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Abstract. Many exponential speedups that have been achieved in gquaxaton-
puting are obtained via hidden subgroup problems (HSPs)shidav that the
HSP over Weyl-Heisenberg groups can be solved efficientlg gnantum com-
puter. These groups are well-known in physics and play aroitapt role in
the theory of quantum error-correcting codes. Our algorith based on non-
commutative Fourier analysis of coset states which aretquastates that arise
from a given black-box function. We use Clebsch-Gordan dgusitions to
combine and reduce tensor products of irreducible reptasens. Furthermore,
we use a new technique of changing labels of irreducibleessptations to ob-
tain low-dimensional irreducible representations in theamposition process. A
feature of the presented algorithm is that in each iteratiothe algorithm the
guantum computer operates on two coset states simultdgedbss is an im-
provement over the previously best known quantum algorifibmthese groups
which required four coset states.

Keywords: quantum algorithms, hidden subgroup problem, coset states

1 Introduction

Exponential speedups in quantum computing have hithega bhown for only a few
classes of problems, most notably for problems that askttaebhidden features of cer-
tain algebraic structures. Examples for this are hiddeft globlems [DHIO3], hidden
non-linear structures [CSV07], and hidden subgroup problgHSPs). The latter class
of hidden subgroup problems has been studied quite extdngiver the past decade.
There are some successes such as the efficient solutiontéSféor any abelian group
[Sho97,Kit97,BH97,ME98], including factoring and distaréog as well as Pell’'s equa-
tion [Hal02], and efficient solutions for some non-abelianups [FIM™03,BCDO05].
Furthermore, there are some partial successes for somab@ian groups such as the
dihedral groups [Reg04,Kup05] and the affine groups [MRRSBihally, it has been
established that for some groups, including the symmetaag which is connected
to the graph isomorphism problem, a straightforward apgiraaquires a rather ex-
pensive quantum processing in the sense that entanglingtapes on a large number
of quantum systems would be required [HMB6]. What makes matters worse, there


http://arXiv.org/abs/0810.3695v1

2 Hari Krovi and Martin Rotteler

are currently no techniques, or even promising candidatrgsthniques, to implement
these highly entangling operations.

The present paper deals with the hidden subgroup probleadiass of non-abelian
groups that—in a precise mathematical sense that will b below—is not too
far away from the abelian case, but at the same time has sastiectiinon-abelian
features that make the HSP over these groups challenginigimesting.

The hidden subgroup problem is defined as follows: we arengivéunctionf :

G — S from a groupG to a setS, with the additional promise that takes constant
and distinct values on the left cosegtd , whereg € G, of a subgroug < G. The task
is to find a generating system éf. The functionf is given as a black-box, i. e., it can
only be accessed through queries and in particular whosetste cannot be further
studied. The input size to the problemlig; |G| and for a quantum algorithm solving
the HSP to be efficient means to have a running time thatliglog |G|) in the number
of quantum operations as well as in the number of classicaladijpns.

We will focus on a particular approach to the HSP which prowede successful
in the past, namely the so-callsthndard methodsee [GSVV04]. Here the functiof
is used in a special way, namely it is used to generaget statesvhich are states of
the forml/\/@zheH |gh) for randomg € G. The task then becomes to extract a
generating system dff from a polynomial number of coset states (for random values
of g). A basic question about coset states is how much informatimutH they indeed
convey and how this information can be extracted from sigtateasurementsA fixed
POVM M operates on a fixed numbgrof coset states at once andkif> 2 and M
does not decompose into measurements of single copiesyhaadhe POVM is an
entangled measurement. As in [HMBG], we call the parametdr the “jointness” of
the measurement. It is known that information-theoretydak any groupG jointness
k = O(log |G|) is sufficient [EHKO4]. While the true magnitude of the re@d#k can
be significantly smaller (abelian groups serve as examplesfiichk = 1), there are
cases for which indeed a high order lof= ©(log|G|) is sufficientand necessary.
Examples for such groups are the symmetric groups [H. However, on the more
positive side, it is known that some groups require only allsrsametimes even only
constant, amount of jointness. Examples are the Heisergetps of ordep? for a
prime p for which £ = 2 is sufficient [BCD05,Bac08a]. In earlier work [ISS07], it
has been shown that for the Weyl-Heisenberg groups grder!, k = 4 is sufficient
[1SS07].

The goal of this paper is to show that in the latter case tindrjess can be improved.
We give a quantum algorithm which is efficient in the inpuesigiven bylog p andn)
and which only requires a jointness/of= 2.

Our results and related work: The family of groups we consider in the present
paper are well-known in quantum information processingemrtie name of gener-
alized Pauli groups or Weyl-Heisenberg groups [NCOQ]. Tlmportance in quan-
tum computing stems from the fact that they are used to defai@lizer codes, the
class of codes most widely used for the construction of quargrror-correcting codes
[CRSS97,Got96,CRSS98].

! Recall that the most general way to extract classical infion from quantum states is given
by means of positive operator valued measures (POVMs) [JC00
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In a more group-theoretical context, the Weyl-Heisenbeogigs are known as ex-
traspecialp-groups (actually, they constitute one of the two familiéexgtraspecial
p-groups [Hup83]). A polynomial-time algorithm for the HS®r fthe extraspecial-
groups was already given by Ivanyos, Sanselme, and Sahn8&07]. Our approach
differs to this approach in two aspects: first, our approachased on Fourier sam-
pling for the non-abelian grou@. Second, and more importantly, we show that the
jointnessk, i.e., the number of coset states that the algorithm has ¢oad® jointly
on, can be reduced fromn = 4 to & = 2. Crucial for our approach is the fact that in
the Weyl-Heisenberg group the labels of irreducible repméstions can be changed.
This is turn can be used to “drive” Clebsch-Gordan decontjpos in such a way that
low-dimensional irreducible representations occur indbeompoaosition.

It is perhaps interesting to note that for the Weyl-Heiseglygoups the states that
arise after the measurement in the Fourier sampling appi@dso called Fourier coef-
ficients) are typically of a very large rank (i. e., exponahiti the input size). Generally,
large rank usually is a good indicator of the intractabitifithe HSP, such as in case
of the symmetric group whe# is a full support involution. Perhaps surprisingly, in
the case of the Weyl-Heisenberg group it still is possiblextractH efficiently even
though the Fourier coefficients have large rank. We achlaget the price of operating
on two coset states at the same time. This leaves open theaquesetherk = 1 is
possible, i. e., if the hidden subgroi@ipcan be identified from measurements on single
coset states. We cannot resolve this question but beliatd¢Htis will be hard. Our rea-
soning is as follows. Having Fourier coefficients of largek@mplies that the random
basis method [RRS05,Sen06] cannot be applied. The randsisiibathod is a method
to derive algorithms withk = 1 whose quantum part can be shown to be polynomial,
provided that the rank of the Fourier coefficients is coristaBased on this we there-
fore conjecture that any efficient quantum algorithm for éxéraspecial groups will
require jointness of > 2.

Finally, we mention that a similar method to combine the tegisters in each run
of the algorithm has been used by Bacon [Bac08a] to solve 8 id the Heisenberg
groups of ordep3. The method uses a Clebsch-Gordan transform which is arynita
transform that decomposes the tensor product of two iribtuepresentations [Ser77]
into its constituents. The main difference between the ¢tdierg group and the Weyl-
Heisenberg groups is that the Fourier coefficients are ngdppure states and are of
possibly high rank.

Organization of the paper: In Section 2 we review the Weyl-Heisenberg group
and its subgroup structure. The Fourier sampling approadhte so-called standard
algorithm are reviewed in Section 3. In Section 4 we provideassary facts about the
representation theory that will be required in the subsefjparts. The main result of
this paper is the quantum algorithm for the efficient solutid the HSP in the Weyl-
Heisenberg groups presented in Section 5. Finally, we ofiaclusions in Section 6.

2 This can be obtained by combining the random basis methatfgevith the derandomiza-
tion results of [AEQ7].
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2 The Weyl-Heisenberg groups

We begin by recalling some basic group-theoretic notiorsaf that the centeZ (G)

of a groupG is defined as the set of elements which commute with everyerieof the
groupi.e.,.Z(G) = {c: [c,9] = cgc lg™! = eforall g € G}, wheree is the identity
element ofGG. The derived (or commutator) subgroGp is generated by elements of
the typela, b] = aba='b~!, wherea, b € G. The reader is invited to recall the definition
of semidirect product& = N x H, see for instance [Hup83,Ser77]. In the following
we give a definition of the Weyl-Heisenberg groups as a sesttproduct and give
two alternative ways of working with these groups.

Definition 1. Letp be a prime and lek be an integer. The Weyl-Heisenberg group of
order p*"*! is defined as the semidirect prod&t ™' x Z, where the actior in
the semidirect product is defined en= (z1,...,z,) € Z; asthe(n + 1) x (n + 1)
matrix given by

1... 0 0
01 ...0

¢(x) = : 1)
0 10

1 Xg ...%y 1

Any group element OZ;}“ X Z, can be written as a tripler, y, z) wherez and
y are vectors of length whose entries are elementsZf andz is in Z,,. To relate this
triple to the semidirect product, one can think(gfz) € Z*! andx € Z. Then, the
product of two elements in this group can be written as

(r,y,2) - (2,9, 2)=(x+2",y+y,2+2 +2"-y), (2)

wherez -y = >, z;y; is the dot product of two vectors (denotedaasin the rest of
the paper).

Fact 1 [Hup83] For any p prime, andn > 1, the Weyl-Heisenberg group is an ex-
traspecialp group. Recall that a groug is extraspecial ifZ(G) = G’, the center is
isomorphic toZ,, andG /G’ is a vector space.

Up to isomorphism, extraspeciglgroups are of two types: groups of expongnt
and groups of exponept. The Weyl-Heisenberg groups are the extraspee@ioups
of exponent. It was shown in [ISS07] that an algorithm to find hidden swalogs in
the groups of exponentcan be used to find hidden subgroups in groups of exponent
p%. Therefore, it is enough to solve the HSP in groups of expbpem this paper, we
present an efficient algorithm for the HSP over groups of expdy.

Realization via matrices oveZ,: First, we recall that the Heisenberg group of order
p? (which is the group o8 x 3 upper triangular matrices with ones on the main diag-
onal and other entries ii,) is a Weyl-Heisenberg group and can be regarded as the
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semidirect prodchf) x Zy. An efficient algorithm for the HSP over this group is given
in [BCDO5]. Elements of this group are of the type

lyz
0lz ). 3)
001
The product of two such elements is
lyz 1y 2 ly+y z+2' +2'y
0lx 012"]=(0 1 x+ 2 4)
001 001 0 0 1

Thus, such a matrix can be identified with a trigle y, z) in Z2 x Z,. This matrix
representation of the Heisenberg group can be generalizethyn. We can associate
artriple(z,y, ) wherezr,y € Z; andz € Z, with the (n + 2) x (n + 2) matrix

1 yr.ooyn 2
RPN (5)
0 0...1ux,
00...01

Realization via unitary representatiorFinally, there is another useful way to represent
the Weyl-Heisenberg group. The qupit Pauli matrices form a faithful (irreducible)
representation of the Weyl-Heisenbergroup. For anyc # 0, we can associate with
any triple(z,y, z) in Z;}’“l x Zy,, the following matrix:

pk('rvyaz) :W];ZXIZ;?, (6)

where the matrixX = 3 .. |u+ 1)(u| is the generalize& operator and the matrix
Zk =Yy wilu) (ul is the generalized operator, see e.g. [NCOO].

Subgroup structure:In the following we will write G in short for Weyl-Heisenberg
groups. Using the notation introduced above the cefit@gr) (or G’) is the group
Z(G) =4(0,0,2)|z € Z,} and is isomorphic t&,. As mentioned above, the quotient
groupG/G’ is a vector space isomorphicﬂi”. This space can be regarded as/m-
plecticspace with the following inner produgtz, v) - (2/,y') = (z -y’ — y - 2’), where
x,y,x',y" € Zy. The quotient map is just the restriction of the trigle y, z) € G

to the pair(z,y) € Zf,". From Eg. (2), it follows that two elements commute if and
only if zy’ — y2’ = 0. Denote the set ofz,y) pairs occurring inH as Sy i.e., for
each triple(z,y,z) € H, we have tha{z,y) € Sy and so|Sy| < |H]|. It can be
easily verified thatSy is a vector space and is in fact, a subspac@fﬁt Indeed, for
two elementgz, y), (z/,y') € Sy, pick two elementsz, y, 2), (2',y/, 2') € H and so
(x+2',y+y,z+2 +2'y) € H. Therefore(z + 2,y + v') € Sy. To show that if
(z,y) € Su, then(az,ay) € Sy foranya € Z,, observe that i{z, y, z) € H, then
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(x,y,2)* = (azx,ay,az + @xy) € H. Therefore(az, ay) € Sy (in fact, it can
be shown thaSy ~ HG'/G’, but we do not need this result.) Therefofe,< G is
abelian if and only itv(x, y), (', y’) € Sk, we have thaty’ — 2’y = 0. Such a space
where all the elements are orthogonal to each other is dalbpic

Now, we make a few remarks about the conjugacy class of sobggaupH . Con-
sider conjugatind? by some element a¥, sayg = (2, ¢/, 2’). Foranyh = (z,y, 2) €
H, we obtain

g_lhg = (_‘Tlv _y/a _Z/ + .I'/y/)(l', Y, Z)(xlv yla Z/)
= (=2, =y, =+ 2y )@+ 2y +y, 2+ 2 +2'y)
= (z,y,z +a'y —xy') € HY. (7)

From this we see thafy, = Sy. We show next thaty actually characterizes the
conjugacy class off. Before proving this result we need to determine the stahilof

H. The stabilizerHg of H is defined as the set of elements@fwhich preserved
under conjugation i.eHgs = {g € G|HY = H}. From Eq. (7), we can see that=
(«',y',2") € Hgifand only if 2’y — xy’ = O for all (z,y, z) € H. Thus, the stabilizer

is a group such thaiy, = S3;, whereSy is the orthogonal space under the symplectic
inner product defined above, i.éls = {(z,y, 2) € G|(z,y) € S#,2 € Z,}. In other
words, it is obtained by appending the paitsy) € Sy with every possible € Z,,.
Therefore|Hg| = |G’| - |S#|. Now, we can prove the following lemma.

Lemma 1. Two subgroup$i; and H; are conjugate if and only if, = Sp,.

Proof. We have already seen thatff; and H» are conjugates, thefiy, = Sy,. To
show the other direction, we use a counting argument ie.,hogv ghat the number
of subgroupsH’ of G such thatSy, = Sy is equal to the number of conjugates of
H. First, assume that the dimension of the vector sgaggeis k. Now, the number
of conjugates off{; is the index of the stabilizer off;. From the above result, the
stabilizer has a sizg5'||S3;, | = p - p>~*. Therefore, the index or the number of
conjugates offf; arep?"+!/p?n—F=1 = p* Now, the number of different possible
subgroups such thatSy = Sy, is p* since each of thé basis vectors ofy, are
generators of the subgroup and they can havezacgmponent independent of each
other i.e., there arg possible choices of for each of the: generators.

The propertyc’ = Z(G) will be useful in that it will allow us to consider only a
certain class of hidden subgroups. We show next that it isiginéo consider hidden
subgroups which are abelian and do not con&inRecall that tha# is normal inG
(denotedH < G)if g~'hg € H forall g € G andh € H.

Lemma?2. If G’ < H, thenH <G.

Proof. SinceG’ is the commutator subgroup, for apy, g2 € G, there existy’ € G’
such thay; go = g2g19’. Now, leth € H andg € G. We haveg—'hg = hg’ for some
g € G'.ButsinceG’ < H, hg' = I, for someh’ € H. Thereforeg~'hg = I’ and
henceH <4 G.

Lemma 3. If H is non-abelian, thed < G.
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Proof. Lethy, hy € H such thati;ho # haohy. Thenhihe = hohig’ for someg’ € G
suchthay’ # e, wheree is the identity element af. This meanstha’ € H. SinceG’
is cyclic of prime order, it can be generated by ghy4 e and hence, we havg’ < H.
Now, Lemma 2 implies thall < G.

From these two lemmas, we have only two cases to considehdadnitiden subgroup
H: (a) H is abelian and does not contaiif and (b) H is normal inG. It is possible
to tell the cases apart by querying the hiding functfotwice and checking whether
f(e) andf(g') are equal for somg’ # ¢ andg’ € G'. If they are equal theti’ < H
and H < G, otherwiseH is abelian. IfH is normal, then one can use the algorithm
of [HRTO3], which is efficient if one can intersect kernelstbe irreducible repre-
sentations (irreps) efficiently. For the Weyl-Heisenbergug, the higher dimensional
irreps form a faithful representation and hence do not hakerael. Thus, when the
hidden subgroup is normal, only one dimensional irreps oecd their kernels can
be intersected efficiently and the hidden subgroup can badfasing the algorithm of
[HRTO3]. Therefore, we can consider only those hidden solggg which are abelian
and moreover do not contadw .

Now, we restrict our attention to the case of abelianFinally, we need the follow-
ing two results.

Lemma 4. If H is an abelian subgroup which does not conté&ify then| Sy | = |H|.

Proof. Suppose that for some, y) € Sy there exist two different elements, y, z1)
and (x,y, z2) in H, then by multiplying one with the inverse of the other we get
(0,0,21 — 22). Sincez; — zo # 0, this generate&’, but by our assumption of/,

G' £ H. Therefore|Sy| = |H].

The following theorem applies to the case when 2.

Lemma 5. Let H be an abelian subgroup which does not contain There exists a
subgroupH, conjugate toH, whereHy = {(z, y, zy/2)|(z,y) € Su}.

Proof. We can verify thatH is a subgroup by considering elemefisy, xy/2) and
(2',y', 2y’ /2) in Hy. Their product is

(z,y,2y/2) - (2',y 2"y [2) = (x + 2",y + o/, 2y /2 + 2"y /2 + 2'y)
=@+ y+y,zy/2+ 2"y /24 ('y +2y)/2)
=@+ y+y,(@+2)y+v)/2), (8)

which is an element ofly. Here, we have used the fact thfais abeliani.e.zy’ —2'y =
0,Y(z,y), («',y") € Su. Now for Hy, sinceSy, = S, Hy is conjugate tad using
Lemma 1.

Note thatH, can be thought of as a representative of the conjugacy cfaBsgince

it can be uniquely determined froSy. The above lemma does not apply for the case
p = 2. Whenp = 2, we have thatz, y, 2)? = (2z, 2y, 2z +2y) = (0,0, 2y). But since
we assume tha®’ £ H, whenp = 2 we must have thaty = 0, V(z,y,2) € H.
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3 Fourier sampling approach to HSP

We recall some basic facts about the Fourier sampling apprtmthe HSP, see also
[GSVV04,HMR'06]. First, we recall some basic notions of representati@ory of
finite groups [Ser77] that are required for this approach.® e a finite group, let
C|[G] to denote its group algebra, and Btbe the set of irreducible representations
(irreps) of G. We will consider two distinguished orthonormal vector sphases for
C[G], namely, the basis given by the group elements on the one(dendted bylg),
whereg € G) and the basis given by normalized matrix coefficients ofitledlucible
representations af on the other hand (denoted by, 7, j), wherep € G, andi,j =
1,....d, for d,, whered, denotes the dimension @f. Now, the quantum Fourier
transform overd, QFT; is the following linear transformation [Bet87,GSVV04]:

dP
mHZ]%Z%wmn ©)

pec i5=1

An easy consequence of Schur's Lemma is QBT is a unitary transformation in
Cl¢l, mapping from the basis o§) to the basis ofp, i, j). For a subgroupl < G and
irrepp € G, definep(H) := ﬁ > nher P(R). Again from Schur's Lemma we obtain
thatp(H) is an orthogonal projection to the space of vectors that aiet-pvise fixed
by everyp(h), h € H.

Definer,(H) := rankp(H)); thenr,(H) = 1/|H|>, .y xo(h), wherey, de-
notes the character of For any subse$ < G define|S) := 1/,/]5] > scs|8) tobe
the uniform superposition over the elementsSof

Thestandard methofiGSVV04] starts froml/+/|G|>_ . [9)[0). It then queries
f to get the superpositiot/ /|G| >_ . 19)|f(g)). The state becomes a mixed state
given by the density matrix$ = ﬁ > gec l9H)(gH]| if the second register is ig-
nored. ApplyingQF T, to 0§ gives the density matrix

dp
G DD il o (a1,

pel i=1

wherep* (H) operates on the space of column indicep.ofhe probability distribution
induced by this base change is given Byobservep) = %. It is easy to see
that measuring the rows does not furnish any new informatialeed, the distribution

on the row indices is a uniform distributidrid,. The reduced state on the space of col-
umn indices on the other hand can contain information abbwfter having observed
anirrepp and a row index, the state is now collapsed po(H) /r,(H ). From this state

we can try to obtain further information aboltvia subsequent measurements.

Finally, we mention that Fourier sampling @n> 2 registers can be defined in a
similar way. Here one starts off withindependent copies of the coset state and applies
QFT%’C to it. In the next section, we describe the representatienrthof the Weyl-
Heisenberg groups. An efficient implementatiorQH T, is shown in Appendix A.
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4 The irreducible representations

In this section, we discuss the representation theory,afhereG = Z;}’“l X Zy is a
Weyl-Heisenberg group. From the properties of being arasptcial group, it is easy
to see thaty hasp®” one dimensional irreps and- 1 irreps of dimensiop™. The one
dimensional irreps are given by

Xa,b(xv Y, Z) = wz()am—ﬁ-by)’ (10)
wherew, = ¢2™/? anda, b € Z!'. Note that

1 1
o H) = az+by _ am-ﬁ—by. 11
ol =g 2. ST 2 )
(.2 H (#:4)€Sn

SinceSy is alinear space, this expression is non-zero if and onlytifc S7. Suppose
we perform a QFT on a coset state and measure an irrep lab#teRuore, suppose
that we obtain a one dimensional irrep (although the prditabf this is exponentially
small as we show in the next section). Then this would enabke sample fronb;;.
If this event of sampling one dimensional irreps would ocsomeO(n) times, we
would be able to compute a generating sesgfwith constant probability. This gives
us information about the conjugacy classtfand from knowing this, it is easy to see
that generators foH itself can be inferred by means of solving a suitable abefigp.
Thus, obtaining one dimensional irreps would be useful. @frse we cannot as-
sume to sample from one dimensional irreps as they have lobapility of occurring.
Our strategy will be to “manufacture” one dimensional igémm combining higher-
dimensional irreps. First, recall that the dimensional irreps are given by

pr(@,y,2) = > whETlu 4 ) (ul, (12)

u€Ly

wherek € Z, andk # 0. This representation is a faithful irrep and its charactgiven
by x1(g) = 0 for g # e andyy(e) = p™. In particular,x,(H) = p"/|H]|.

The probability of a high dimensional irrep occurring in Fea sampling is very
high (we compute this in Section 5). We consider the tensodyst of two such high
dimensional irreps. This tensor product can be decompaogedidirect sum of irreps
of the group. A unitary base change which decomposes suafsarteroduct into a
direct sum of irreps is called @lebsch-Gordarransform, denoted by ¢. Clebsch-
Gordan transforms have been used implicitly to bound highe@ments of a random
variable that describes the probability distribution of@VM on measuring a Fourier
coefficient. They have also been used in [Bac08a] to obtairaatym algorithm for the
HSP over Heisenberg groups of orgér and in [Bac08b] for the HSP in the groups
D} as well as for Simon’s problem. Our use of Clebsch-Gordamsfoams will be
somewhat similar.

For the Weyl-Heisenberg group, the irreps that occur in the Clebsch-Gordan de-
composition of the tensor product of high dimensional isrep(g) ® p;(g) depend on
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k and!l. The Clebsch-Gordan transform fGfis given by

L(utv)w _ -
Uoc : u,v) — Zwezg wp |lu —v,w)fork+1=0 (13)
|u—v,%>f0rk+l #0
If k41 # 0, then only one irrep of7 occurs with multiplicityp™, namely
U
pi(9) ® pi(g) = Ipn @ prra(9)- (14)

If £+ 1 =0, then all the one dimensional irreps occur with multiplidne i.e.,

U,
pk(9) @ pi(g) = Bapez, Xa,b(9)- (15)

Note, however, that the state obtained after Fourier sauglﬁrtinotllﬁl deH pk(g9) ®
pi(g), but ratherp,(H) ® pi(H). When we apply the Clebsch-Gordan transform to
this state, we obtain one dimensional irreps,(H) on the diagonal. Applying this to
p—i(H) ® pi(H) gives us

w—l(yu+z)+l(y/v+z/)+%((u+v)(w1 —wa2)+wy (m+m/))><
§ : p
1 v ’ ’
(Iva)ugfdzez):H lu—v -+ — ' w)(u—v,wl
_ Z w2 Gy 2 =2) fwi (4a")) x
- p

(@,2), (! ' 2/ EH Lo/ (w1 — _
1—w2+y' —y)), ’ 1
u!wy wo €27 E wg |u" + 2 — 2’ wi){(u, wal,

’U,
whereu’ = u — v andv’ = u + v. Sincev’ does not occur in the quantum state, the
sum oven'’ vanishes unless, = wy + y’ — y. Therefore, the state is

L(— ! u/ Z/—Z wi\T Il
S wp ey ! ) (o iy =y (16)

(z,y,2),(z',y’ 2/ eH
u’,wi EZZ
The diagonal entries are obtained by putting: =’ andy = 3’ and sincd H| = |Sy]|,
we getz = 2’. The diagonal entry is then proportional to

Z wé(—yu/-kwlw)_ (17)
(z,y,z)€EH
u/ ,wy EZ;}
Up to proportionality, this can be seen to g, _.-(H), a one dimensional irrep. The
bottom line is that, although not diagonal in the Clebschdaa basis, the resulting
state’s diagonal entries correspond to one dimensiorggdsrwe are interested in.

5 The quantum algorithm

In this section, we present a quantum algorithm that opgratetwo copies of coset
states at a time and show that it efficiently solves the HSP Gve Zg“ x 7., where
the input isn andlog p. The algorithm is as follows:
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=

. Obtain two copies of coset states t@r

2. Perform a quantum Fourier transform on each of the coattssand measure the
irrep label and row index for each state. Assume that the anea®nt outcomes
are high-dimensional irreps with labetsand (. With high probability the irreps
are indeed both high dimensional ahd- [ # 0, whenp > 2 (see the analysis
below). Whenp = 2, there is only one high dimensional irrep which occurs with
probability1/2 andk + I = 0 always, sincé = [ = 1. We deal with this case at
the end of this section. For now assume that 2 andk + [ # 0.

3. If —k/lis not a square ifL,, then we discard the pafk, ) and obtain a new sam-
ple. Otherwise, performa unitaty, ® I : |u,v) — |au,v), wherex is determined
by the two irrep labels as = \/—k/I. This leads to a “change” in the irrep label
of the first state fromk to —I. We can then apply the Clebsch-Gordan transform
and obtain one dimensional irreps.

4. Apply a Clebsch-Gordan transform defined as

Lu v)w
Ucg : u,v) — Z wpz( ) |u — v, w) (18)

weLy

to these states.

5. Measure the two registers in the standard basis. With #sarement outcomes,
we have to perform some classical post-processing whiabvias finding the or-
thogonal space of a vector space.

Now, we present the analysis of the algorithm.

1. Instep 1, we prepared the stﬁx& >, 19)10) and apply the black bol; to obtain

the statet; >, 19)1f(g))- After discarding the second register, the resulting state

IG]
is %mH) (gH|. We have two such copies.

2. After performing a QFT ovefy on two such copies, we measure the irrep label
and a row index. The probability of measuring an irrep lab& given byp(u) =
d.x.(H)|H|/|G|, wherey, is the character of the irrep. fis a one-dimensional
irrep, then the character is eitheor 1 and so the probability becomesr |H|/|G|
accordingly. The charactay, (H) = 0 if and only if 4 = (a,b) € S;. Therefore,
the total probability of obtaining a one dimensional irrepH || S| /|G|. Now, we
have thatH| = |Sy| and so|H||S#| = p*" since Sy is the orthogonal space
in Zf)". Therefore, the total probability of obtaining a one dinienal irrep in
the measurement i’ /p?"*1 = 1/p. This is exponentially small in the input
size (og p). Therefore, the higher dimensional irreps occur withltptabability of
1 — 1/p. Since all of them have the samg(H) = p"/|H|, each of them occurs
with the same probability of /p. Take two copies of coset states and perform weak
Fourier sampling and obtain two high dimensional irré@ndi. The state is then

|££|2 pr(H) @ pi(H). In the rest, we omit the normalizatidﬁ;' of each register.

% We refer to Appendix B for a description of a technique th#ive$ to change the labels of
irreps of semidirect products that are more general thakiind-Heisenberg group.
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Therefore, the state is proportional to

pH)ep(H)= 35 W g v y) (o). (19)
(w.y,2),(a" ' 2" ) EH
3. We can assume thatand/ are such thak + [ # 0 since this happens with prob-
ability (p — 1)/p?. Now, chooser = |/ =£. Since the equatiotw? + k = 0 has
at most two solutions for any, i € Z,, for any givenk, [ chosen uniformly there

exist solutions of the equatidm? + k = 0 with probability1/2. Perform a unitary
U, : |u) — |au) on the first copy. The first register becomes proportional to

Uapr(H)UL = Y wp™a(u + )){au|
(z,y,2)€EH

_k_
> T e

(z,y,2)EH,u1 €LY

= p(Tkz (¢a(H)), (20)

where(z1,91,21) = ¢u(r,y,2) = (az,ay,a?z) andu; = au. It can be seen
easily thatp,, is an isomorphism of for a # 0 and henceb, (H) is subgroup of
G. Infact, ¢, (H) is a conjugate off sinceS, () = Sy (since if(x,y) € SH,
then so is every multiple of it i.e(az, ay) € Sy). Thus, we have obtained an
irrep state with a new irrep label over a different subgrdutt. this new subgroup
is related to the old one by a known transformation. In chag#he value ofv as
above, we ensure thafa? = —[ and hence obtain one dimensional irreps in the
Clebsch-Gordan decomposition.

4. We now compute the state after performing a Clebsch-GardasformUcqg on
the two copies of the coset states, i.e., perform the ungiasn by the action

Lu v)w
Ucq : |u,v) — Z wﬁ( ) |u — v, w). (21)

weLy
The initial state of the two copies is
p—i(da(H)) @ pi(H)

= Z wy EF O HESY D) |y gy v 4 ) (u, 0

(z1,y1,21)€da(H),(z' ,y’ 2/ )eH
u,vEZZ

The resulting state after the transform is

—l(z1Hy1u)+H (2 +y v)+ L (utv) (w1 —w2)+(z1+2")wy
E Wp X
(z1,91,21)€Eda (H), (= v z")EH ’
u,v,w1,w2 EL7 |U_U+I1 - aw1><u_vaw2|
! ’ ! /
o Z wfl(zlerl%)Jrz(zury’%)Jr%(v’)(w17w2)+(m1+z’)w1 %
- p

(z1.y1,21)€da(H),(z' vy’ ,z/)eH I / /
u/,’l)/7wl7’lU2€Z;" |U +T1 - ,’LU1><’LL aw2|a
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whereu’ = v — v andv’ = u + v. Notice that’ occurs only in the phase and not
in the quantum states. Therefore, collecting the terms withe get

Zwé(y/—yﬁ-wl—wz). (22)

This term is non-zero only wheyi—y; +w; —ws = 0. Hencews = wy — (y1—¢').
Substituting this back in the equation, we get

Z wé [(11+I/)w1—(y1+y/)u'—2(z1—z/)]

(zl’yl’zl)i?,‘iu(fe)’z(g/’y/’ZI)EH ' + a1 — 2’ wn) (W wr = (g1 =y

Reusing the labels andv by puttingu = v" andv = wy — (y1 — '), we obtain

L@1+2") (0t (1 —y") = (Y1 +y ) u—2(21—2')]
> wp

(1,y1,21)€Pa (H),(x v/ ,2')eH / /
191,21 u?uEZ;‘ |u+x1—x,v+y1—y><u,’l)|.

This can be written as
£ [@ita o=y u=2(z - 2 )+2( — 230
) wp

(zl’yl’21)6575222/’2/’2/)& lu+x1 — 2" v+ 11—y ) u,v.

SinceH is abeliangx,y’ — 2’y; = 0. Now consider the subgroug, defined in the
previous section. Lef = (£, g, 2) be an element such th&t? = H,. As discussed
in Sec. 2,(2,9) are unique up to an element 8f; and 2 is any element irZ,.
Now, when(z’,y’, ') € H is conjugated withy, it gives(z', v/, 2’ + &y’ — gz’) =
(«',y', 2"y’ /2) € Hy. Therefore,z’ — 2'y'/2 = 2/§ — &y'. In order to obtain
H, from ¢, (H) we nee(_j to c_or!jugate by, (Z,7, 2). Th_erefore,zl - 24 =
a(yz1 — &y1). Incorporating this into the above expression, we get

L@1+a ) o—(yi+y ) u—2(a(zi—ay1))+2(z' §—iy’))
> W

(z1,y1), (=" y')ESH ’ ’
u,VELY |u+x1—x,v+y1—y)<u,v|.

Now sinceSy is a linear space, we have that(if, y), («’,y’) € Sg, then(z —
2',y —y') € Sy. Hence, substituting = x; — 2’,y = y1 — v/, we get
3 L Sl@r2e =2y Yu-2(a(pe+a) =3y ) +2( 9-dy')]
p

(z’y)ﬁ%’éyzl;fs” lu+ 2, v + y){u, vl.

Separating the sums over, y) and(z’y’) we get

> > 1o’ (v+(1-a)g) ' (u+(1-)2)]
Wp

(z.y)eSH uvely | (¢',y')€SH

wp% lo=2a)my(u=200 4 o+ y) (u, 0],
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Note that the term in the squared brackets is non-zero onndh+ (1 — )y, u+
(1—«a)#) liesin S. This means that if we measure the above state we obtain pairs
(u,v) such tha{u + (1 — )@, v+ (1 — a)g) € S#. This can be used to determine
both S (and henceS) and(#, 7). Repeat thi)(n) times and obtain values for
u andv by measurement.

5. From the above, say we obtaint+ 1 values(uy,v1), ..., (tnt1,vnt1). Therefore,
we have the following vectors ifi;.

(ur + (1 — a1)z,v1 + (1 — a1)9),
(ug + (1 — a2)@, va + (1 — a2)g),

(upy1 + (1 = apy1)@, vpg1 + (1 — ang1)y).

The affine translation can be removed by first dividing by- «;) and then taking
the differences sincéy is a linear space. Therefore, the following vectors lie in

S
u , V) = hal — fntl ) . - Lot ’
(u1,v1) ((1_a1) (1—ant1) (1—ay) (1_an+1))
Us Upt1 V2 Un+1
(g, v5) = ( - -

(I-az) (A—ant1) 1—-a) (1—ap)”

/ ’ Up, Un+1 Un, Un+1

) = ) T T Tma) (- anr)
With high probability, these vectors form a basis ¢ and hence we can de-
termine Sy efficiently. This implies that the conjugacy class and hetheesub-
group Hy is known. It remains only to determing:;, §). We can sef#,y) =
(1 — a1)~(uy — vy, vy — v}) since the conjugating element can be determined
up to addition by an element 6f;. H can be obtained with the knowledge &f
and(z, 9).

Finally, for completeness we consider the case 2. Assume that after Fourier sam-
pling we have two high dimensional irreps with states given b

m(H)@p1(H) = Z (—1)Z+Zl+yu+yl”|u—|—x,’u+:ZT/><’UJ,1)|.
(z,y,2),(z",y’ 2" )EH,u,vELY
(23)
The Clebsch-Gordan transform is given by the base change:

lu,v) — Z (=1)""|u + v, w). (24)

wELy

Applying this to the two states, we obtain (in a similar mareeabove)

Sy Y 0 jut ot y) ol (25)

(z,y,2)€H,u,vELy (z',y',2")EH
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The inner sum is non-zero if and only(ifi, v) € S7. Thus, measuring this state gives
us S}%I from which we can findSy. We cannot determiné/ directly from here as in
the casep > 2. But since we knowSy, we know the conjugacy class &f and we
can determine the abelian gro#pG’ which containsH. This group is obtained by
appending the elements 8f; with every element ofy’ = Z5 i.e., for (z,y) € Sy we
can say thatz, y,0) and(z, y, 1) are inHG'. Once we knowH G’, we now restrict the
hiding functionf to the abelian subgrou G’ of G and run the abelian version of the
standard algorithm to find/. In summary, we have shown the following result:

Theorem 1. For n>1, and p>2 prime, the hidden subgroup problem for the Weyl-
Heisenberg grouyg: of orderp®**! can be solved on a quantum computer wittn)
queries. The time complexity of the quantum algorithm cabdumded by (n3 log p)
operationé and the algorithm uses at mdst= 2 coset states at the same time.

Sketch of proofFrom the above discussion follows th@tn) iterations of Steps
1.-4. in the algorithm will lead to system of equations inpSfe that with constant
probability has a unique solution. The number of queriesaicheteration is constant
and the computational complexity of each of these steps earpper bounded as fol-
lows: O(n log p loglog p) operations for each computation of QFT o¢&as described
in Appendix A. The transforni/,, and the Clebsch-Gordan transfofifia:; can eas-
ily be implemented using arithmetic moduytoand QFTs ovefZ,, both of which can
be done inD(log p loglog p) elementary quantum operations. Hence the running time
of the quantum part of the algorithm can be upper bounde@py log p log log p)
operations and the number of queries @yn). The overall running time is domi-
nated by the cost for classical post-processing which sts1é computing the ker-
nel of ann x n matrix overZ,. This can be upper bounded I6y(n?) arithmetic
operations ovefZ, for the Gaussian elimination, leading to a total bit comjtiexf
O(n®log p loglog p2©Uee™ logp)) gperations when using the currently fastest known
algorithm for integer multiplication [Fur07]. O

6 Conclusions

Using the framework of coset states and non-abelian Fosaiipling we showed that
the hidden subgroup problem for the Weyl-Heisenberg greapse solved efficiently.
In each iteration of the algorithm the quantum computer afgsront = 2 coset states
simultaneously which is an improvement over the previobglgt known quantum al-
gorithm which requiredc = 4 coset states. We believe that the method of changing
irrep labels and the technique of using Clebsch-Gordarstoams to devise multireg-
ister experiments has some more potential for the solutid#SP over other groups.
Finally, this group has importance in error correction.dntf the state we obtain after
Fourier sampling and measurement of an irrep is a projectirthe code space whose
stabilizer generators are given by the generator& ofn view of this fact, it will be
interesting to study the implications of the quantum aldponi derived in this paper to
the design or decoding of quantum error-correcting codes.

4 gnoring factors growing alg log p or weaker.
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A QFT for the Weyl-Heisenberg groups

We briefly sketch how the quantum Fourier transform (QFT) lsaromputed for the
Weyl-Heisenberg groups,, = Zg“ x Zy; . An implementation of the QFT for the case
wherep = 2 was given in [Hgy97]. This can be extended straightforwatap > 2 as
follows. Using Eq. (9), we obtain that the QFT f@t, is given by the unitary operator

QFT = +/ T wit10, a, b) (z, 2, y|

a,b m,uEZp,ZEZp

/| p" (
+ Z p2ntl p il Oz,a—blk,a,b)(z, 2, y|

a,b,a,y €Ly
keZs zEZp

a’z’er’ ! anInernyn
2n 1

al bl ! y’ez" 1

G b 2E Ly |0, aan,b’b W2, @' Ty Y Y|

1
P L ke, b
+ Z 2n 1\/_ p 5 ’ya’ b/éwnﬂln_bn
keZs, ol b ol vy €Ty 1

Zvan;bwumnﬂlnezp |k7 a Ay, b bn><z, ,Tlxn, y/yn|

=U-QFT, (26)

n—1"

The matrixU is given by

1 anx
U e Z _wpn n+b71y71|0> <0| ® |a”ﬂabn> <x’ﬂ7yn|

p
Ty YnyQn,bn EZp

1
+ > B G = 1) (] © [, br) (@
Ty Yn A bn €Ly kEZ* \/_

=10)(0] ® QF Ty, ® QF Tz, + > V- (I, ® QFTY)), 27)
keZs,

wherel, is thep dimensional identity matrix,

V= Z |u+ v, v)(u,v|, (28)

U,VELyp

and )
QFTY) = — wkuv ) (v)]. (29)

From Eq. (27) and recursive application of Eq. (26) we obtianefficient quantum
circuitimplementingQF T shown in Figure 1.
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z QFT O —— - —0

Tn QFT 3%

Yn P ce

= QFT} &
Y1 I_P QFT

Fig. 1. QFT for the Weyl-Heisenberg group. The QFT gates shown ircitwaiit are QFTs for
the cyclic groupsZ,. Each of these QFTs can be implemented approximately [K#i900]

or exactly [MZ04], in both cases with a complexity bounded®log p loglog p). It should

be noted that the wires in this circuit are actualigimensional systems. The meaning of the
controlled gates where the control wire is an open circlén& the operation is applied to the
target wire if and only if the control wire is in the sta@. The meaning of the controlle®
gates where the control wire is a closed circle here meartishbagateP;. is applied in case
the control wire is in stat¢k) with &k # 0, and Py = I,. Here P, is the permutation ma-
trix for which QFT® = P,QFT holds. The complexity of this circuit can be bounded by

O(nlogp loglogp).

B Changing labels of irreducible representations

In this section, we describe the technique of changing sabkirreducible representa-
tions (irreps) in a more abstract, representation thenrigtshion. We consider a situ-
ation slightly more general than the Weyl-Heisenberg gsoegmsidered in the paper,
namely for semidirect products of the folh= A x4 B, whereA is an Abelian group,
B is an arbitrary finite group, and : B — Aut(A). We make some further assump-
tions regarding the irreps a¥ that arise during Fourier sampling. First, note that in
general there might be some irreps®@that arise as inductions [Ser77,Hup83] of ir-
reps ofA to GG. Suppose that, with high probability, we sample only sucdpis, so that
we can restrict our attention to this case. This happen$foWeyl-Heisenberg groups
discussed in this paper. Other examples are the groups ipbimdo Z;; x Z, studied

in [BCDO5] and the affine groups [MRRS04] which are isomochiZ, x Z,_;.

After Fourier sampling and measurement of an irrep label swethe statey (H ),
wherep;, is an irrep ofG andk is its label. We want to apply an operafdg to this
state in order to change it to a statg (H’) corresponding to an irrep with labgl,
possibly with respect to a different subgrofp. In the following we show how this
can be done ip(H) = (xr T G)(H), i.e., if p; is an induction of an irrep;, of A
to G. The possible labels’ that can be obtained depend on the automorphism group of
B, namely on those automorphisms@®fthat can be extended to automorphismg:of
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First, recall that fory;, € A, the image of an elemefii, b) € G under the induction
of xx to G is given by

(xk TG)(a,b) =D xk(dp1(a))[tb™)(t], (30)

teB
whereg,-1 = (a — ¢~1(t)(a)) € Aut(A). Now consider an automorphism &f,

say( € Aut(B). Let Up be the unitary matrix acting o6[B] corresponding to this
automorphism. Applyind@/s to Eq (30) we get

D xk(@-1 (@) BOBONBE] =D xn(bpw (@) EBO ). (31)

teB teB
In order to further simplify this expression, we now suppts® we can extend the
automorphisms to an automorphism of the whole group in the fofm= (¢, 3) €
Aut(G), wherea € Aut(A). We derive some conditions thathas to satisfy in order
for this extension to be possible. First, we have that

v((a1,b1)(az,b2)) = v(a1,b1)y(az, b2). (32)
This condition becomes

((adp,)(a1) + a(az), bib2) = ((¢p(m,) ) (a1) + alaz), B(b1b2)). (33)

Note that in the above equation, sineeand ¢, are elements oAut(A) for all ¢, we
write their product acting on € A as(a¢;)(a). From Eg. (33) we obtain that

Dp) = agpar ! (34)
forall b € B. This means thatr € N a)(Im(¢)) i.e., « lies in the normalizer of
Im(¢), the image ofp in Aut(A). Therefore, we need to pick the péir, 3) such that
the condition in Eqg. (34) holds. It is clear that giverthere always exist§ such that
Eq. (34) holds but not necessarily the other way around.

Thus, using the assumption that the automorphism can badedédo all ofG, we
can rewrite Eq. (31) as follows:

D Xk @)BONE =Y xr((@ g-ra) (@) BB 1)) (. (35)

teB teB

Now, the inner produch((a~1¢,—1a)(a)) can be written as¢s—1((¢dr—1)(a)).
Therefore, the state is given by

D Xa- k(b (@(@)[tBO) )t = (i T G)(v(a,b)), (36)

teB
wherek’ = @~ !(k). Here,& is an automorphism of the dual grodpcorresponding to
« such that the character remains invariant. Overall, we Bawe/n the following:
Theorem 2. LetG = AxgBandp, = (xx T G) € G‘,whereX;C € A LetUs € C[B]
be the unitary matrix corresponding to an automorphi8me Aut(B) that can be
extended toy = (a, 8) € Aut(G). Then by applyind/ to the hidden subgroup state
Pk, We can change it to:

Uspr(H)UL, = pr (v(H)), (37)
wherek’ = a=1(k).



