . . . .

. . .
. . .

0 0 . . . 1 xn

0 0 . . . 0 1















. (5)

Realization via unitary representation:Finally, there is another useful way to represent
the Weyl-Heisenberg group. Then qupit Pauli matrices form a faithful (irreducible)
representation of the Weyl-Heisenbergp-group. For anyk 6= 0, we can associate with
any triple(x, y, z) in Zn+1

p ⋊ Zn
p , the following matrix:

ρk(x, y, z) = ωkz
p XxZy

k , (6)

where the matrixX =
∑

u∈Zn
p
|u + 1〉〈u| is the generalizedX operator and the matrix

Zk =
∑

u∈Zn
p

ωk
p |u〉〈u| is the generalizedZ operator, see e. g. [NC00].

Subgroup structure:In the following we will write G in short for Weyl-Heisenberg
groups. Using the notation introduced above the centerZ(G) (or G′) is the group
Z(G) = {(0, 0, z)|z ∈ Zp} and is isomorphic toZp. As mentioned above, the quotient
groupG/G′ is a vector space isomorphic toZ2n

p . This space can be regarded as asym-
plecticspace with the following inner product:(x, y) · (x′, y′) = (x · y′ − y ·x′), where
x, y, x′, y′ ∈ Zn

p . The quotient map is just the restriction of the triple(x, y, z) ∈ G
to the pair(x, y) ∈ Z2n

p . From Eq. (2), it follows that two elements commute if and
only if xy′ − yx′ = 0. Denote the set of(x, y) pairs occurring inH asSH i.e., for
each triple(x, y, z) ∈ H , we have that(x, y) ∈ SH and so|SH | ≤ |H |. It can be
easily verified thatSH is a vector space and is in fact, a subspace ofZ2n

p . Indeed, for
two elements(x, y), (x′, y′) ∈ SH , pick two elements(x, y, z), (x′, y′, z′) ∈ H and so
(x + x′, y + y′, z + z′ + x′y) ∈ H . Therefore,(x + x′, y + y′) ∈ SH . To show that if
(x, y) ∈ SH , then(ax, ay) ∈ SH for anya ∈ Zp, observe that if(x, y, z) ∈ H , then
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(x, y, z)a = (ax, ay, az + a(a−1)
2 xy) ∈ H . Therefore,(ax, ay) ∈ SH (in fact, it can

be shown thatSH ≃ HG′/G′, but we do not need this result.) Therefore,H ≤ G is
abelian if and only if∀(x, y), (x′, y′) ∈ SH , we have thatxy′ − x′y = 0. Such a space
where all the elements are orthogonal to each other is calledisotropic.

Now, we make a few remarks about the conjugacy class of some subgroupH . Con-
sider conjugatingH by some element ofG, sayg = (x′, y′, z′). For anyh = (x, y, z) ∈
H , we obtain

g−1hg = (−x′,−y′,−z′ + x′y′)(x, y, z)(x′, y′, z′)

= (−x′,−y′,−z′ + x′y′)(x + x′, y + y′, z + z′ + x′y)

= (x, y, z + x′y − xy′) ∈ Hg. (7)

From this we see thatSHg = SH . We show next thatSH actually characterizes the
conjugacy class ofH . Before proving this result we need to determine the stabilizer of
H . The stabilizerHS of H is defined as the set of elements ofG which preserveH
under conjugation i.e.,HS = {g ∈ G|Hg = H}. From Eq. (7), we can see thatg =
(x′, y′, z′) ∈ HS if and only if x′y − xy′ = 0 for all (x, y, z) ∈ H . Thus, the stabilizer
is a group such thatSHS

= S⊥
H , whereS⊥

H is the orthogonal space under the symplectic
inner product defined above, i.e.,HS = {(x, y, z) ∈ G|(x, y) ∈ S⊥

H , z ∈ Zp}. In other
words, it is obtained by appending the pairs(x, y) ∈ S⊥

H with every possiblez ∈ Zp.
Therefore,|HS | = |G′| · |S⊥

H |. Now, we can prove the following lemma.

Lemma 1. Two subgroupsH1 andH1 are conjugate if and only ifSH1 = SH2 .

Proof. We have already seen that ifH1 andH2 are conjugates, thenSH1 = SH2 . To
show the other direction, we use a counting argument ie., we show that the number
of subgroupsH ′ of G such thatSH′ = SH is equal to the number of conjugates of
H . First, assume that the dimension of the vector spaceSH1 is k. Now, the number
of conjugates ofH1 is the index of the stabilizer ofH1. From the above result, the
stabilizer has a size|G′||S⊥

H1
| = p · p2n−k. Therefore, the index or the number of

conjugates ofH1 arep2n+1/p2n−k−1 = pk. Now, the number of different possible
subgroupsH such thatSH = SH1 is pk since each of thek basis vectors ofSH1 are
generators of the subgroup and they can have anyz component independent of each
other i.e., there arep possible choices ofz for each of thek generators.

The propertyG′ = Z(G) will be useful in that it will allow us to consider only a
certain class of hidden subgroups. We show next that it is enough to consider hidden
subgroups which are abelian and do not containG′. Recall that thatH is normal inG
(denotedH E G) if g−1hg ∈ H for all g ∈ G andh ∈ H .

Lemma 2. If G′ ≤ H , thenH E G.

Proof. SinceG′ is the commutator subgroup, for anyg1, g2 ∈ G, there existsg′ ∈ G′

such thatg1g2 = g2g1g
′. Now, leth ∈ H andg ∈ G. We haveg−1hg = hg′ for some

g′ ∈ G′. But sinceG′ ≤ H , hg′ = h′, for someh′ ∈ H . Therefore,g−1hg = h′ and
henceH E G.

Lemma 3. If H is non-abelian, thenH E G.
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Proof. Let h1, h2 ∈ H such thath1h2 6= h2h1. Thenh1h2 = h2h1g
′ for someg′ ∈ G′

such thatg′ 6= e, wheree is the identity element ofG. This means thatg′ ∈ H . SinceG′

is cyclic of prime order, it can be generated by anyg′ 6= e and hence, we haveG′ ≤ H .
Now, Lemma 2 implies thatH E G.

From these two lemmas, we have only two cases to consider for the hidden subgroup
H : (a) H is abelian and does not containG′ and(b) H is normal inG. It is possible
to tell the cases apart by querying the hiding functionf twice and checking whether
f(e) andf(g′) are equal for someg′ 6= e andg′ ∈ G′. If they are equal thenG′ ≤ H
andH E G, otherwiseH is abelian. IfH is normal, then one can use the algorithm
of [HRT03], which is efficient if one can intersect kernels ofthe irreducible repre-
sentations (irreps) efficiently. For the Weyl-Heisenberg group, the higher dimensional
irreps form a faithful representation and hence do not have akernel. Thus, when the
hidden subgroup is normal, only one dimensional irreps occur and their kernels can
be intersected efficiently and the hidden subgroup can be found using the algorithm of
[HRT03]. Therefore, we can consider only those hidden subgroups which are abelian
and moreover do not containG′.

Now, we restrict our attention to the case of abelianH . Finally, we need the follow-
ing two results.

Lemma 4. If H is an abelian subgroup which does not containG′, then|SH | = |H |.

Proof. Suppose that for some(x, y) ∈ SH there exist two different elements(x, y, z1)
and (x, y, z2) in H , then by multiplying one with the inverse of the other we get
(0, 0, z1 − z2). Sincez1 − z2 6= 0, this generatesG′, but by our assumption onH ,
G′ � H . Therefore,|SH | = |H |.

The following theorem applies to the case whenp > 2.

Lemma 5. Let H be an abelian subgroup which does not containG′. There exists a
subgroupH0 conjugate toH , whereH0 = {(x, y, xy/2)|(x, y) ∈ SH}.

Proof. We can verify thatH0 is a subgroup by considering elements(x, y, xy/2) and
(x′, y′, x′y′/2) in H0. Their product is

(x, y, xy/2) · (x′, y′, x′y′/2) = (x + x′, y + y′, xy/2 + x′y′/2 + x′y)

= (x + x′, y + y′, xy/2 + x′y′/2 + (x′y + xy′)/2)

= (x + x′, y + y′, (x + x′)(y + y′)/2), (8)

which is an element ofH0. Here, we have used the fact thatH is abelian i.e.,xy′−x′y =
0, ∀(x, y), (x′, y′) ∈ SH . Now for H0, sinceSH0 = SH , H0 is conjugate toH using
Lemma 1.

Note thatH0 can be thought of as a representative of the conjugacy class of H since
it can be uniquely determined fromSH . The above lemma does not apply for the case
p = 2. Whenp = 2, we have that(x, y, z)2 = (2x, 2y, 2z +xy) = (0, 0, xy). But since
we assume thatG′ � H , whenp = 2 we must have thatxy = 0, ∀(x, y, z) ∈ H .
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3 Fourier sampling approach to HSP

We recall some basic facts about the Fourier sampling approach to the HSP, see also
[GSVV04,HMR+06]. First, we recall some basic notions of representation theory of
finite groups [Ser77] that are required for this approach. Let G be a finite group, let
C[G] to denote its group algebra, and letĜ be the set of irreducible representations
(irreps) ofG. We will consider two distinguished orthonormal vector space bases for
C[G], namely, the basis given by the group elements on the one hand(denoted by|g〉,
whereg ∈ G) and the basis given by normalized matrix coefficients of theirreducible
representations ofG on the other hand (denoted by|ρ, i, j〉, whereρ ∈ Ĝ, andi, j =
1, . . . , dρ for dρ, wheredρ denotes the dimension ofρ). Now, the quantum Fourier
transform overG, QFTG is the following linear transformation [Bet87,GSVV04]:

|g〉 7→
∑

ρ∈Ĝ

√

dρ

|G|

dρ
∑

i,j=1

ρij(g)|ρ, i, j〉. (9)

An easy consequence of Schur’s Lemma is thatQFTG is a unitary transformation in
C|G|, mapping from the basis of|g〉 to the basis of|ρ, i, j〉. For a subgroupH ≤ G and
irrep ρ ∈ Ĝ, defineρ(H) := 1

|H|

∑

h∈H ρ(h). Again from Schur’s Lemma we obtain
thatρ(H) is an orthogonal projection to the space of vectors that are point-wise fixed
by everyρ(h), h ∈ H .

Definerρ(H) := rank(ρ(H)); thenrρ(H) = 1/|H |∑h∈H χρ(h), whereχρ de-
notes the character ofρ. For any subsetS ≤ G define|S〉 := 1/

√

|S|∑s∈S |s〉 to be
the uniform superposition over the elements ofS.

Thestandard method[GSVV04] starts from1/
√

|G|∑g∈G |g〉|0〉. It then queries

f to get the superposition1/
√

|G|∑g∈G |g〉|f(g)〉. The state becomes a mixed state
given by the density matrixσG

H = 1
|G|

∑

g∈G |gH〉〈gH | if the second register is ig-

nored. ApplyingQFTG to σG
H gives the density matrix

|H |
|G|

⊕

ρ∈Ĝ

dρ
⊕

i=1

|ρ, i〉〈ρ, i| ⊗ ρ∗(H),

whereρ∗(H) operates on the space of column indices ofρ. The probability distribution
induced by this base change is given byP (observeρ) =

dρ|H|rρ(H)
|G| . It is easy to see

that measuring the rows does not furnish any new information: indeed, the distribution
on the row indices is a uniform distribution1/dρ. The reduced state on the space of col-
umn indices on the other hand can contain information aboutH : after having observed
an irrepρ and a row indexi, the state is now collapsed toρ∗(H)/rρ(H). From this state
we can try to obtain further information aboutH via subsequent measurements.

Finally, we mention that Fourier sampling onk ≥ 2 registers can be defined in a
similar way. Here one starts off withk independent copies of the coset state and applies
QFT⊗k

G to it. In the next section, we describe the representation theory of the Weyl-
Heisenberg groups. An efficient implementation ofQFTG is shown in Appendix A.
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4 The irreducible representations

In this section, we discuss the representation theory ofG, whereG ∼= Zn+1
p ⋊ Zn

p is a
Weyl-Heisenberg group. From the properties of being an extraspecial group, it is easy
to see thatG hasp2n one dimensional irreps andp− 1 irreps of dimensionpn. The one
dimensional irreps are given by

χa,b(x, y, z) = ω(ax+by)
p , (10)

whereωp = e2πi/p anda, b ∈ Zn
p . Note that

χa,b(H) =
1

|H |
∑

(x,y,z)∈H

ωax+by
p =

1

|SH |
∑

(x,y)∈SH

ωax+by
p . (11)

SinceSH is a linear space, this expression is non-zero if and only ifa, b ∈ S⊥
H . Suppose

we perform a QFT on a coset state and measure an irrep label. Furthermore, suppose
that we obtain a one dimensional irrep (although the probability of this is exponentially
small as we show in the next section). Then this would enable us to sample fromS⊥

H .
If this event of sampling one dimensional irreps would occursomeO(n) times, we
would be able to compute a generating set ofS⊥

H with constant probability. This gives
us information about the conjugacy class ofH and from knowing this, it is easy to see
that generators forH itself can be inferred by means of solving a suitable abelianHSP.

Thus, obtaining one dimensional irreps would be useful. Of course we cannot as-
sume to sample from one dimensional irreps as they have low probability of occurring.
Our strategy will be to “manufacture” one dimensional irreps from combining higher-
dimensional irreps. First, recall that thepn dimensional irreps are given by

ρk(x, y, z) =
∑

u∈Zn
p

ωk(z+yu)
p |u + x〉〈u|, (12)

wherek ∈ Zp andk 6= 0. This representation is a faithful irrep and its character is given
by χk(g) = 0 for g 6= e andχk(e) = pn. In particular,χk(H) = pn/|H |.

The probability of a high dimensional irrep occurring in Fourier sampling is very
high (we compute this in Section 5). We consider the tensor product of two such high
dimensional irreps. This tensor product can be decomposed into a direct sum of irreps
of the group. A unitary base change which decomposes such a tensor product into a
direct sum of irreps is called aClebsch-Gordantransform, denoted byUCG. Clebsch-
Gordan transforms have been used implicitly to bound highermoments of a random
variable that describes the probability distribution of a POVM on measuring a Fourier
coefficient. They have also been used in [Bac08a] to obtain a quantum algorithm for the
HSP over Heisenberg groups of orderp3, and in [Bac08b] for the HSP in the groups
Dn

4 as well as for Simon’s problem. Our use of Clebsch-Gordan transforms will be
somewhat similar.

For the Weyl-Heisenberg groupG, the irreps that occur in the Clebsch-Gordan de-
composition of the tensor product of high dimensional irrepsρk(g) ⊗ ρl(g) depend on
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k andl. The Clebsch-Gordan transform forG is given by

UCG : |u, v〉 →
{

∑

w∈Zn
p

ω
l
2 (u+v)w
p |u − v, w〉 for k + l = 0

|u − v, ku+lv
k+l 〉 for k + l 6= 0

(13)

If k + l 6= 0, then only one irrep ofG occurs with multiplicitypn, namely

ρk(g) ⊗ ρl(g)
UCG→ Ipn ⊗ ρk+l(g). (14)

If k + l = 0, then all the one dimensional irreps occur with multiplicity one i.e.,

ρk(g) ⊗ ρl(g)
UCG→ ⊕a,b∈Zp

χa,b(g). (15)

Note, however, that the state obtained after Fourier sampling is not 1
|H|

∑

g∈H ρk(g) ⊗
ρl(g), but ratherρk(H) ⊗ ρl(H). When we apply the Clebsch-Gordan transform to
this state, we obtain one dimensional irrepsχa,b(H) on the diagonal. Applying this to
ρ−l(H) ⊗ ρl(H) gives us

∑

(x,y,z),(x′,y′,z′)∈H

u,v,w1,w2∈Zn
p

ω
−l(yu+z)+l(y′v+z′)+ l

2 ((u+v)(w1−w2)+w1(x+x′))×
p

|u − v + x − x′, w1〉〈u − v, w2|

=
∑

(x,y,z),(x′,y′,z′)∈H

u′,w1,w2∈Zn
p

ω
l
2 (−(y+y′)u′+2(z′−z)+w1(x+x′))×
p

∑

v′

ω
l
2 (v′(w1−w2+y′−y))
p |u′ + x − x′, w1〉〈u′, w2|,

whereu′ = u − v andv′ = u + v. Sincev′ does not occur in the quantum state, the
sum overv′ vanishes unlessw2 = w1 + y′ − y. Therefore, the state is

∑

(x,y,z),(x′,y′,z′)∈H

u′,w1∈Zn
p

ω
l
2 (−(y+y′)u′+2(z′−z)+w1(x+x′))
p |u′+x−x′, w1〉〈u′, w1+y′−y|. (16)

The diagonal entries are obtained by puttingx = x′ andy = y′ and since|H | = |SH |,
we getz = z′. The diagonal entry is then proportional to

∑

(x,y,z)∈H

u′,w1∈Zn
p

ωl(−yu′+w1x)
p . (17)

Up to proportionality, this can be seen to beχw1,−u′(H), a one dimensional irrep. The
bottom line is that, although not diagonal in the Clebsch-Gordan basis, the resulting
state’s diagonal entries correspond to one dimensional irreps we are interested in.

5 The quantum algorithm

In this section, we present a quantum algorithm that operates on two copies of coset
states at a time and show that it efficiently solves the HSP over G = Zn+1

p ⋊ Zn
p , where

the input isn andlog p. The algorithm is as follows:
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1. Obtain two copies of coset states forG.
2. Perform a quantum Fourier transform on each of the coset states and measure the

irrep label and row index for each state. Assume that the measurement outcomes
are high-dimensional irreps with labelsk and l. With high probability the irreps
are indeed both high dimensional andk + l 6= 0, whenp > 2 (see the analysis
below). Whenp = 2, there is only one high dimensional irrep which occurs with
probability1/2 andk + l = 0 always, sincek = l = 1. We deal with this case at
the end of this section. For now assume thatp > 2 andk + l 6= 0.

3. If −k/l is not a square inZp, then we discard the pair(k, l) and obtain a new sam-
ple. Otherwise, perform a unitaryUα⊗I : |u, v〉 → |αu, v〉, whereα is determined
by the two irrep labels asα =

√

−k/l. This leads to a “change” in the irrep label3

of the first state fromk to −l. We can then apply the Clebsch-Gordan transform
and obtain one dimensional irreps.

4. Apply a Clebsch-Gordan transform defined as

UCG : |u, v〉 →
∑

w∈Zn
p

ω
l
2 (u+v)w
p |u − v, w〉 (18)

to these states.
5. Measure the two registers in the standard basis. With the measurement outcomes,

we have to perform some classical post-processing which involves finding the or-
thogonal space of a vector space.

Now, we present the analysis of the algorithm.

1. In step 1, we prepared the state1|G|

∑

g |g〉|0〉 and apply the black boxUf to obtain

the state 1
|G|

∑

g |g〉|f(g)〉. After discarding the second register, the resulting state

is |H|
|G| |gH〉〈gH |. We have two such copies.

2. After performing a QFT overG on two such copies, we measure the irrep label
and a row index. The probability of measuring an irrep labelµ is given byp(µ) =
dµχµ(H)|H |/|G|, whereχµ is the character of the irrep. Ifµ is a one-dimensional
irrep, then the character is either0 or 1 and so the probability becomes0 or |H |/|G|
accordingly. The characterχµ(H) = 0 if and only if µ = (a, b) ∈ S⊥

H . Therefore,
the total probability of obtaining a one dimensional irrep is |H ||S⊥

H |/|G|. Now, we
have that|H | = |SH | and so|H ||S⊥

H | = p2n sinceS⊥
H is the orthogonal space

in Z2n
p . Therefore, the total probability of obtaining a one dimensional irrep in

the measurement isp2n/p2n+1 = 1/p. This is exponentially small in the input
size (log p). Therefore, the higher dimensional irreps occur with total probability of
1 − 1/p. Since all of them have the sameχµ(H) = pn/|H |, each of them occurs
with the same probability of1/p. Take two copies of coset states and perform weak
Fourier sampling and obtain two high dimensional irrepsk andl. The state is then
|H|2

p2n ρk(H) ⊗ ρl(H). In the rest, we omit the normalization|H|
pn of each register.

3 We refer to Appendix B for a description of a technique that allows to change the labels of
irreps of semidirect products that are more general than theWeyl-Heisenberg group.
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Therefore, the state is proportional to

ρk(H)⊗ρl(H) =
∑

(x,y,z),(x′,y′,z′)∈H

ωk(z+yu)+l(z′+y′v)
p |u+x, v+y〉〈u, v|. (19)

3. We can assume thatk andl are such thatk + l 6= 0 since this happens with prob-

ability (p − 1)/p2. Now, chooseα =
√

−k
l . Since the equationlx2 + k = 0 has

at most two solutions for anyk, l ∈ Zp, for any givenk, l chosen uniformly there
exist solutions of the equationlx2 + k = 0 with probability1/2. Perform a unitary
Uα : |u〉 → |αu〉 on the first copy. The first register becomes proportional to

Uαρk(H)U †
α =

∑

(x,y,z)∈H

ωk(z+yu)
p |α(u + x)〉〈αu|

=
∑

(x,y,z)∈H,u1∈Zn
p

ω
k

α2 (z1+y1u1)
p |u1 + x1〉〈u|

= ρ k

α2
(φα(H)), (20)

where(x1, y1, z1) = φα(x, y, z) = (αx, αy, α2z) andu1 = αu. It can be seen
easily thatφα is an isomorphism ofG for α 6= 0 and henceφα(H) is subgroup of
G. In fact,φα(H) is a conjugate ofH sinceSφα(H) = SH (since if(x, y) ∈ SH ,
then so is every multiple of it i.e.,(αx, αy) ∈ SH ). Thus, we have obtained an
irrep state with a new irrep label over a different subgroup.But this new subgroup
is related to the old one by a known transformation. In choosing the value ofα as
above, we ensure thatk/α2 = −l and hence obtain one dimensional irreps in the
Clebsch-Gordan decomposition.

4. We now compute the state after performing a Clebsch-Gordan transformUCG on
the two copies of the coset states, i.e., perform the unitarygiven by the action

UCG : |u, v〉 −→
∑

w∈Zn
p

ω
l
2 (u+v)w
p |u − v, w〉. (21)

The initial state of the two copies is

ρ−l(φα(H)) ⊗ ρl(H)

=
∑

(x1,y1,z1)∈φα(H),(x′,y′,z′)∈H

u,v∈Zn
p

ω−l(z1+y1u)+l(z′+y′v)
p |u + x1, v + x′〉〈u, v|.

The resulting state after the transform is
∑

(x1,y1,z1)∈φα(H),(x′,y′,z′)∈H

u,v,w1,w2∈Zn
p

ω
−l(z1+y1u)+l(z′+y′v)+ l

2 (u+v)(w1−w2)+(x1+x′)w1
p ×

|u − v + x1 − x′, w1〉〈u − v, w2|

=
∑

(x1,y1,z1)∈φα(H),(x′,y′,z′)∈H

u′,v′,w1,w2∈Zn
p

ω
−l(z1+y1

u′+v′

2 )+l(z′+y′ v′
−u′

2 )+ l
2 (v′)(w1−w2)+(x1+x′)w1

p ×
|u′ + x1 − x′, w1〉〈u′, w2|,
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whereu′ = u − v andv′ = u + v. Notice thatv′ occurs only in the phase and not
in the quantum states. Therefore, collecting the terms withv′ we get

∑

v′

ω
l
2 (y′−y1+w1−w2)
p . (22)

This term is non-zero only wheny′−y1+w1−w2 = 0. Hencew2 = w1−(y1−y′).
Substituting this back in the equation, we get

∑

(x1,y1,z1)∈φα(H),(x′,y′,z′)∈H

u′,w1∈Zn
p

ω
l
2 [(x1+x′)w1−(y1+y′)u′−2(z1−z′)]
p

|u′ + x1 − x′, w1〉〈u′, w1 − (y1 − y′)|.

Reusing the labelsu andv by puttingu = u′ andv = w1 − (y1 − y′), we obtain

∑

(x1,y1,z1)∈φα(H),(x′,y′,z′)∈H

u,v∈Zn
p

ω
l
2 [(x1+x′)(v+(y1−y′))−(y1+y′)u−2(z1−z′)]
p

|u + x1 − x′, v + y1 − y′〉〈u, v|.

This can be written as

∑

(x1,y1,z1)∈φα(H),(x′,y′,z′)∈H

u,v∈Zn
p

ω
l
2

h

(x1+x′)v−(y1+y′)u−2(z1−
x1y1

2 )+2(z′− x′y′

2 )
i

p

|u + x1 − x′, v + y1 − y′〉〈u, v|.

SinceH is abelian,x1y
′ −x′y1 = 0. Now consider the subgroupH0 defined in the

previous section. Letg = (x̂, ŷ, ẑ) be an element such thatHg = H0. As discussed
in Sec. 2,(x̂, ŷ) are unique up to an element ofS⊥

H and ẑ is any element inZp.
Now, when(x′, y′, z′) ∈ H is conjugated withg, it gives(x′, y′, z′ + x̂y′ − ŷx′) =
(x′, y′, x′y′/2) ∈ H0. Therefore,z′ − x′y′/2 = x′ŷ − x̂y′. In order to obtain
H0 from φα(H) we need to conjugate byφα(x̂, ŷ, ẑ). Therefore,z1 − x1y1

2 =
α(ŷx1 − x̂y1). Incorporating this into the above expression, we get

∑

(x1,y1),(x′,y′)∈SH
u,v∈Zn

p

ω
l
2 [(x1+x′)v−(y1+y′)u−2(α(ŷx1−x̂y1))+2(x′ŷ−x̂y′)]
p

|u + x1 − x′, v + y1 − y′〉〈u, v|.

Now sinceSH is a linear space, we have that if(x, y), (x′, y′) ∈ SH , then(x −
x′, y − y′) ∈ SH . Hence, substitutingx = x1 − x′, y = y1 − y′, we get

∑

(x,y),(x′ ,y′)∈SH
u,v∈Zn

p

ω
l
2 [(x+2x′)v−(y+2y′)u−2(α(ŷ(x+x′)−x̂(y+y′)))+2(x′ŷ−x̂y′)]
p

|u + x, v + y〉〈u, v|.

Separating the sums over(x, y) and(x′y′) we get

∑

(x,y)∈SH ,u,v∈Zn
p





∑

(x′,y′)∈SH

ω
l[x′(v+(1−α)ŷ)−y′(u+(1−α)x̂)]
p





ω
l
2 [x(v−2αŷ)−y(u−2αx̂)]
p |u + x, v + y〉〈u, v|.
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Note that the term in the squared brackets is non-zero only when(v+(1−α)ŷ, u+
(1−α)x̂) lies inS⊥

H . This means that if we measure the above state we obtain pairs
(u, v) such that(u + (1−α)x̂, v + (1−α)ŷ) ∈ S⊥

H . This can be used to determine
bothS⊥

H (and henceSH ) and(x̂, ŷ). Repeat thisO(n) times and obtain values for
u andv by measurement.

5. From the above, say we obtainn+1 values(u1, v1), . . . , (un+1, vn+1). Therefore,
we have the following vectors inS⊥

H .

(u1 + (1 − α1)x̂, v1 + (1 − α1)ŷ),

(u2 + (1 − α2)x̂, v2 + (1 − α2)ŷ),

...
...

(un+1 + (1 − αn+1)x̂, vn+1 + (1 − αn+1)ŷ).

The affine translation can be removed by first dividing by(1 − αi) and then taking
the differences sinceS⊥

H is a linear space. Therefore, the following vectors lie in
S⊥

H :

(u′
1, v

′
1) = (

u1

(1 − α1)
− un+1

(1 − αn+1)
,

v1

(1 − α1)
− vn+1

(1 − αn+1)
),

(u′
2, v

′
2) = (

u2

(1 − α2)
− un+1

(1 − αn+1)
,

v2

(1 − α2)
− vn+1

(1 − αn+1)
),

...
...

(u′
n, v′n) = (

un

(1 − αn)
− un+1

(1 − αn+1)
,

vn

(1 − αn)
− vn+1

(1 − αn+1)
).

With high probability, these vectors form a basis forS⊥
H and hence we can de-

termineSH efficiently. This implies that the conjugacy class and hencethe sub-
group H0 is known. It remains only to determine(x̂, ŷ). We can set(x̂, ŷ) =
(1 − α1)

−1(u1 − u′
1, v1 − v′1) since the conjugating element can be determined

up to addition by an element ofS⊥
H . H can be obtained with the knowledge ofH0

and(x̂, ŷ).

Finally, for completeness we consider the casep = 2. Assume that after Fourier sam-
pling we have two high dimensional irreps with states given by

ρ1(H) ⊗ ρ1(H) =
∑

(x,y,z),(x′,y′,z′)∈H,u,v∈Z
n
2

(−1)z+z′+yu+y′v|u + x, v + x′〉〈u, v|.

(23)
The Clebsch-Gordan transform is given by the base change:

|u, v〉 →
∑

w∈Z
n
2

(−1)wv|u + v, w〉. (24)

Applying this to the two states, we obtain (in a similar manner as above)

∑

(x,y,z)∈H,u,v∈Z
n
2

(−1)z+vx





∑

(x′,y′,z′)∈H

(−1)uy′+vx′



 |u + x, v + y〉〈u, v|. (25)
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The inner sum is non-zero if and only if(u, v) ∈ S⊥
H . Thus, measuring this state gives

usS⊥
H from which we can findSH . We cannot determineH directly from here as in

the casep > 2. But since we knowSH , we know the conjugacy class ofH and we
can determine the abelian groupHG′ which containsH . This group is obtained by
appending the elements ofSH with every element ofG′ = Z2 i.e., for(x, y) ∈ SH we
can say that(x, y, 0) and(x, y, 1) are inHG′. Once we knowHG′, we now restrict the
hiding functionf to the abelian subgroupHG′ of G and run the abelian version of the
standard algorithm to findH . In summary, we have shown the following result:

Theorem 1. For n≥1, and p≥2 prime, the hidden subgroup problem for the Weyl-
Heisenberg groupG of orderp2n+1 can be solved on a quantum computer withO(n)
queries. The time complexity of the quantum algorithm can bebounded byO(n3 log p)
operations4 and the algorithm uses at mostk = 2 coset states at the same time.

Sketch of proof.From the above discussion follows thatO(n) iterations of Steps
1.–4. in the algorithm will lead to system of equations in Step 5. that with constant
probability has a unique solution. The number of queries in each iteration is constant
and the computational complexity of each of these steps can be upper bounded as fol-
lows:O(n log p log log p) operations for each computation of QFT overG as described
in Appendix A. The transformUα and the Clebsch-Gordan transformUCG can eas-
ily be implemented using arithmetic modulop and QFTs overZp, both of which can
be done inO(log p log log p) elementary quantum operations. Hence the running time
of the quantum part of the algorithm can be upper bounded byO(n2 log p log log p)
operations and the number of queries byO(n). The overall running time is domi-
nated by the cost for classical post-processing which consists in computing the ker-
nel of ann × n matrix overZp. This can be upper bounded byO(n3) arithmetic
operations overZp for the Gaussian elimination, leading to a total bit complexity of
O(n3 log p log log p 2O(log∗ log p)) operations when using the currently fastest known
algorithm for integer multiplication [Für07]. �

6 Conclusions

Using the framework of coset states and non-abelian Fouriersampling we showed that
the hidden subgroup problem for the Weyl-Heisenberg groupscan be solved efficiently.
In each iteration of the algorithm the quantum computer operates onk = 2 coset states
simultaneously which is an improvement over the previouslybest known quantum al-
gorithm which requiredk = 4 coset states. We believe that the method of changing
irrep labels and the technique of using Clebsch-Gordan transforms to devise multireg-
ister experiments has some more potential for the solution of HSP over other groups.
Finally, this group has importance in error correction. In fact, the state we obtain after
Fourier sampling and measurement of an irrep is a projector onto the code space whose
stabilizer generators are given by the generators ofH . In view of this fact, it will be
interesting to study the implications of the quantum algorithm derived in this paper to
the design or decoding of quantum error-correcting codes.

4 Ignoring factors growing aslog log p or weaker.
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Acknowledgments

We thank Sean Hallgren and Pranab Sen for useful comments anddiscussions.

References

[AE07] A. Ambainis and J. Emerson. Quantumt-designs:t-wise independence in the quan-
tum world. InProceedings of the 22nd Annual IEEE Conference on Computational
Complexity, pages 129–140, 2007. Also arxiv preprint quant-ph/0701126.

[Bac08a] D. Bacon. How a Clebsch-Gordan transform helps to solve the Heisenberg hidden
subgroup problem.Quantum Information and Computation, 8(5):438–467, 2008.

[Bac08b] D. Bacon. Simon’s algorithm, Clebsch-Gordan sieves, and hidden symmetries of
multiple squares. Arxiv preprint quant-ph/0808.0174, 2008.

[BCD05] D. Bacon, A. Childs, and W. van Dam. From optimal measurement to efficient quan-
tum algorithms for the hidden subgroup problem over semidirect product groups. In
Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 469–478, 2005. Also arxiv preprint quant-ph/0504083.

[Bet87] Th. Beth. On the computational complexity of the general discrete Fourier transform.
Theoretical Computer Science, 51:331–339, 1987.

[BH97] G. Brassard and P. Høyer. An exact polynomial–time algorithm for Simon’s problem.
In Proceedings of Fifth Israeli Symposium on Theory of Computing and Systems,
pages 12–33. ISTCS, IEEE Computer Society Press, 1997. Alsoarxiv preprint quant–
ph/9704027.

[CRSS97] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A.Sloane. Quantum error cor-
rection and orthogonal geometry.Physical Review Letters, 78(3):405–408, January
1997. Also arxiv preprint quant-ph/9605005.

[CRSS98] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A.Sloane. Quantum error correc-
tion via codes over GF(4).IEEE Transactions on Information Theory, 44(4):1369–
1387, July 1998. Also arxiv preprint quant-ph/9608006.

[CSV07] A. Childs, L. J. Schulman, and U. Vazirani. Quantum algorithms for hidden nonlinear
structures. InProceedings of the 48th Annual IEEE Symposium on Foundations of
Computer Science, pages 395–404, 2007. Also preprint arxiv:0705.2784.

[DHI03] W. van Dam, S. Hallgren, and L. Ip. Quantum algorithms for some hidden shift
problems. InProceedings of the Symposium on Discrete Algorithms (SODA), pages
489–498, 2003. Also arxiv preprint quant–ph/0211140.

[EHK04] M. Ettinger, P. Høyer, and E. Knill. The quantum query complexity of the hidden
subgroup problem is polynomial.Information Processing Letters, 91(1):43–48, 2004.
Also arxiv preprint quant–ph/0401083.

[FIM+03] K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen. Hidden translation and orbit
coset in quantum computing. InProceedings of the 35th Annual ACM Symposium on
Theory of Computing, pages 1–9, 2003. Also arxiv preprint quant–ph/0211091.
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A QFT for the Weyl-Heisenberg groups

We briefly sketch how the quantum Fourier transform (QFT) canbe computed for the
Weyl-Heisenberg groupsGn = Zn+1

p ⋊Zn
p . An implementation of the QFT for the case

wherep = 2 was given in [Høy97]. This can be extended straightforwardly to p > 2 as
follows. Using Eq. (9), we obtain that the QFT forGn is given by the unitary operator

QFTGn
=

∑

a,b,x,y∈Zn
p ,z∈Zp

√

1

p2n+1
ωax+by

p |0, a, b〉〈z, x, y|

+
∑

a,b,x,y∈Zn
p

k∈Z∗
p,z∈Zp

√

pn

p2n+1
ωk(z+by)

p δx,a−b|k, a, b〉〈z, x, y|

=
∑

a′,b′,x′,y′∈Z
n−1
p

an,bn,xn,yn,z∈Zp

√

1

p2n−1

1

p
ωa′x′+b′y′

p ωanxn+bnyn
p

|0, a′an, b′bn〉〈z, x′xn, y′yn|

+
∑

k∈Z∗p,a′,b′,x′,y′∈Z
n−1
p

z,an,bn,xn,yn∈Zp

√

pn−1

p2n−1

1√
p
ωk(z+b′y′)

p ωkynbn
p δx′,a′−b′δxn,an−bn

|k, a′an, b′bn〉〈z, x′xn, y′yn|

= U · QFTGn−1
. (26)

The matrixU is given by

U =
∑

xn,yn,an,bn∈Zp

1

p
ωanxn+bnyn

p |0〉〈0| ⊗ |an, bn〉〈xn, yn|

+
∑

xn,yn,an,bn∈Zp,k∈Z∗
p

1√
p
ωbnyn

p δxn,an−bn
|k〉〈k| ⊗ |an, bn〉〈xn, yn|

= |0〉〈0| ⊗ QFT
Zp

⊗ QFTZp +
∑

k∈Z∗
p

V · (Ip ⊗ QFT
(k)
Zp

), (27)

whereIp is thep dimensional identity matrix,

V =
∑

u,v∈Zp

|u + v, v〉〈u, v|, (28)

and

QFT
(k)
Zp

=
1√
p

∑

u,v∈Zp

ωkuv
p |u〉〈v|. (29)

From Eq. (27) and recursive application of Eq. (26) we obtainthe efficient quantum
circuit implementingQFTGn

shown in Figure 1.
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Fig. 1. QFT for the Weyl-Heisenberg group. The QFT gates shown in thecircuit are QFTs for
the cyclic groupsZp. Each of these QFTs can be implemented approximately [Kit97,HH00]
or exactly [MZ04], in both cases with a complexity bounded byO(log p log log p). It should
be noted that the wires in this circuit are actuallyp-dimensional systems. The meaning of the
controlled gates where the control wire is an open circle is that the operation is applied to the
target wire if and only if the control wire is in the state|0〉. The meaning of the controlledP
gates where the control wire is a closed circle here means that the gatePk is applied in case
the control wire is in state|k〉 with k 6= 0, andP0 = Ip. HerePk is the permutation ma-
trix for which QFT(k) = PkQFT holds. The complexity of this circuit can be bounded by
O(n log p log log p).

B Changing labels of irreducible representations

In this section, we describe the technique of changing labels of irreducible representa-
tions (irreps) in a more abstract, representation theoretic, fashion. We consider a situ-
ation slightly more general than the Weyl-Heisenberg groups considered in the paper,
namely for semidirect products of the formG = A⋊φ B, whereA is an Abelian group,
B is an arbitrary finite group, andφ : B → Aut(A). We make some further assump-
tions regarding the irreps ofG that arise during Fourier sampling. First, note that in
general there might be some irreps ofG that arise as inductions [Ser77,Hup83] of ir-
reps ofA to G. Suppose that, with high probability, we sample only such irreps, so that
we can restrict our attention to this case. This happens for the Weyl-Heisenberg groups
discussed in this paper. Other examples are the groups isomorphic toZn

p ⋊ Zp studied
in [BCD05] and the affine groups [MRRS04] which are isomorphic to Zp ⋊ Zp−1.

After Fourier sampling and measurement of an irrep label we have the stateρk(H),
whereρk is an irrep ofG andk is its label. We want to apply an operatorUB to this
state in order to change it to a stateρk′(H ′) corresponding to an irrep with labelk′,
possibly with respect to a different subgroupH ′. In the following we show how this
can be done ifρk(H) = (χk ↑ G)(H), i. e., if ρk is an induction of an irrepχk of A
to G. The possible labelsk′ that can be obtained depend on the automorphism group of
B, namely on those automorphisms ofB that can be extended to automorphisms ofG.
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First, recall that forχk ∈ Â, the image of an element(a, b) ∈ G under the induction
of χk to G is given by

(χk ↑ G)(a, b) =
∑

t∈B

χk(φt−1(a))|tb−1〉〈t|, (30)

whereφt−1 = (a 7→ φ−1(t)(a)) ∈ Aut(A). Now consider an automorphism ofB,
sayβ ∈ Aut(B). Let UB be the unitary matrix acting onC[B] corresponding to this
automorphism. ApplyingUB to Eq. (30), we get

∑

t∈B

χk(φt−1 (a))|β(t)β(b−1)〉〈β(t)| =
∑

t∈B

χk(φβ(t)(a))|tβ(b−1)〉〈t|. (31)

In order to further simplify this expression, we now supposethat we can extend the
automorphismβ to an automorphism of the whole group in the formγ = (α, β) ∈
Aut(G), whereα ∈ Aut(A). We derive some conditions thatα has to satisfy in order
for this extension to be possible. First, we have that

γ((a1, b1)(a2, b2)) = γ(a1, b1)γ(a2, b2). (32)

This condition becomes

((αφb2 )(a1) + α(a2), b1b2) = ((φβ(b2)α)(a1) + α(a2), β(b1b2)). (33)

Note that in the above equation, sinceα andφt are elements ofAut(A) for all t, we
write their product acting ona ∈ A as(αφt)(a). From Eq. (33) we obtain that

φβ(b) = αφbα
−1 (34)

for all b ∈ B. This means thatα ∈ NAut(A)(Im(φ)) i.e., α lies in the normalizer of
Im(φ), the image ofφ in Aut(A). Therefore, we need to pick the pair(α, β) such that
the condition in Eq. (34) holds. It is clear that givenα there always existsβ such that
Eq. (34) holds but not necessarily the other way around.

Thus, using the assumption that the automorphism can be extended to all ofG, we
can rewrite Eq. (31) as follows:

∑

t∈B

χk(φβ(t)(a))|tβ(b−1)〉〈t| =
∑

t∈B

χk((α−1φt−1α)(a))|tβ(b−1)〉〈t|. (35)

Now, the inner productχk((α−1φt−1α)(a)) can be written asχα̂−1k((φt−1α)(a)).
Therefore, the state is given by

∑

t∈B

χα̂−1k(φt−1(α(a))|tβ(b)−1〉〈t| = (χk′ ↑ G)(γ(a, b)), (36)

wherek′ = α̂−1(k). Here,α̂ is an automorphism of the dual group̂A corresponding to
α such that the character remains invariant. Overall, we haveshown the following:

Theorem 2. LetG = A⋊φB andρk = (χk ↑ G) ∈ Ĝ, whereχk ∈ Â. LetUB ∈ C[B]
be the unitary matrix corresponding to an automorphismβ ∈ Aut(B) that can be
extended toγ = (α, β) ∈ Aut(G). Then by applyingUB to the hidden subgroup state
ρk, we can change it to:

UBρk(H)U †
B = ρk′ (γ(H)), (37)

wherek′ = α̂−1(k).


