
Learning Visual Behavior for Gesture

Analysis

by
Andrew David Wilson

B.A., Computer Science
Cornell University, Ithaca, NY

May 1993

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN MEDIA ARTS AND SCIENCES

at the
Massachusetts Institute of Technology

June 1995

@ Massachusetts Institute of Technology, 1995
All Rights Reserved

Signature of Author _ _ _
Progam in Media Arts and Sciences

May 26, 1995

Certified by
Aaron F. Bobick

Assistrt Professor of Computational Vision
rogram in Media Arts and Sciences

Thesif Supervisor

Accepted by
Stephen A. Benton

Chairperson
Departmental Committee on Graduate Students

Program in Media Arts and Sciences

MASSACHUSETTS INSTITUTE

JUL 06 1995
LIBRARIES

Learning Visual Behavior for Gesture Analysis

by
Andrew David Wilson

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on May 26, 1995
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

Techniques for computing a representation of human gesture from a number of example
image sequences are presented. We define gesture to be the class of human motions that are
intended to communicate, and visual behavior as the sequence of visual events that make a
complete gesture. Two main techniques are discussed: the first computes a representation
that summarizes configuration space trajectories for use in gesture recognition. A prototype
is derived from a set of training gestures; the prototype is then used to define the gesture
as a sequence of states. The states capture both the repeatability and variability evidenced
in a training set of example trajectories. The technique is illustrated with a wide range of
gesture-related sensory data. The second technique incorporates multiple models into the
Hidden Markov Model framework, so that models representing instantaneous visual input
are trained concurrently with the temporal model. We exploit two constraints allowing
application of the technique to view-based gesture recognition: gestures are modal in the
space of possible human motion, and gestures are viewpoint-dependent. The recovery of
the visual behavior of a number of simple gestures with a small number of low resolution
example image sequences is shown.

We consider a number of applications of the techniques and present work currently in
progress to incorporate the training of multiple gestures concurrently for a higher level
of gesture understanding. A number of directions of future work are presented, including
more sophisticated methods of selecting and combining models appropriate for the gesture.
Lastly, a comparison of the two techniques is presented.

Thesis Supervisor: Aaron F. Bobick
Title: Assistant Professor of Computational Vision

Learning Visual Behavior for Gesture Analysis

by
Andrew David Wilson

The following people served as readers for this thesis:

Reader:
Mubarak Shah

Associate Professor, Director Computer Vision Laboratory
Computer Science Department, University of Central Florida

Reader:
Whitman Richards

Professor of Cognitive Science
Head, Media Arts and Sciences Program

Acknowledgments

Thanks to everyone in the Vision and Modeling Group at the MIT Media Laboratory for

introducing me to the weird, wonderful world of machine vision. Big thanks to Aaron for

granting me the freedom to make my own sense of it. Special thanks to Tom Minka, Kris

Popat and Baback Moghaddam for valuable discussions regarding some ideas presented in

the thesis, including multiple models and eigenspace representations.

Contents

1 Introduction

1.1 "Killer Demos".. .

1.2 Understanding Human Motion from Video

1.2.1 Anthropomorphization is a feature, not a bug

1.2.2 Gesture as a class of human motion

1.2.3 G oal .

1.3 Outline of Thesis .

2 Related Work

2.1 Introduction

2.2 Human Body Pose Recovery

2.3 Trajectory Analysis

2.4 View-Based Approaches

2.5 Hidden Markov Models for Gesture Recognition . .

2.6 Sum m ary .

3 Configuration States for Gesture Summarization

3.1 Introduction: Recognizing Gestures

3.2 Motivation for a Representation

3.3 Computing the Representation

3.3.1 Computing the prototype

3.3.2 Clustering the sample points

3.3.3 Determining state shapes

3.4

3.5

16

. 16

. 17

. 19

. 21

. 24

. 25

and Recognition 27

. 27

. 28

. 30

. 30

. 32

. 33

Recognition

Experiments

3.5.1 Mouse Gestures

3.5.2 Position and Orientation Sensor Gestures

3.5.3 Image-space Gestures

3.6 Summary .

4 Learning Visual Behavior for Gesture Analysis

4.1 Introduction: From human motion to gesture

4.1.1 View-based approach

4.2 Representation of gesture

4.2.1 Multiple models for gesture

4.2.2 State-based descriptions

4.2.3 Learning visual behavior

4.3 Modeling gestures .

4.3.1 Model instances and memberships

4.3.2 HMM's with multiple independent model subspaces

4.3.3 HMM topology .

4.3.4 Algorithm .

4.4 Exam ples .

4.4.1 Single model .

4.4.2 Position and configuration

4.4.3 Two camera views

4.5 Representation vs. Recognition

4.6 Sum m ary .

5 Work in Progress: Multiple Gestures

5.1 Introduction

5.2

5.3

Selecting "representative" observations for a state .

Esimation algorithm

5.4 Summary .

6 Review and Future Work

6.1 Review .

6.2 Future W ork .

52

52

53

57

57

60

6.2.1 Real time coding

6.2.2 Diverse Models

6.2.3 Automatic Model Selection .

6.2.4 Model combination

6.3 Unsupervised Clustering of Gestures

6.3.1 Summary of future work . . .

6.4 Conclusion

A Computation of Time-Collapsed Prototype Curve

. .

. .

List of Figures

3-1 Time-collapsing of prototype curve . 31

3-2 Prototype trajectories and state definitions combined for two mouse gestures 37

3-3 State transitions and memberships for mouse gesture 37

3-4 Membership plot for prototype curve from spatial position sensor data . . . 39

3-5 State transition and membership plot for spatial position sensor data example 40

3-6 Training wave image sequences . 41

3-7 Eigenvector projection coefficient trajectories of wave sequence 42

4-1 Conventional and multiple independent model subspace HMM compared . . 50

4-2 A state-based description of gesture must encode the relevant perceptual

states. These images of an upright open hand share the same conceptual

description, but have very different perceptual descriptions due to a slight

change in viewing angle. 51

4-3 Training algorithm . 52

4-4 Example wave sequence and training results 54

4-5 Example "twisting" hand sequence and training results 55

4-6 Example jumping-jack sequence and training results 56

4-7 Example sequence for tracked hand example and training results 58

4-8 Example two camera view sequence and training results 59

5-1 Multiple model, multiple gesture HMM . 63

5-2 Current algorithm for training multiple gestures 65

5-3 7t(j) and residual of two gestures trained concurrently 67

6-1 Multiple model HMM with model selection 73

A-i An example principal curve . 78

A-2 Time-collapsing of principal curve . 80

9

Chapter 1

Introduction

1.1 "Killer Demos"

Imagine the following applications:

3-D CAD system: An architect models a new structure by sitting in front of his

workstation and manipulating shapes by moving his hands in space. The workstation

is familiar with how the various pieces of the structure fit together and so takes care

of the precisely placing the objects, while the designer concentrates on the overall

design. Two cameras trained on the space in front of the space track the architect's

hands; the spatial aspect of her hand movements is exploited in conveying the spatial

relationship of the structure's components.

Virtual orchestra: The conductor of the future needs only a MIDI-equipped work-

station and a camera to conduct a brilliant performance by his favorite orchestra.

Trained to recognize a person's individual conducting style, the workstation decodes

the conductor's movements and, equipped with the full score, changes the performance

of the orchestra appropriately. The conductor looks to and gestures toward specific

sections of the orchestra to craft a personal, tailored performance.

Athletic performance analysis: Practicing for the Summer Olympics, a gymnast

uses a vision-based automated judge to score his newest pommel horse routine. The

automated judge looks for the completion of certain moves within the routine, scores

the precision of the moves, and finally scores his performance according to the exact

criteria used in real performance. After trying a number of routines, the gymnast

decides to use the routine yielding the most consistent score from the automated

judge.

Smart cameras on the Savannah: Rather than sit in a tree all day waiting for

the cheetah to chase an antelope across the plain, the nature show videographer set

up his smart video camera and leaves. While away, the video camera scans and films

interesting activity, including "antelope-like" and "cheetah-like" movement. Other

activities, such as the movement of the grass, are ignored. 1

1.2 Understanding Human Motion from Video

A key component of turning these dream applications into a daily occurrence is the manner

in which the computer learns to recognize human (or as in the last example, animal) move-

ments from visual input. Clearly, we need the computer to become an expert in human

motion, or perhaps an expert in just one person's movements. Implicit in the most of the

examples is the observation that human movements are unique and can be identified in

isolation, but that the particular movements seen are predictable, highly constrained and

context-sensitive. If it is indeed true that human movements are predictable and highly

constrained, then a computer may be able to infer what it needs to know to understand

human motion, or at least some subclass of human motion for which those assumptions have

some degree of merit. This thesis presents a number of techniques that may be useful in

the implementation of computer systems that understand human motion from visual input.

Vision-based recognition of human body motion is difficult for a number of reasons.

Though the human skeleton may be modeled by an articulated structure with many de-

grees of freedom, the remarkably flexible covering of tissue over the skeleton hides the

underlying structure. The staggering variety of configurations and motions that our bodies

permit overwhelms any attempt to enumerate all human motion. Furthermore, the degree

of variation allowed for a class of movements often depends on context and is difficult to

quantify. Except for a few notable exceptions on the face, there are few features clearly

useful for tracking. Appearances can be dramatically affected by variations in size, propor-

'Originally suggested by Matthew Brand.

tions, clothing, and hair (to name a few dimensions). These factors combine with the other

usual problems in computer vision such as the recovery of depth, invariance to changes

in illumination and the use of noisy video images, to make the machine understanding of

human body motion very difficult.

Consider the motion of a single human hand in a sequence of monocular views. The

hand can appear in a practically limitless number of configurations, only a few of which do

not exhibit some degree of self-occlusion (recall making shapes in front of the projector).

Though a three-dimensional articulating model of the fingers might be useful, such a model

would not be able to simply characterize the state of the palm, which itself is a complex

bundle of joints and tendons and yet appears as a single deforming body. Also, perhaps

except for the tips of the fingers, there are no reliable features of the hand to ease tracking.

1.2.1 Anthropomorphization is a feature, not a bug

One feature of motion recognition that makes our task easier is that object recognition may

not be a prerequisite to motion recognition. In fact, it may be easier to recognize that

an object has human-like motion and then verify that that the object is indeed a person,

than to try to identify the object as a person and then verify that it is indeed moving

like a human. The reason is that to make a decision about the motion we can integrate

a large amount of information over time, while the task of recognizing the object without

movement entails making a conclusion from a single image. By integrating information over

time, we can postpone the recognition decision until it becomes obvious that only a human

would have gone through a long, particular motion. Additionally, after a number of frames

we can be more sure that the features we have measured from the image are indeed not in

error. By collecting information from a single frame, we risk the possibility that our feature

extractor won't perform well in the particular case represented by the image in question.

We can reach two interesting conclusions from these observations. The first is that work-

ing with image sequences is actually easier than working with a single image. This becomes

more evident as disk space and memory becomes inexpensive and plentiful. The second

conclusion is that anthropomorphization, the ascribing of human qualities to something not

human, is a feature. In other words, if something exhibits human motion, we should label

the object as human and stop there. Doing so avoids the possibility that a prerequisite

object recognition step might fail, possibly for some of the reasons mentioned previously.

Furthermore, an anthropomorphizing computer vision system mimics our own vision system

in its ability to make the leap of faith necessary to understand, for example, human-like

characters we've never seen before in animated films. One very intelligent answer we might

expect from a system that considers the motion independently of recognizing the object is

"it moves like a human, but it doesn't look like it's human".

1.2.2 Gesture as a class of human motion

Lately gesture recognition has been a popular topic in computer vision. Unfortunately, as

yet there does not seem to be an agreed use of the word "gesture." For some, a gesture

is a static configuration of a hand [32]. For others, gesture requires the analysis of joint

angles and position of the hand over time [49, 51], while others include facial expressions

over time [16]. Still others concentrate on how people unconsciously move their hands and

bodies in the context of a spoken discourse with another person [31]. Gesture as a static

configuration aside, the only common theme seems to be the understanding of the human

body in motion; there is no agreed upon set of primitives used to describe gesture. Until

a strong set of primitives is shown to exist for a particular domain of gesture, a variety of

techniques will be applied.

Some say that gesture recognition will follow the same course of development as speech

recognition. Whilte it is tempting to draw strong parallels between speech and gesture,

and some techniques of speech recognition have been useful in recognizing gestures, the two

domains differ in the existence of strong primitives. Most speech recognition systems analyze

speech at the phonetic, word, utterance, and discourse levels. These agreed-upon primitives

outline the appropriate features to measure, and allow systems to draw on specialized

techniques developed in other fields. While there has been some effort towards arriving at

a useful set of features in hand gesture [61] and facial expressions recognition [17], no such

set has received universal acceptance.

The set of useful primitives will more likely develop out of novel user interfaces that

incorporate gesture recognition, some of which are under development. As products of these

individual efforts, the primitives may be task or domain dependent. Look to the ALIVE

system [29], for example, which incorporates wireless understanding of the motion of users

interacting with virtual worlds. Another interesting domain is that of musical conductor

understanding, where the goal is to allow the automatic and natural control of a virtual

orchestra [34]. Additionally, Bolt and Herranz [4] has explored a number of applications

exploiting hand, eye and body movements in computer-human interaction.

1.2.3 Goal

For the purposes of this thesis, we define gesture to be the class of human motions (of hands

or otherwise) that are intended to communicate. This limitation on human motion that we

impose will be important in making the task of identifying human motion tractable. Even

given this limitation, this particular class of human motion is one that is quite useful and

will likely motivate many interesting computer human interface applications. Additionally,

the techniques presented in this thesis are not limited to human gesture, nor even human

motion.

Specifically, this thesis addresses the development of a representation of gesture useful

in the analysis, coding and recognition from a number of training image sequences of human

gesture. Analysis addresses the problem of determining the structure of the gesture, such

as how a gesture relates to other gestures or whether a gesture exhibits a certain kind

of temporal structure. The coding problem involves the problem of describing what is

happening during the gesture, and how best to describe the events. Recognition is the

problem of determining if the gesture has been seen before, and if it has, the identity of the

gesture.

1.3 Outline of Thesis

After presenting some previous work related to the thesis in Chapter 2, two different ap-

proaches to arriving at a representation for gesture will be presented. First, in Chapter 3,

a novel method of summarizing trajectories for gesture recognition will be presented. In

this method, examples of each gesture are viewed as trajectories in a configuration space.

A prototype gesture is derived from the set of training gestures; the prototype is useful in

summarizing the gesture as a sequence of states along the prototype curve.

Chapter 4 presents newer work that takes a different approach to the same task. Rather

than model the gesture as a trajectory in a configuration space, the state-based description

is captured without first computing a prototype. Furthermore, a multiple model approach

is taken in which the representations of the gesture themselves are trained concurrently

with the temporal model of states.

Chapter 5 discusses work in progress on the concurrent training of multiple gestures

using the framework presented in Chapter 4.

Chapter 6 presents a comparison of the two techniques and concludes the thesis with a

number of interesting topics for future work.

Chapter 2

Related Work

2.1 Introduction

There are four classes of existing research that relate to the goal of the automatic under-

standing of human motion from visual input, and to the specific techniques presented in

this thesis:

* Three-dimensional, physical model-based works that seek to recover the pose of the

human body

" Works that explore different representations and uses of trajectories for motion recog-

nition

" View-based approaches that use statistical pattern recognition techniques in the recog-

nition of images and image sequences

* Works that use Hidden Markov Models to model the temporal structure of features

derived from images

As mentioned previously, for the purpose of the thesis, gesture should be regarded as

any motion of the body intended to communicate. Such a broad definition encompasses

hand gestures, facial expressions and even larger body movements.

The works are organized primarily by the techniques employed by the authors and not

the objects of study, such as facial motion, gait, or hand gestures, primarily since no set of

primitives can be used distinguish the domains.

2.2 Human Body Pose Recovery

In these works, the goal is the recovery of the pose of an explicit three-dimensional physical

model of the human body. This entails setting the parameters of a physical body model so

that they are consistent with the images. Recognition of previously seen motions is then a

matter of matching the model parameters over time to stored prototypes. Because they use

explicit physical models of the object of interest, these works are of a tradition in computer

vision typically called "model-based" vision.

O'Rourke and Badler [43] exploit physical constraints on human movement, such as

limits in the values of joint angles, limits on the acceleration of limbs and the constancy

of limb lengths. These constraints are used to limit a search in model parameter space in

finding a set of parameters that yield a model consistent with the image. While the exact

form of these constraints varies across different works, the same constraints are usually

used throughout to make the search tractable. O'Rourke and Badler successfully tracked

the hands, feet and head of synthetically generated images of humans.

Hogg [23] pioneered the efforts at recognizing people walking across the scene in a fronto-

parallel position. Restricting the system to recognize fronto-parallel walking is significant in

that discrete features, such as lines along the limbs derived from edge maps, are clearly vis-

ible against the background. Modeling the human form as a number of connected cylinders

to track walking people against complex backgrounds, Hogg exploits key-frames to model

the walking motion, each key-frame having a unique set of constraints. The key-frames are

used to limit the search at each stage of the movement. The data for the motion model,

including the key-frames, are acquired interactively from a single example of a walking

person.

In some of the most recent model-based work, Rohr [51] uses a model similar to Hogg's,

but creates a detailed model of walking from medical studies of sixty men. Again, the

motion was fronto-parallel to the camera. The model is parameterized by a single pose

parameter, varying along a cycle of walking from zero to one. As is common in the search

for consistent physical model parameters, Rohr uses the parameters found in the previous

frame to constrain the search for updated parameters in the current frame.

So far, the works presented basically proceed in the same way: search among the

model parameters to find a projection of the model consistent with the current frame,

using the previous frame's parameters. Lowe [28] generalizes this approach to articulated

three-dimensional models.

Chen and Lee [10] enforce constraints over multiple frames of gait data, casting the

problem as a graph search to select among candidate postures at each frame. The algorithm

thus selects a globally optimal solution of postures. Approaches such as theirs are appealing

in that by seeking a globally optimal solution, the method is more robust to failures in a

single frame.

A number of researchers have employed three-dimensional models of the hand, usually

modeled as an articulated object with many degrees of freedom. Charayaphan [9] and

Dorner [14] make the task easier by recovering the position of fiducial marks placed on the

hand.

Rehg [50] has implemented a system that tracks the joint angles of the unadorned hand

in real time from two cameras. The twenty-seven degrees of freedom of the hand model

are recovered using geometric and kinematic constraints similar to O'Rourke and Badler's.

The system relies on a high temporal sampling rate so that, again, model parameters from

the previous frame effectively initialize the search for new model parameters. Rehg recovers

the position of the finger tips by searching along each finger, beginning at the base of the

finger. The model is brought into alignment to match the recovered finger tips. Recently

the system has been modified to model certain kinds of self-occlusion, again exploiting

temporal coherence in reasoning that the occlusion properties should not change drastically

from frame to frame.

In summary, the "model-based" approaches appeal in their theoretical ability to recover

unconstrained human motion. But seldom is this ability achieved; most systems work

in highly constrained situations only. Most systems are designed without regard to the

suitability of the sensors used to the task of recovering a fully specified three-dimensional

model. In part, deficiencies in the sensors can be made up by exploiting domain knowledge,

but in general the systems are fragile.

Unless the goal is to construct a detailed model of the human body for computer graph-

ics applications, an exact recovery of the three-dimensional configuration of the body is

unnecessary. In the context of hand gesture recognition, work on the low bit-rate transmis-

sion of American Sign Language (ASL) video sequences [37, 55] suggests that the precise

recovery of features necessary for a model-based recognition of the moving hand such as

in Rehg's system is unnecessary for at least the comprehension of ASL. In working hard

to recover a complete model, the system may risk many mistakes, only to be asked a very

simple question that doesn't require such detailed knowledge. The view presented in this

thesis is that the model of human motion should be represented in terms of the sensor

measurements available. This does not prevent the use of three-dimensional models, but

instead allows for the use of weaker, more reliable models.

One interesting variant of the recovery of pose using three-dimensional models is the

recovery of internal control parameters. Essa, Darrell and Pentland [16] have formulated

the learning of the relationship of the model- and view-based descriptions as a dynamical

systems problem for the domain of facial gesture recognition. Proceeding from optical

flow images, the activation of a large number of muscle activation levels are inferred. The

muscles are in a three-dimensional configuration known beforehand; thus the task is not the

recovery of the three-dimensional structure of the face, but the recovery of internal control

parameters that result in a facial expression.

2.3 Trajectory Analysis

Another class of related work explores the use of trajectory representations for recognizing

human motion from joint angles. The trajectories are typically parameters from model-

based descriptions over time, though the changing output of a view-based sensor over time

may be a trajectory in its own right.

Gould and Shah [20] consider the recognition of moving objects by their motion alone.

They show how motion trajectories can be analyzed to identify event boundaries which are

then recorded in their Trajectory Primal Sketch (TPS). The computation of the TPS for a

number of different kinds of motion, including translation, rotation and projectile motion,

are considered in Gould, Rangarajan and Shah [19]. Rangarajan et al. [47] demonstrate 2D

motion trajectory matching through scale-space, and mention that the 3D motion trajectory

could be stored with the model 2D trajectories. They state a goal of distinguishing between

two similar objects with different motions, or two objects with the same motion but different

shapes.

For the recognition of classical ballet steps, Campbell and Bobick [5] summarize 3-

dimensional motion trajectories in a variety of subspaces of a full phase space. Various

2-dimensional subspaces are searched for their ability to accurately predict the presence of

a particular dance step in a set of example steps. The particular subspace for recognition

of a movement is chosen to maximize the rate of correct acceptance and minimize false

acceptance. Campbell and Bobick also address the notion of combining the outputs of

these various predictors for robust recognition.

Early on Rashid [48] considered the two-dimensional projection of three-dimensional

points similar to Johansson's Multiple Light Displays [25]. Points were tracked over a

number of frames and clustered based on relative velocities. In some cases, this was sufficient

to segment independently moving objects in the scene, as well as points that were rigidly

linked in space. Shio [54] exploits a similar technique in segmenting people from a busy street

scene by clustering patches of the image that exhibit the same average velocity computed

over a few seconds of video.

Allmen and Dyer [1] compute optic flow over the frames of an image sequence and

then trace out curves along similar regions of optic flow. These curves are then clustered

into coherent motions such as translation or rotation. Allmen and Dyer demonstrate their

system by recovering the common and relative motion of a bird flapping its wings. They

call their approach "dynamic perceptual organization" for the way motion information is

clustered in an unsupervised way to provide a summary of the observed data. The work

presented in this thesis proceeds in a similar fashion.

Niyogi has performed similar curve analysis in space-time volumes assembled from image

sequences. Niyogi observed that people walking fronto-parallel to the camera trace out

distinct periodic curves at certain slices across space of the space-time volume. By fitting

contour snakes to these curves, the system can recover the period of the walker and perform

simple gait recognition.

Lastly, some work has been done in the real time recognition of simple mouse input

device gestures. Tew and Gray [57] use dynamic programming to match mouse trajectories

to prototype trajectories. Lipscomb [27] concentrates on filtering the mouse movement data

to obtain robust recognition of similarly filtered models. Mardia et al. [30] compute many

features of each trajectory and use a learned decision tree for each gesture to best utilize

the features for recognition.

One criticism of the approach of analyzing trajectories of human motion is that in most

situations the recovery of discrete points on the human body such as the limbs, feet, hands

and head is not robust enough to be practical. In fact it may be the case that only the

positions of the extremities of the body may be reliably recovered, and then only if the

background is known. But, as will be demonstrated in the thesis, recognition by trajectory

is feasible when the features are not the position of tracked points on the body but the

smoothly varying output of an image operator on each frame. If the frames in an image

sequence vary smoothly in time, then the output of an image operator applied to each image

may change smoothly as well.

2.4 View-Based Approaches

The third category of research involves applying statistical pattern recognition techniques

to images without deriving an explicit physical model. Sometimes these works are termed

"model-less", as they do not incorporate strong three-dimensional models. The term

"model-less" is somewhat misleading, since in truth every approach incorporates some

way of abstracting and representing what is seen. Thus, every approach relies on some

sort of model. Even viewed as a way of simply distinguishing explicit three-dimensional

model-based approaches and those that do not rely on three-dimensional models, the term

discounts the possibility of using a "weak" physical model. A "weak" physical model might

represent the fact that a person's hand is somewhere in front of the person's body, for ex-

ample, rather than the exact location of the hand in space. This distinction of terms might

seem a bit pedantic at first, but it is useful in situating the present work among the works

discussed in the chapter.

In a view-based approach no attempt is made to recover parameters of a three-dimensional

model from the image. In these studies features of the images alone are used in a statistical

formulation. Recognition consists of checking whether the new data match the statistics of

the examples. These techniques purportedly allow a degree of generalization and robustness

not possible with the model-base approach.

Considering the view-based approach, the Center for Biological and Computational

Learning at MIT has been exploring neural networks as function approximators. Poggio

and Edelman [40] have demonstrated how a neural net can learn to classify 3D objects

on visual appearances alone. Their approach considers each image as a point in the high

dimensional space of image pixel values. The value associated with each image (for example,

the pose of the object) is the value of the approximated function at that point. Under

some assumptions of smoothness, the technique will generalize to unseen views correctly.

Beymer's [2] ongoing work shows how the network can go one step further by synthesizing

the actual view associated with an unseen view of a given pose.

Darrell and Pentland [12] have similarly explored a representation based on the interpo-

lation of views with their real time wireless hand gesture recognition system. Model hand

gestures are represented as a pattern of responses to matched filters that are acquired during

the presentation of examples. New model matched filters, or templates, are acquired during

a gesture when no other templates respond vigorously. During recognition, the responses

to the previously computed model templates are time warped to stored prototypes. The

method of dynamic time warping presented, borrowed from the speech recognition commu-

nity [46, 21], is a useful and efficient technique to achieve the time shift-invariant matching

of two time-varying signals. Darrell's approach is attractive in how both the view models

and view predictions are learned during the presentation of the examples.

Murase and Nayar [36] have also studied the automatic learning of object models for

the recovery of model parameters. They take the views of an object under all possible

rotations about one axis and all angles of illumination. These images are then projected to

a lower dimensional eigenspace as in [59]. The constraints imposed by the appearance of

the object manifest themselves as a hyper-surface in the eigenspace, which is parameterized

by object pose and illumination. This they call a parametric eigenspace. Recognition

consists of projecting the new image into this eigenspace and finding the nearest point on

the hyper-surface. The parameters associated with this nearest point return the object

pose and angle of illumination. Because the objects used are rigid and the entire view

sphere and all illumination conditions are sampled, the hyper-surface is a smooth ring in

eigenspace. Furthermore, since all viewing conditions are known and parameterized (the

mapping between the view- and model-based representations is "one-to-one" and "onto"),

there is no need to summarize the allowable combinations of model parameters. This work

by Murase and Nayar relates closely to the second half of the work presented in this thesis.

Pentland et al. [38] take a slightly different approach with their modular eigenspaces

for face recognition. Rather than use the same eigenspace for all example facial views,

a different eigenspace is used for each significantly different value of a parameter. For

example, for a data set of example views of a number of people under a number of different

poses, the views under the same pose condition are likely to be more similar to each other

than views of the same person under different pose conditions. Therefore the eigenspace

representation for all views of a particular pose condition is computed. Recognition consists

of determining which eigenspace the example view belongs to, and then projecting the view

into that eigenspace for accurate recognition.

In his paper entitled "On Comprehensive Visual Learning" Weng [60] discusses the role

of learning in computer vision algorithms. Weng presents a general architecture of attention,

but more importantly points out that representations based on eigenvector decomposition

are not necessarily optimal for recognition. The approach presented is to build an optimal

set of features in the space resulting from the eigenvector decomposition. Cui and Weng

[11] demonstrate their approach in learning to recognize hand signs from video images.

While only static positions of hands are recognized, the system appears to be robust. Their

representation shows only a modest increase in recognition performance over using just the

classifications resulting from eigenvector decomposition.

Moghaddam and Pentland [33] cast the classification by eigenvector decomposition of

the images into a maximum likelihood framework, performing similar detection activities

as in Cui and Weng. Essentially, their work combines a classification based on nearness

in the space of eigenvector projection coefficients (termed "distance in feature space") and

the reconstruction residual of the image (termed "distance from feature space") to give a

complete probabilistic description of images in image-space.

Polana and Nelson [41] have conducted novel research in extracting low level features

for the recognition of periodic motion, such as walking and swimming. They compute the

Fourier transform of patches of the image over time, and sum the peak frequencies over the

spatial domain to obtain a measure of the periodic activity in the sequence. In another

work, they showed that by looking at the spatial distribution of movement in the image,

they were further able to recognize certain periodic motions. Their technique appears to be

limited to periodic motions.

In work of a more applications-oriented flavor Kjeldsen and Kender [26] describe a system

in development that is designed to provide control of various window system activities by

hand gestures from video. The system is interesting because it has a strong notion of

what is required during the different phases of predefined motions, and adjusts the features

computed accordingly. For example, during a certain "command" the exact configuration

of the hand may not be important, so only low resolution images are captured during that

phase. They exploit Quek's [42] observation that it is rare for both the pose of the hand and

the position of the hand to simultaneously change in a meaningful way during a gesture.

This collection of works offers a variety of approaches, but they all represent what they

know in terms of sensor outputs. This more general approach is attractive in the case of

human motion, where there is no consensus as to the appropriate primitives of description.

2.5 Hidden Markov Models for Gesture Recognition

Yet another approach is to model the various phases of movements as a state-transition

diagram or Markov model. For example, Davis and Shah [13] used a simple finite state

machine to model distinctly different phases of a gesture. Recognition is bootstrapped by

assuming that the motion starts from a given state.

Hidden Markov Models (HMMs) [45, 44, 24] associate a description of the continuous

sensor outputs that are consistent with each of the discrete states in a Markov model.

Today the most successful speech recognition systems employ HMMs for recognition. The

Baum-Welch algorithm is an iterative algorithm for inferring an unknown Markov model

from multiple series of sensor outputs. The technique is a particularly useful representation

for gesture because it puts time shift invariance, or dynamic time warping (as in [12]), on

a probabilistic foundation. By recovering both the Markov model describing transitions

among states and the states coding a representation of the samples local in time, the HMM

technique allows us to neatly separate the task of modeling the time course of the signal

from the task of representing the signal given a fixed moment in time.

Yamato et al. [64] base their recognition of tennis swings from video on an HMM which

infers an appropriate model after sufficiently many examples. A rather arbitrary region-

based feature is calculated from each frame; these features are then quantized to a series of

discrete symbols to be passed to the HMM. Together with the Markov model, the simple

feature computed was enough to distinguish among the different swings.

Schlenzig, Hunter and Jain [52] similarly recognize hand gestures with HMMs by seg-

menting the hand from the image and computing a bounding box which is then discretized.

In later work, Schlenzig et. al [53] compute the Zernicke moments of binary silhouette image

of the hand. The Zernicke moments provide a small basis set that provides reconstruction

of the image (as with an eigenvector decomposition) and uses a rotation-invariant represen-

tation. In some hand gestures, invariance to specific rotations of the hand is desirable. For

example, all pointing gestures may be identified with one rotation-invariant representation

of the hand with the index finger extended. The Zernicke moment representation is then

passed to a neural network classifier to determine the pose of the hand, one of six static

configurations of the hand. The pose is then fed to an HMM describing the legal motions

to command a remotely controlled vehicle.

Starner [56] demonstrates that very simple features computed from video are enough to

distinguish among a subset of two-handed ASL gestures. His system extracts the position

and dominant orientation of the hands wearing colored gloves. Starner couples a language

model that specifies the way the gestures may be combined with a number of HMMs coding

the motions. The system achieves impressive recognition results given the limited about of

information derived from the images.

Yamato's system is limited by the primitive region-based feature computed at every

frame. Schlenzig's work is interesting and highly developed, but by classifying the poses

with a neural network before invoking the HMM, the system is not allowed to recover the

poses that are appropriate for the movement; the relevant poses are provided beforehand.

In Starner's work the "poses" are learned in the training of the HMM, but the topology of

the HMM is fixed. By using simple features appropriate for two-handed input, Starner's

work is limited to his task.

2.6 Summary

Several categories of approaches to the vision-based understanding of human motion were

presented. Those that rely on an explicit physical model of the body are attractive because

they are able to model unconstrained human motion, and recognition of particular move-

ments can be accomplished in a parameter space that is natural for the object. But it is

not clear that such precise knowledge is necessary or even possible for a given domain.

The related work on trajectory analysis offers a number of techniques that may be useful

in analyzing human motion. For example, looking at groups of trajectories, we may be able

to deduce the common and relative motion present in a moving object. Or, also by looking

at a group of trajectories, we may be able to tell if a certain motion is periodic.

The view-based approaches are interesting because, unlike the more model-based ap-

proaches, the knowledge about the movements is grounded in the language of the sensor.

Thus the systems do not draw conclusions that the sensor readings cannot support. A

number of the techniques presented in this category will be used in the present work.

Finally, the HMM-based approaches are valuable in that they begin to address issues

such as the temporal structure of the movement. Rather than simply time warping a signal

to a stored prototype, HMMs can represent interesting temporal stricture by varying the

Markov model topology.

In many ways, the work presented in this thesis is closely related to these last approaches

involving HMMs. The techniques and assumptions used in the first half of the thesis work

bear a strong resemblance to those of HMMs. In the second half of the work, the HMM

technique is used explicitly in moving towards a state-based description of gesture while

simultaneously providing dynamic time warping of the input signal.

The existing applications using HMMs however are somewhat limited in the way the

representation and temporal structure are determined by each other. The second half of

this thesis expands the application of the technique for the purposes of human motion

understanding, such that the temporal model and the representation models work together.

Chapter 3

Configuration States for Gesture

Summarization and Recognition

3.1 Introduction: Recognizing Gestures

A gesture is a motion that has special status in a domain or context. Recent interest in

gesture recognition has been spurred by its broad range of applicability in more natural

user interface designs. However, the recognition of gestures, especially natural gestures, is

difficult because gestures exhibit human variability. We present a technique for quantifying

this variability for the purposes of summarizing and recognizing gesture. 1

We make the assumption that the useful constraints of the domain or context of a gesture

recognition task are captured implicitly by a number of examples of each gesture. That is, we

require that by observing an adequate set of examples one can (1) determine the important

aspects of the gesture by noting what components of the motion are reliably repeated; and

(2) learn which aspects are loosely constrained by measuring high variability. Therefore,

training consists of summarizing a set of motion trajectories that are smooth in time by

representing the variance of the motion at local regions in the space of measurements. These

local variances can be translated into a natural symbolic description of the movement which

represent gesture as a sequence of measurement states. Recognition is then performed by

determining whether a new trajectory is consistent with the required sequence of states.

The state-based representation we develop is useful for identifying gestures from video if

'This chapter has been previously published as a conference paper, coauthored with A. F. Bobick [3, 62].

a set of measurements of key features of the gestures can be taken from images. For example,

the two-dimensional motion information derived from Moving Light Display images, while

far from fully characterizing three-dimensional motion, may serve as key features for many

kinds of gesture.

We apply the measurement state representation to a range of gesture-related sensory

data: the two-dimensional movements of a mouse input device, the movement of the hand

measured by a magnetic spatial position and orientation sensor, and, lastly, the chang-

ing eigenvector projection coefficients computed from an image sequence. The successful

application of the technique to all these domains demonstrates the general utility of the

approach.

We motivate our particular choice of representation and present a technique for com-

puting it from generic sensor data. This computation requires the development of a novel

technique for collapsing an ensemble of time-varying data while preserving the qualitative,

topological structure of the trajectories. Finally we develop methods for using the measure-

ment state representation to concurrently segment and recognize a stream of gesture data.

As mentioned, the technique is applied to a variety of sensor data.

3.2 Motivation for a Representation

If all the constraints on the motion that make up a gesture were known exactly, recog-

nition would simply be a matter of determining if a given movement met a set of known

constraints. However, especially in the case of natural gesture, the exact movement seen

is almost certainly governed by processes inaccessible to the observer. For example, the

motion the gesturer is planning to execute after a gesture will influence the end of the cur-

rent gesture; this effect is similar to co-articulation in speech. The incomplete knowledge

of the constraints manifests itself as variance in the measurements of the movement. A

representation for gesture must quantify this variance and how it changes over the course

of the gesture.

Secondly, we desire a representation that is invariant to nonuniform changes in the speed

of the gesture to be recognized. These shifts may also be thought of as non-linear shifts

in time. A global shift in time caused by a slight pause early in the gesture should not

affect the recognition of most of the gesture. Let us call the space of measurements that

define each point of an example gesture a configuration space. The goal of time invariance

is motivated by the informal observation that the important quality in a gesture is how it

traverses configuration space and not exactly when it reaches a certain point in the space.

In particular, we would like the representation to be time invariant but order-preserving:

e.g. first the hand goes up, then it goes down.

Our basic approach to quantifying the variances in configuration space and simulta-

neously achieving sufficient temporal invariance is to represent a gesture as a sequence of

states in configuration space. We assume that gestures can be broken down into a series

of "states". In fact there seems to be no a priori reason why this should be so for such a

continuous domain like motion, other than that we tend to see event or motion boundaries

easily (see [37], for example). In some interesting research, Edelman [15] concludes that

a low-dimensional space of features may account for our ability to discriminate among 3D

objects, and furthermore that this space may be spanned by a small number of class proto-

types. Possibly, then, motion may be viewed as smooth movement from one class prototype

(or "state") to another, in which case a finite state model of motion is not so unreasonable.

Each configuration state is intended to capture the degree of variability of the motion

when traversing that region of configuration space. Since gestures are smooth movements

through configuration space and not a set of naturally defined discrete states, the config-

uration states S = {si, 1 < i < M} should be thought of as being "fuzzy", with fuzziness

defined by the variance of the points that fall near it. A point moving smoothly through

configuration space will move smoothly among the fuzzy states defined in the space.

Formally, we define a gesture as an ordered sequence of fuzzy states si E S in configu-

ration space. This contrasts with a trajectory which is simply a path through configuration

space representing some particular motion. A point x in configuration space has a member-

ship to state si described by the fuzzy membership function p, (x) E [0, 1]. The states along

the gesture should be defined so that all examples of the gesture follow the same sequence

of states. That is, the states should fall one after the other along the gesture. We represent

a gesture as a sequence of n states, G, = (aia2..an), where states are only listed as they

change: ai f ai+1.

We can now consider the state membership function of an entire trajectory. Let Ti(t) be

the ith trajectory. We need to choose a combination rule that defines the state membership

of a point x in configuration space with respect to a group of states. For convenience let us

choose max, which assigns the combined membership of x, Ms(x), the value max(ps,(x)).

The combined membership value of a trajectory is a function of time while the assigned

state of the trajectory at each time instant is the state with greatest membership. Thus,

a set of configuration states translates a trajectory into a symbolic description, namely a

sequence of states.

Defining gestures in this manner provides the intuitive definition of a prototype gesture:

the motion trajectory that gives the highest combined membership to the sequence of states

that define the gesture. We can invert this logic in the situation in which we only have several

examples of a gesture: first compute a prototype trajectory, and then define states that lie

along that curve that capture the relevant variances. In the next section we will develop

such a method.

3.3 Computing the Representation

3.3.1 Computing the prototype

Each example of a gesture is a trajectory in configuration space defined by a set of discrete

samples evenly spaced in time. At first, it is convenient to parameterize the ith trajectory

by the time of each sample: Ti(t) E Rd.

Our definition of a prototype curve of an ensemble of training trajectories Ti(t) is a

continuous one-dimensional curve that best fits the sample points in configuration space

according to a least squares criterion. For ensembles of space curves in metric spaces there

are several well known techniques that compute a "principal curve" [22] that attempt to

minimize distance between each point of each of the trajectories and the nearest point on

the principal curve.

The prototype curve for a gesture removes time as an axis, and is simply parameterized

by arc length A as it moves through configuration space, P(A) E Rd. The goal of the

parameterization is to group sample points that are nearby in configuration space and to

preserve the temporal order along each of the example trajectories.

The problem of computing a prototype curve P in configuration space is how to collapse

time from the trajectories Ti(t). Figure 3-1 illustrates the difficulty. If the points that make

up the trajectories (a) are simply projected into configuration space by removing time (b),

there is no clear way to generate a connected curve that preserves the temporal ordering

2

2 3

50 -

0 50-

3 50 100 150 200 250

(a) (b)X

1.5-

0-

-0.5 -

-2 -

-2.5 -

-3 -2 -1 0 1 2 3

(c) X

Figure 3-1: (a) Example trajectories as a function of time. (b) Projection of trajectory points
into configuration space. Normal principal curve routines would lose the intersection. (c) Prototype

curve recovered using the time-collapsing technique (see Appendix).

of the path through configuration space. Likewise, if each of the trajectories is projected

into configuration space small variations in temporal alignment make it impossible to group

corresponding sections of the trajectories without considering time.

The details of our method are presented in an appendix but we give the intuition here.

Our approach is to begin with the trajectories in a time-augmented configuration space.

Since a trajectory is a function of time, we can construct a corresponding curve in a space

consisting of the same dimensions as configuration space plus a time axis. After computing

the principal curve in this space, the trajectories and the recovered principal curve are

slightly compressed in the time direction. The new principal curve is computed using the

previous solution as an initial condition for an iterative technique.

By placing constraints on how dramatically the principal curve can change at each

time step, the system converges gracefully to a prototype curve in configuration space that

minimizes distance between the example trajectories and the prototype, while preserving

temporal ordering. Figure 3-1(c) shows the results of the algorithm. The resulting prototype

curve captures the path through configuration space while maintaining temporal ordering.

An important by-product of calculating the prototype is the mapping of each sample

point xi of a trajectory to an arc length along the prototype curve Ai = A(xi).

3.3.2 Clustering the sample points

To define the fuzzy states si, the sample points of the trajectories must be partitioned into

coherent groups. Instead of clustering the sample points directly, we cluster the vectors

defining P(A) and then use the arc length parameterization A(zx) to map sample points to

the prototype P(A). The vectors that define P(A) are simply the line segments connecting

each point of the discretized P(A), where the length of each line segment is constant.

By clustering the vectors along P(A) instead of all sample points, every point that

projects to a certain arc length along the prototype will belong to exactly one cluster. One

desirable consequence of this is that the clusters will fall one after the other along the

prototype. This ordered sequence of states is recorded as G, = (aia 2..a").

The prototype curve vectors are clustered by a k-means algorithm, in which the distance

between two vectors is a weighted sum of the Euclidean distance between the bases of the

vectors and a measure of the difference in (unsigned) direction of the vectors. This difference

in direction is defined to be at a minimum when two vectors are parallel and at a maximum

when perpendicular.

Clustering with this distance metric groups curve vectors that are oriented similarly,

regardless of the temporal ordering associated with the prototype. If the prototype visits

a part of configuration space and then later revisits the same part while moving in nearly

the same (unsigned) direction, both sets of vectors from each of the visits will be clus-

tered together. The sample points associated with both sets will then belong to the single

state which appears multiply in the sequence G,. In this way, the clustering leads to a

parsimonious allocation of states, and is useful in detecting periodicity in the gesture.

Each cluster found by k-means algorithm corresponds to a fuzzy state. The number of

clusters k must be chosen carefully so that there are sufficiently many states to describe the

movement in a useful way, but should not be so great that the number of sample points in

each cluster is so low that statistics computed on the samples are unreliable. Furthermore,

the distribution of states should be coarse enough that all the examples traverse the states

in the same manner as the prototype.

3.3.3 Determining state shapes

The center of each of the clusters found by the k-means algorithm is the average location

c and average orientation V- of the prototype curve vectors belonging to the cluster. The

membership function for the state is computed from these center vectors and the sample

points that map to the prototype curve vectors in each cluster.

For a given state si, the membership function p, (x) should be defined so that it is great-

est along the prototype curve; this direction is approximated by V-. Membership should also

decrease at the boundaries of the cluster to smoothly blend into the membership of neigh-

boring fuzzy states. Call this membership the "axial" or "along-trajectory" membership.

The membership in directions perpendicular to the curve determines the degree to which

the state generalizes membership to points on perhaps significantly different trajectories.

Call this membership the "cross sectional" membership.

A single oriented Gaussian is well suited to model the local, smooth membership function

of a fuzzy state. Orienting the Gaussian so that one axis of the Gaussian coincides with

the orientation - of the center of the state, the axial membership is computed simply as

the variance of the sample points in the axial direction. The cross-sectional membership is

computed as the variance of the points projected on a hyper-plane normal to the axis.

It should be noted that these variances are correctly estimated from the points in the

original configuration space and not the time-augmented configuration space, since, as men-

tioned before, the sample point to prototype curve correspondence is slightly in error in the

larger space. Thus we cannot simply compute the variances in the larger space and drop

the time component.

The inverse covariance matrix E- of the oriented Gaussian can be computed efficiently

from the covariance matrix E of the points with the center location subtracted. First, a

rotation matrix R is constructed, whose first column is V-, the axial direction, and whose

remaining columns are generated by a Gram-Schmidt orthogonalization. Next, R is applied

to the covariance matrix E:

ER=-R E = " I
:[Epro3.]

where a' is the variance of the points along V, and E~ 79 is the covariance of the points

projected onto the hyper-plane normal to V. We can scale each of these variances to adjust

the cross sectional and axial variances independently by the scalars a and or, respectively.

Setting the first row and column to zero except for the variance in direction V':

a 2 a2 0.O.a v

E RI =

0 Opro]

Then the new inverse covariance matrix is given by: E' = (RER/R T)- 1 .

A state s; is then defined by c, V-, and Es, with Ps(x) = e-(x-c)ES(x-c). The

memberships of a number of states can be combined to find the membership PiSj,..(x) to a

set of states {s;, sj,..}. As mentioned, one combination rule simply returns the maximum

membership of the individual state memberships:

Psi,,,,-..() max Psx)

3.4 Recognition

The online recognition of motion trajectories consists of explaining sequences of sample

points as they are taken from the movement. More concisely, given a set of trajectory

sample points X1 , X2, ..XN taken during the previous N time steps, we wish to find a gesture

G and a time t,, t1 5 t, tN such that X..XN has an average combined membership above

some threshold, and adequately passes through the states required by G.

Given the sequence of sample points at ti..AN, we can compute t, and the average com-

bined membership for a gesture G, = (ala2..as) by a dynamic programming algorithm.

The dynamic programming formulation used is a simplified version of a more general algo-

rithm to compute the minimum cost path between two nodes in a graph.

For the dynamic programming solution, each possible state at time t is a node in a

graph. The cost of a path between two nodes or states is the sum of the cost assigned to

each transition between adjacent nodes in the path. The cost of a transition between a

state ai at time t and a state a1 at time t + 1 is

oc for j < i
ct(a;, a,) =

1 - pY"' (T(t)) otherwise

That is, we are enforcing forward progress through the states of the gesture and preferring

states with high membership.

The dynamic programming algorithm uses a partial sum variable, Cti,tj (ai, aj) to re-

cursively compute a minimal solution. Ct ,tj (a-, aj) is defined to be the minimal cost of a

path between state ai at a time ti and a. at a time tj:

Ct,t (ak, am) = n ct (ak, al) + Ctig,t (al, am)}
aiEGa

Cti,t (ak, am) = 0

The total cost associated with explaining all samples by the gesture G, is then Cl ltN (a, an)

The start of the gesture is not likely to fall exactly at time t1 , but at some later time I.

Given I, we can compute the average combined membership of the match from the total

cost to give an overall match score for a match starting at time t,:

-1-Ctt, (a1, a,)
(tN - ts)

To be classified as a gesture Ga, the trajectory must have a high match score and

pass through all the states in G, as well. For the latter we can compute the minimum of

the maximum membership observed in each state ai in Ga. This quantity indicates the

completeness of the trajectory with respect to the model Ga. If the quantity is less than a

certain threshold, the match is rejected. The start of a matching gesture is then

ts =arg min Ct, tN(a1, an), completeness > threshold
t

Causal segmentation of a stream of samples is performed using the dynamic program-

ming algorithm at successive time steps. At a time step t, the highest match score and the

match start time ts is computed for all samples from to to t. If the match score is greater

than a threshold r, and the gesture is judged complete, then all points up to time t are

explained by a gesture model and so are removed from the stream of points, giving a new

value to = t. Otherwise, the points remain in the stream possibly to be explained at a later

time step. This is repeated for all time steps t successively.

3.5 Experiments

The configuration-state representation has been computed with motion trajectory measure-

ments taken from three devices that are useful in gesture recognition tasks: a mouse input

device, a magnetic spatial position and orientation sensor, and a video camera. In each

case we segment by hand a number of training examples from a stream of smooth motion

trajectories collected from the device. With these experiments we demonstrate how the

representation characterizes the training examples, recognizes new examples of the same

gesture, and is useful in a segmentation and tracking task.

3.5.1 Mouse Gestures

In the first experiment, we demonstrate how the representation permits the combination

of multiple gestures, and generalizes to unseen examples for recognition. Furthermore,

0.9-

0.8-

0.7-

0.6-

0.5-

0.4-

0.3-

0 0.2 0.4 0.6 0.8 1

Figure 3-2: The prototype curves (black) for Ga and G# are combined to find a set of states

to describe both gestures. The clustering of the prototype curve vectors for G, and G3 gives the

clustering of all sample points. Each of the ten clusters depicted here is used to define a state
centered about each of the white vectors. Darker regions indicate high membership.

0.5-

0 ' i
0 10 20 30 40 50 60 70 80 90 100

0 (I I I0.5-

0
0 20 40 60 80 100 120

0.5-

0
0 10 20 30 40 50 60 70 80 90

1

0.5

0
0 10 20 30 40 50 60 70 80

0.5-

0
0 10 20 30 40 50 60 70 80 90 100

Time, t
Figure 3-3: The state transition and membership plots for the testing examples for Ga. The
transitions (vertical bars) are calculated to maximize the average membership while still giving
an interpretation that is complete with respect to Ga. The plot depicts the time-invariant but
order-preserving nature of the representation.

by considering two-dimensional data, the cluster points and the resulting states are easily

visualized.

The (x, y) position of a mouse input device was sampled at a rate of 20 Hz for two

different gestures G, and Go. Ten different examples of each gesture were collected; each

consisted of about one hundred sample points. Half of the examples were used to compute

the prototype curve for each gesture. The vectors along both of the curves were then

clustered to find a single set of ten states useful in tracking either gesture. Because the

gestures overlap, six of the states are shared by the two gestures.

The shapes of the states computed from the clustering is shown in Figure 3-2. The

generalization parameter a had a value of 3.0. The state sequences G, and GO were

computed by looking at the sequence of state assignments of the vectors along the prototype.

The sequences G, and Go reflect the six shared states: G, = (S1s 2s3 S2s 4s5s037), G) =

(3S 2s4s56S 7 S6 s5 8S 9S1038s 9).

The match scores of the hand-segmented test gestures were then computed using the

dynamic programming algorithm outlined in Section 3.4. In computing the maximum match

score, the algorithm assigns each point to a state consistent with the sequence G". As

described, a match is made only if it is considered complete. The state transitions and

the membership values computed for each sample are shown for the new examples of G,

in Figure 3-3. The representation thus provides a convenient way to specify a gesture as

an ordered sequence of states while also permitting the combination of states shared by

multiple gestures.

3.5.2 Position and Orientation Sensor Gestures

For the second experiment, we compute the representation with somewhat sparse, higher

dimensional data. We show its use in the automatic, causal segmentation of two different

gestures as if the samples were collected in a real time recognition application.

An Ascension Technology Flock of Birds magnetic position and orientation sensor was

worn on the back of the hand and polled at 20 Hz. For each sample, the position of the

hand and the normal vector out of the palm of the hand was recorded (six dimensions). Ten

large wave gestures (about 40 samples each) and ten pointing gestures (about 70 samples

each) were collected.

To insure that there were enough points available to compute the prototype curve, each

Pi

P3

(a)

A4

A#2

0 20 30 40 50 60 70 80 90 1000.5-

0-

0 10 20 30 40 50 60 70 80 90 100

0.-

0 10 20 30 40 50 60 70 80 90 100
0.5 I

I

0 10 20 30 40 50 60 70 80 90 100

(b) 0.5 -

s 0-
0 10 20 30 40 50 60 70 80 90 100

Time, t

Figure 3-4: (a) The membership plot for the prototype curves for Gwave show for each of the
configuration states how the states lie along the prototype. (b) Combined membership (maximum)
of all states at each point along the prototype. The prototype for Gpont is similar.

example was up-sampled using Catmull-Rom [6] splines so that each wave gesture is about

40 samples and each point gesture about 70 samples.

The prototype curves for each gesture were computed separately. The membership

plots for the prototype wave is shown for each state in Figure 3-4. The gesture sequence

Gwave is found by analyzing the combined membership function (Figure 3-4b): Gwave =

(s1S2s3 4 S3S2S1). Similarly, Gp,0 gn (not shown) is defined by (s5ss 7s 8ss7ss 5). Note how

both the sequences and the plots capture the similarity between the initiation and retraction

phases of the gesture.

The state transition and membership plots as calculated by the dynamic programming

algorithm are shown for all the example wave gestures in Figure 3-5. Because the example

gestures started at slightly different spatial positions, it was necessary to ignore the first

and last states in the calculation to obtain good matches. This situation can also occur, for

example, due to gesture co-articulation effects that were not observed during training.

A stream of samples consisting of an alternating sequence of all the example wave and

point gestures was causally segmented to find all wave and point gestures. For a matching

threshold of 77 = 0.5, all the examples were correctly segmented.

0.5
0
0 50 100 150 200

0.5
0'

' 0 20 40 60 80 100 120 140 160 180 200

Time, t
Figure 3-5: The state transition and membership plots for 2 of the 10 testing examples for Gwave.
The state transitions (vertical bars) were successfully tracked in all 10 wave gestures and 9 of 10
point gestures.

Even with sparse and high dimensional data, the representation is capable of determin-

ing segmentation. Additionally, the representation provides a useful way to visualize the

tracking process in a high dimensional configuration space.

3.5.3 Image-space Gestures

As a final experiment, we consider a digitized image sequence of a waving hand (Figure 3-

6). Given a set of smoothly varying measurements taken from the images and a few hand-

segmented example waves, the goal is to automatically segment the sequence to recover

the remaining waves. This example shows how the measurements do not require a direct

physical or geometric interpretation, but should vary smoothly in a meaningful and regular

way.

Each frame of the sequence is a point in a 4800-dimensional space of pixel values, or

image-space. If the motion is smooth so that the images vary slowly the sequence will trace a

smooth path in image-space. Rather than approximate trajectories in the 4800-dimensional

space, we instead approximate the trajectories of the coefficients of projection onto the first

few eigenvectors computed from a part of the sequence.

The first five example waves were used in training. The three eigenvectors with the

largest eigenvalues were computed by the Karhunen-Loeve Transform (as in [59, 35]) of the

training frames, treating each frame as a column of pixel values. The first three eigenvectors

accounted for 71% of the variance of the pixel intensity values of the training frames.

The training frames were then projected onto the eigenvectors to give the smooth tra-

Figure 3-6: Each row of images depicts a complete wave sequence taken from the larger image
sequence of 830 frames, 30 fps, 60 by 80 pixels each. Only 5 frames of each sequence is presented.
The variation in appearance between each example (along columns) is typical of the entire sequence.

jectories shown in Figure 3-7. The recovered state sequence Gwave = (s1S4S3s2S3 S4) again

shows the periodicity of the motion. The state transitions and membership values were

computed for ten other examples projected onto the same eigenvectors. Again, the first and

last states were ignored in the matching process due to variations in the exact beginning and

ending of the motion. One of the examples was deemed incomplete. Lastly the automatic

causal segmentation of the whole image sequence was computed. Of the 32 waves in the

sequence, all but one (the same incomplete example above) were correctly segmented.

3.6 Summary

A novel technique for computing a representation for gesture that is time-invariant but

order-preserving has been presented. The technique proceeds by computing a prototype

gesture of a given set of example gestures. The prototype preserves the temporal ordering

of the samples along each gesture, but lies in a measurement space without time. The

prototype offers a convenient arc length parameterization of the data points, which is then

used to calculate a sequence of states along the prototype. The shape of the states is

calculated to capture the variance of the training gestures. A gesture is then defined as an

1500,

1000 - -0P
10000

500 .--- .---- .- .-.-

CV 01

-500 -

-1000-

-1500
1000

500 2000
0 1000

-500 0
-1000 -1000

e2 -1500 -2000 el

Figure 3-7: Each of the axes ei, e2, and e3 represents the projection onto each of the three
eigenvectors. The image sequences for the five training examples project to the smooth trajectories
shown here. A circle represents the end of one example and the start of the next. The trajectory
plots show the coherence of the examples as a group, as well as the periodicity of the movement.

ordered sequence of states along the prototype.

A technique based on dynamic programming uses the representation to compute a match

score for new examples of the gesture. A new movement matches the gesture if it has high

average combined membership for the states in the gesture, and it passes through all the

gestures in the sequence (it is complete). This recognition technique can be used to perform

a causal segmentation of a stream of new samples. Because the particular form of the

dynamic programming algorithm we use can be implemented to run efficiently, the causal

segmentation with the representation could be useful in a real time gesture recognition

application.

Lastly, three experiments were conducted, each taking data from devices that are typ-

ical of gesture recognition applications. The variety of inputs addressed demonstrates the

general utility of the technique. In fact, our intuition is that there are only a few require-

ments on the measurements for the technique to be useful; we would like to make these

requirements more explicit.

The representation of a gesture as a sequence of predefined states along a prototype

gesture is a convenient symbolic description, where each state is a symbol. In one experi-

ment we demonstrated how two gestures can share states in their defining sequences. This

description may also be useful in composing new gestures from previously defined ones, in

detecting and allowing for periodicity in gesture, and in computing groups of states that

are atomic with respect to a number of gestures. In short, the symbolic description permits

a level of "understanding" of gesture that we have not explored.

There seems to be little consensus in the literature on a useful definition of "gesture".

Part of the problem in arriving at a concise notion of gesture is the broad applicability

of gesture recognition, and the difficulty in reasoning about gesture without respect to

a particular domain (e.g., hand gestures). The development of the configuration state

technique presented is an attempt to formalize the notion of gesture without limiting its

applicability to a particular domain. That is, we wish to find what distinguishes gesture from

the larger background of all motion, and incorporate that knowledge into a representation.

Chapter 4

Learning Visual Behavior for

Gesture Analysis

4.1 Introduction: From human motion to gesture

For all the degrees of freedom available to the human body, we seem to habitually use a only

small class of motions that they permit. Even athletes, which as a group use their bodies

in ways that most people do not, aspire to repeat motions flawlessly, spending hours upon

hours practicing the same motion. In the space of motions allowed by the body's degrees

of freedom, there is a subspace that most of us use. For example, if the body is modeled

by a series of joints and angles between them, there would be many combinations of joint

angles that we would never see. 1

Gesture is one interesting subspace of human motion. Provisionally, we define gesture to

be motions of the body that are intended to communicate to another agent. Therefore, the

gesturer and the recipient of the gesture must share a knowledge of gesture to communicate

effectively. By way of simplification, this means the gesturer's movement must be one of a

predefined set. We do not mean that a given gesture has a fixed geometry; a "wave" might

be a single gesture in which the hand can be at any height between the chest and the top of

the head. Rather, for now we are assuming that there is a set of gestures and each gesture

defines a range of motions that are to be interpreted as being examples of that gesture.

Thus gestures are modal in the space of possible human motion.

'The body of this chapter has been submitted in abbreviated form to the IEEE International Symposium
on Computer Vision [63].

Due to the variability of human movement, the behavior of the gesture must be described

without regards to precise geometry or precise temporal information. We take visual be-

havior to mean the sequence of visual events that makes a complete action or gesture. We

assume that two gestures that have the same visual behavior are in fact the same gesture,

thus ignoring the delicate problem of relating the form and meaning of natural gesture [31].

4.1.1 View-based approach

The machine understanding of human movement and gesture brings new possibilities to

computer-human interaction. Such interest has inspired research into the recovery of the

the complete 3-dimensional pose of the body or hand using a 3-dimensional physical model

(e.g. [50, 51]). The presumption behind such work is that a complete kinematic model of

the body will be required for useful inferences.

We claim that gestures are embedded within communication. As such, the gesturer

typically orients the movements towards the recipient of the gesture. Visual gestures are

therefore viewpoint-dependent. And the task of gesture understanding is particularly suited

to a view-based, multiple model approach in which only a small subspace of human motions

is represented.

4.2 Representation of gesture

4.2.1 Multiple models for gesture

We claim that gestures are modal in the space of human motion. But how should a system

model human motion to capture the constraints present in the gestures? There may be

no single set of features that makes explicit the relationships that hold for a given gesture.

In the case of hand gestures, for example, the spatial configuration of the hand may be

important (as in a point gesture, when the observer must notice a particular pose of the

hand), or alternatively, the gross motion of the hand may be important (as in a friendly

wave across the quad). Quek [42] has observed that it is rare for both the pose and the

position of the hand to simultaneously change in a meaningful way during a gesture.

Rather than use one model that is only partially effective, the approach here is to allow

for multiple models. By model we mean a systematic way to describe a set of existing sensor

data and a method to determine if it also describes new sensor data. Different models may

interpret the same sensor data in different ways or they may take data from different sensors,

in which case sensor fusion is the goal. The use of multiple models in a visual classification

task is discussed in [39].

One goal is to develop an approach that can exploit multiple models simultaneously,

where the type of models might be quite distinct. Model types useful for characterizing

images in an image sequence might include eigenvector decomposition of sets of images [59],

orientation histograms [18], peak temporal frequencies[41], tracked position of objects in

the frame, and optic flow field summaries.

4.2.2 State-based descriptions

In Chapter 3 we defined gesture to be a sequence of states in a configuration space. States

were defined on some input space (say the joint angles derived from a DataGlove) and were

designed to capture the constraints present in a series of training examples. Membership

in a state was governed by probabilistic functions that attempted to capture the natural

variability of motion in terms of the variances of these functions.

The temporal aspect of a gesture was incorporated by requiring that the states be

defined along a prototype derived from training examples. Once defined, these states would

be used to determine if a particular trajectory through the input space was an example of

the learned gesture: the trajectory had to sequentially pass through each state attaining

sufficient memberships in sequence. The actual time course was not important as long as

the sequence was appropriate.

In the work presented here, we continue to consider a gesture as a sequence of states.

At each point in time, the observed visual input reflects the current, unobservable state and

perhaps the transition to the next state. This state-based description is easily extended to

accommodate multiple models for the representation of different gestures or even different

phases of the same gesture. The basic idea is that the different models need to approximate

the (small) subspace associated with a particular state. Membership in a state is determined

by how well the state models can represent the current observation.

4.2.3 Learning visual behavior

In this paper we develop a technique for learning visual behaviors that 1) incorporates the

notion of multiple models; 2) makes explicit the idea that a given phase of a gesture is

constrained to be within some small subspace of possible human motions; and 3) represents

time in a more probabilistic manner than defined by a prototype approach. In the remain-

ing sections we first derive a state model and membership function based upon residual,

or how well a given model can represent the current sensor input. We then embed this

residual-based technique within a Hidden Markov Model framework; the HMM's represent

the temporal aspect of the gestures in a probabilistic manner and provide an implicit form of

dynamic time warping for the recognition of gesture. Finally, we demonstrate the technique

on several examples of gesture and discuss possible recognition and coding applications.

4.3 Modeling gestures

4.3.1 Model instances and memberships

Suppose we have a set of observations 0 = 01,02,..., O and a collection of states num-

bered j = 1 ... N. Assume that for each observation Ot we are given a degree of belief yt(j)

that Ot belongs to a state j; we require that ZE1 -yt(j)= 1. We can interpret yt(j) as the

membership of Ot to state j. In this section we show the combination of multiple models in

order to describe the set of observations belonging to a single state; in the next section we

consider modeling the time course of states.

A number of model types A, B, etc. are selected a priori to describe the observations.

Each state is then associated with one instance of each model type. Each model instance is

defined by the set of parameters that limit the model type to match some set of observations.

For example, eigenvector decomposition of images may be a model type. An instance of the

model type would comprise a particular mean image and set of eigenvectors (eigenimages)

that are computed from a set of examples. Let us denote the set of model instances at state

j as M, = {Aj, B,,...}.

The parameters of M, are computed from the set of example observations with the

highest membership -yt (j). This may be accomplished by weighting each of the examples

in the computation of the parameters, or simply by selecting some fixed number of the top

observations, ranked by 7t(j). In the examples presented, the latter approach is taken.

For each model instance m E Mj and an observation x we can compute a distance

dm(x) which measures the degree to which the model instance m is unable to match x. In

this sense, dm(x) is a reconstruction error or residual. If we think of the parameters of M

as limiting the model to a subspace of the space of samples, then we may also call dm(x) a

distance to model subspace. The distances to each model instance may be combined to give

dj(x) = (dA, (x), dB, (X), .. .).

This quantity is similar to the "distance from feature space" derived in [33].

Next we consider the observation probability distribution bj(x) which describes the

probability of measuring a particular residual for an observation when that observation is

really generated by state j. b(x) may be estimated from the observations, each weighted

by -yt(j). Assuming the independence of each model, we estimate b, as a normal' joint

distribution on dj: b2(x) = A[d 3(x), y, E], with

P. dZ(O),
t=1 E y: j

t=1

and

E = T (d,(Ot) - p-)(dj(0t) -

t=1 E y(i)
t=1

The probability bj(x) may then be used in the computation of a new yt(j). One approach

to computing yi(j) that exploits the fact that the observations are not simply a set but a

sequence is that of Hidden Markov Models, presented in the next section as a technique for

describing transitions between states.

Having updated y(j), the estimation of the model instances .M3 described above is

iterated. In this way the memberships -t(i) and the model instances are tuned to define

the states in a way that best represents the observations.

Summarizing, we list the following requirements of model instances:

* Model instance parameters are computed using the observations and their membership

to the state, -yt(j).

* Each model instance delineates some subspace of the space of observations.

* The distances d3 (x) must be lowest for observations with a high degree of membership

-ytij).

2Since there are no negative distances, the gamma distribution may be more appropriate.

4.3.2 HMM's with multiple independent model subspaces

Following a trend in speech recognition, vision researchers have applied the Hidden Markov

Model technique to gesture recognition. Yamato et al. [64] compute a simple region-based

statistic from each frame of image sequences of tennis swings. Sequences of the vector-

quantized features are then identified by a trained HMM. Schlenzig et al. [53] use a rotation

invariant representation of binary images and a neural net to quantize the image to a hand

pose before using an HMM. Starner and Pentland [56] apply continuous HMM's with the

orientation and position of both hands wearing colored gloves.

HMM's are attractive because they put dynamic time warping on a probabilistic foun-

dation and produce a Markov model of discrete states that codes the temporal structure

of the observations [24]. Training an HMM involves inferring a first-order Markov model

from a set of possibly continuous observation vectors. Each state is associated with the

observation probability distribution bj(x). The probability of making a transition from a

state i to a state j in one time step is denoted as A(ij). The relationship between the

discrete states and bj(x) is depicted in Figure 4-1(a).

7t(j), the probability of being in state j at time t given the observation sequence 0 and

the HMM, is computed by the "forward-backward" procedure. yt(j) is subsequently used

by the Baum-Welch algorithm to iteratively adjust b3(x) and A until the probability of the

HMM generating the observations is maximized.

Training the HMM with multiple independent model subspaces proceeds by interleaving

iterations of the Baum-Welch algorithm (giving an updated 7t(j) to reflect the updated

Markov model A) with reestimating the parameters of the model instances. In this way the

representation encoded at each state is trained concurrently with the transition model. The

relationship between each discrete state of the Markov model and the multiple independent

model subspaces is depicted in Figure 4-1(b).

An advantage to this approach is that the representation at each state is designed to

match the particular temporal model, and the temporal model is designed for the particular

choice of representations as well. Also, by having multiple independent models, we do not

rely on any one particular model instance to fit all observations for all states.

(a) dB

d^

A A4

d

(b) B3

Figure 4-1: Each state of the Markov model (gray) is associated with a unimodal observation p df.
(a) In the conventional HMM framework all observation distributions reside in the same space of
measurements from model A and B. (b) In the multiple independent model subspace HMM, each
state is associated with an independent space of measurements from model Ag and By .

Figure 4-2: A state-based description of gesture must encode the relevant perceptual states. These
images of an upright open hand share the same conceptual description, but have very different
perceptual descriptions due to a slight change in viewing angle.

4.3.3 HMM topology

Before training the HMM, initial transition probabilities A(i, j) must be provided. The

topology of the resulting Markov model is constrained by initially setting some A(i, j) to

zero. To ease training, the topology is commonly constrained to be simple (e.g. causal).

The topology of the Markov model has the capability of encoding the temporal structure

of the gesture. We choose not to restrict the topology of the Markov model initially and

instead recover the topology through training. The reasons for doing so are twofold. First,

by not providing a strict initial model we may recover interesting temporal structures that

would otherwise escape notice, such as periodicity. In such cases the structure of the

recovered transition matrix contributes to our understanding of the gesture.

Second, by providing a strict initial model we make implicit assumptions about the

distribution of the sensor outputs (e.g., unimodal along the gesture in the case of a strictly

linear Markov model). These assumptions may be unwarranted: while a simple gesture

may seem to us a simple sequence of conceptual states, the sensors may see the movement

as a complicated tangle of perceptual states. This may occur, for example, when the sensors

used do not embody the same invariances as our own visual system. Figure 4-2 illustrates

a single conceptual state (the upright hand) generating grossly different observations. If a

single bj(x) cannot encode both observations equally well, then additional Markov states

are required to span the single conceptual state. The addition of these states require the

flexibility of the Markov model to deviate from strictly causal topologies.

Initialization:
set A(i, j) = for all i, j
initialize yt(j) randomly, 3'= yt(j) = 1

Algorithm:
repeat until parameters of Mj do not change:

for each state j (parallelizable):
estimate parameters to models m C M3

compute dj(x) for all x E 0
estimate bg(x) = AN[d,(x), pu, Ej]

end
update A, 7t(j) by Baum-Welch algorithm

end

Figure 4-3: Training algorithm

4.3.4 Algorithm

To recover the temporal structure of the gesture and to train the representations at each

state to suit the temporal model, we initialize the iterative algorithm sketched above with

a uniform transition matrix and a random membership for each observation (Figure 4-3).

In the conventional HMM framework, the Baum-Welch algorithm is guaranteed to con-

verge [24]. By interleaving the estimation of model parameters with the Baum-Welch algo-

rithm, the proof of convergence may be invalidated. However, convergence has not been a

problem with the examples tried thus far.

4.4 Examples

4.4.1 Single model

For our first examples, we use the eigenvector decomposition of the image as the single

model type. In this case, the parameters associated with a model instance are simply a

number of the top eigenimages that account for most of the variance of the training images

(as indicated by the eigenvalues) and the mean image of the training images. The training

images for a model instance at state j are selected by ranking all samples by 7t(j) and

selecting some number of the top samples. Given a model instance E and a sample image

x, d(x) = (dEj(x)) is simply the reconstruction residual (average per pixel) of the image

using the precomputed eigenvectors at state j.

The first example is a waving hand against a black background. The second is a twisting

hand (as in "turn it up", or "CRANK IT!") 3 against a cluttered background. The last

single model example is of the whole body doing jumping-jacks, facing the camera.

For each example, the input consists of about 30 image sequences, each about 25 frames

(60 by 80 pixels, grayscale) in length. The top 50 -yt(j)-ranked sample images were used,

and the number of eigenvectors was chosen to account for 70% of the variance of the selected

sample images. The recovered Markov model, mean image at each state and a plot of t(j)

and dE, for one training sequence are shown in Figures 4-4, 4-5, and 4-6.

Consider the waving hand example: the recovered Markov model permits the periodicity

shown by the plot of -yt(j) over an observation sequence. Some other observation sequences

differ in the extent of the wave motion; in these cases the state representing the hand at

its lowest or highest position in the frame is not used. The plot of lt(j) reveals the time

warping permitted by the Markov model. For example, the hand must decelerate to stop at

the top of the wave, and then accelerate to continue. This is shown by the longer duration

of membership to the first (top) state shown in the figure.

Note that in second and third of these examples, foreground segmentation is unnecessary

since the camera is stationary. The mean image corresponds to the static parts of the image;

the eigenvector decomposition automatically subtracts the mean image at each state.

4.4.2 Position and configuration

The second example describes the position and configuration of a waving, pointing hand.

In each frame of the training sequences, a 50 by 50 pixel image of the hand was tracked and

clipped from a larger image with a cluttered background. Foreground segmentation was

accomplished using the known background. The configuration C of the hand is modeled

by the eigenvector decomposition of the 50 by 50 images. The position P of the hand is

modeled by the location of the tracked hand within the larger image; at each state P is

estimated as the -yt(j)-weighted mean location.

The recovered Markov model is similar to that of the waving hand in the previous

example. The mean images and d3 = (do,, dp,) for each state are shown in Figure 4-7.

3One interesting experimental question is whether the system is able to distinguish "turn it up" from "turn
it down". Presumably, the recovered Markov models would be different for each of these motions. See
[18] for the application of gesture recognition to television control.

[-<*

0 5 10 15 20 25

/\x]

0 5 10 15 20 25

1

0.5

0-
0 5 10 15 20 25

I--..-

0 5 10 15
Time t

20 25

(b)

Figure 4-4: (a) An example wave sequence. (b) The recovered Markov model for all training
sequences at left shows the periodicity of the gesture. The 7t(j)-weighted mean image for each state
is shown in the middle. On the right is a plot of -yt(j) (solid line) and dE, (dotted line) for each
state for one training sequence. The exact shape of the plots varies in response to the variance and
length of the sequence. (The plots of dE. were scaled to fit.)

(a)

F10.5

0

1

0. [

0.87

6

0.68

0.82

0.75

1

0 .5 - - - --... -. .

0
0 10 20 30 40 50

0.5 - -- - - - .

0 10 20 30 40 50

0.5

0 10 20 30 40 50

1

0.5-

0-

f-i

I
0 10 20 30 40 50

Time t

(b)

Figure 4-5: (a) An example sequence of a twisting hand ("turn it up!"). (b) Recovered Markov
model, mean images at each state, plots of yt (j) (solid line), and dE, (dotted line) from the sequence
above are shown.

(a)

1

0.5- -A..
0 5 10 15 20 25 30 3E

1

0.5

0[
0 5 10 15 20 25 30 3E

1 *
0.5

0 5
0 5 10 15 20 25 30 3!

1 Al
0.5 - \KJ

0 5 10 15 20
Time t

25 30 3

Figure 4-6: (a) An example jumping-jack. (b) Recovered Markov model, mean images at each
state, plots of yt(j) (solid line), dE, (dotted line) from the sequence above are shown.

(a)

) 0.52

0.46

0.54

(b)

I

I I -

The variance of each feature indicates the importance of the feature in describing the

gesture. In this example both the position and configuration of the hand was relevant in

describing the gesture. Had the location of the hand varied greatly in the training set,

the high variance of the position representation would have indicated that position was not

important in describing the gesture.

4.4.3 Two camera views

The final example shows how models for two camera views may be combined. Two views

may be useful in describing the simultaneous movement of multiple objects (e.g. two hands,

or a face and hands), or in describing gestures that exhibit movement in depth. Fifteen

examples of a "pushing" gesture (see Figure 4-8(a)) were taken from both a side and front

view. Eigenvector decomposition was used to model each view; d. = (dEfront, dEside). The

mean image for each view and plots of dj are shown in Figure 4-8(b).

Again, because the background is stationary in this example, foreground segmentation is

accomplished simply by the subtraction of the mean image from each frame of the sequence.

4.5 Representation vs. Recognition

In assigning parameters to model instances so that the models fit the training data well,

the models are tuned to represent the training data as best they can. In the case of the

eigenvector decomposition of the images, the model represents the training images in an

"optimal" way (given some number of eigenvectors). As a series of states, each of which seeks

to best represent its associated training images, the multiple model HMM in some sense

seeks to represent the training sequences as best it can, both by seeking good representations

at each state, and by providing an HMM topology and time warping that covers the time

course of the examples as best it can. Subject to the problem of local-minima during

training, it would seem that the multiple model HMM is an "optimal" representation of the

sequence in some sense, given a certain number of states, model parameters to record, and

the first-order limitation on the Markov model.

But a good representation is not necessarily the best for recognition. For example,

representations for very similar objects may be identical due to the model limitations, in

which case attempts to distinguish one object from the other are hopeless. But there is

1 r
0.5 -

* .. ".

-

0

1

0.5

0

1

0.5

0

0 5 10 15 20 25

[- ' -

- ~ ~-F
0 5 10 15 20 25

0 5 10 15 20 25

20 25

I [
0.5

0 -
0 5 10 15

Time t

Figure 4-7: (a) An example pointing wave sequence. (b) The yt(j)-weighted mean location of the
tracked hand in the larger image is shown on the left. The mean image for each state is shown in
the middle. On the right is a plot of yt(j) (solid line), dc (dotted line), and dp, (dash-dotted line)
for each state for one training sequence. (dc and dp, were scaled to fit.)

(a)

(b)

- -

0.5 - N
N

0 1 0 - - 5

0 10 20 30 40 SC

1-.

0.5

- N

0

N

0 10 20 30 40 5C

0.5

0
0 10 20 30 40 5C

0.5 - .

0

0 10 20 30 40 5C
Time t

(b)

Figure 4-8: (a) Four representative frames (ordered left to right) are shown from each view of one
training "push" gesture. (b) The mean images for both the side view and front view at each state
are shown on the left. Plots of yt(j), dEfro, (dotted line) and dEs.d (dash-dotted line) are from one

training sequence.

(a)

0

some feature that could be used to distinguish the objects (or they should be labeled as

the same object). The problem of building a recognition system is finding the features that

distinguish the objects: systems that perform well in recognition tasks perform well because

they are designed to.

The multiple model HMM is then suited for a recognition task insofar as a good repre-

sentation in most cases is good enough for recognition. By virtue of having encoded a good

representation, the multiple model HMM is more particularly suited for image coding tasks.

For example, in a virtual teleconferencing application, each station might only transmit a

symbol identifying the current state seen by the vision system. At this stage, efficient real

time coding of the images is necessary. The receiving station then matches symbols to a

stored library of model instance parameters and renders an appropriate image. The library

of states stored at the receiving station would be computed off-line beforehand by training

the multiple model HMM's on previously seen sequences. We believe the real time image

coding task is a promising avenue of research for the multiple model HMM framework.

4.6 Summary

A learning-based method for coding visual behavior from image sequences was presented.

The technique is novel in its incorporation of multiple models into the well-known Hidden

Markov Model framework, so that models representing what is seen are trained concurrently

with the temporal model. Multiple model instances are defined at each state to characterize

observations at the state. The membership of a new observation to the state is determined

by computing a distance measure to each of the model subspaces approximated by the model

instances. These distance measures are then combined to produce a probability distribution

on the observations at the state.

The model instances themselves are trained concurrently with the temporal model by

interleaving the estimation of model parameters with the usual Baum-Welch algorithm for

updating the Markov model associated with the HMM. Thus the temporal model and the

model instances at each state are computed to match one another.

We exploit two constraints allowing application of the technique to view-based gesture

recognition: gestures are modal in the space of possible human motion, and gestures are

viewpoint-dependent. The examples in Section 4.4 demonstrate that with a practical num-

ber of low resolution image sequences and weak initial conditions, the algorithm is able to

recover the visual behavior of simple gestures using a small number of low resolution example

image sequences. Future implementations may be useful in novel wireless computer-human

interfaces, real time "object-based" coding from video, and studying the relevant features

of human gesture.

Chapter 5

Work in Progress: Multiple

Gestures

5.1 Introduction

Currently, we are advancing the framework to handle the concurrent training of multiple

gestures. One goal of the work presented in the previous chapter is the simultaneous training

of the representations coded at each state and the temporal model of the gesture, with

the view that by training the two concurrently, the representations will suit the temporal

model and the temporal model will suit the representations. By training multiple gestures

concurrently, we can extend this idea further by arriving at a set of representations that are

defined with respect to a multitude of gesture models.

In one form, this kind of training implies the sharing of observation probability dis-

tributions over a number of gesture models, each with its own matrix of state transition

probabilities. This relationship between the Markov models and the observation distribu-

tions is shown in Figure 5-1.

Instead of updating a single gesture model after the re-estimation of the parameters of

Mj, several gesture models would be updated after each re-estimation of Mj. Initially the

Markov model associated with each gesture would be define over all available states. As

training proceeds, states that are strongly suited to one particular gesture model would fall

out of the other gesture models. This is similar in concept to the practice of parameter

tying [24] in HMM's, in which parameters are shared over a number of states to reduce the

Figure 5-1: Two different gestures are associated with unique Markov models (gray), but share
observation distributions at states 3 and 4.

number of degrees of freedom, thus easing the training procedure.

For example, in training two gestures concurrently, we can allocate a total of five states.

An five by five state transition probability matrix is associated with each of the two gestures.

During the training, the states will be associated with just one or both of the gestures. If

one gesture never uses a particular set of the eight states, we would find a smaller transition

matrix embedded within the five by five transition matrix associated with the gesture.

This relationship of multiple Markov models and observation distributions is depicted in

Figure 5-1.

There are a number of reasons for training multiple gestures concurrently:

Two different gestures will be able to explicitly share states. Thus states will be

allocated parsimoniously over the set of gestures. This is purely a computational

advantage.

In allowing gestures to share states, we gain a level of understanding of the gesture;

we may find that a particular gesture consists of parts of other gestures. Furthermore,

in this way we may find a small number of "atomic" primitives from which most of

the gestures we're interested in are composed.

By allocating the number of states that we can realistically store and by training

a large number of gestures concurrently, the problem of deciding on the number of

states to allocate to a particular gesture is finessed: during training, more states will

be allocated to the gestures that exhibit complex visual behavior.

A simpler method of training multiple gestures concurrently is to use a single transition

matrix for the set of all gestures. However, if the gestures share states to a great degree,

such a transition matrix would soon become "polluted" by the multiple gestures due

to the limitation of the temporal model's modeling of first-order effects only. By

imposing a number of temporal models (state transition matrices) on the same set of

states, we avoid the limitations of first-order Markov models that would arise if we

used a single temporal model for a number of gestures sharing states.

5.2 Selecting "representative" observations for a state

In the framework presented in Chapter 4, the model instances mJ E Adj are computed to

match the t(j)-weighted samples. Presently, this is accomplished in practice by selecting

some top number of the yt(j)-ranked samples. Alternatively, the if the model type can

accept weighted samples, then yt(j) may be used directly to weight each sample in the

algorithm to compute the parameters of the model instance.

If we use the values of 7t(j) directly to weight each sample, there is the possibility of

a state being "squeezed out" by other states, such that it is only given observations with

very low 7t(j) values. This is analogous to the problem in k-means clustering where some

cluster is assigned no samples. Furthermore, in such a situation it is possible that during

the iterative training algorithm, a single state's observation distribution will grow to include

all observations, squeezing all other states out.

Alternatively, by selecting some top number of samples as "representatives" of each state,

regardless of the actual value of -yt(j), assures that every state has some set of observations

that the model instances fit well. In selecting observations in this simple way, we are biasing

the algorithm to converge to an interesting result.

Additionally, by considering only some number of the top ranked observations, the

model instances avoid the incorporation of outliers; the selection of the top observations

is one particular, strict form of robust statistics. In the multiple independent model sub-

space formulation, the value of yt(j) does not always correspond to a distance to the state

that is consistent with the model instance. Firstly, 7t(j) is computed with regards to the

temporal model and is conditional on the fact that the process is actually in one of the

Initialization:
for each gesture G:

set AG(i,j) = for all i, j
initialize yF(j) randomly, Ei -fI(j) 1

end

Algorithm:
repeat until parameters of M9 do not change, for all G:

for each gesture G:
for each state j:

compute usageG(j)
select M * usageG(j) top -Y(j)-ranked observations
estimate parameters to models m E MG

compute dg(x) for all x E O
estimate b (x)

end
update AG, iG(j) by Baum-Welch algorithm

end
end

Figure 5-2: The current algorithm for training multiple gestures concurrently uses M * usageG(j)
observations in estimating the model instance M! for gesture G and state j, where M is the total
number of observations to select over all gestures. By varying the sample rate in this way, we allow
some states to eventually become completely associated with one gesture and also permit a state to
be shared among a number of gestures.

states (EZY -t(j) = 1). Secondly, in the first iteration of the algorithm 7 t(j) is assigned a

random value: 7t(j) does not correspond to any distance relevant to the model instances.

Because the value of 7t(j) is not a metric distance, outliers will have a detrimental effect

on the estimation of observation distributions.

5.3 Esimation algorithm

The selection of "representative" observations is relevant in discussing the current algo-

rithm for coding multiple gestures concurrently. As mentioned, by selecting the top number

of observations, each state matches some set of observations well. Thus if we have multiple

gestures sharing observation distributions, each with their own Markov model, every state

of every Markov model will match some set of observations, the net effect being that every

state is shared among some part of all gestutes.

This is undesirable, since unless the gestures are in fact the same gesture, we should

never have the situation in which all states are shared among all gestures. 1 At the moment,

we solve this problem by relying on a statistic that indicates the degree to which a particular

gesture is using a state: the usages of a state j by a gesture G is defined simply as the

average of t(j) over the set of observations belonging to the training sequences of the

gesture. We then vary the number of representative observations taken from each gesture

for a particular state according to the gestures usage of the state. The full algorithm for

training multiple gestures is shown in Figure 5-2.

For example, suppose we are training two gestures concurrently and we decide to choose

M = 100 representative observations in calculating a model instance at a particular state.

We first calculate the usage statistic of the state for each gesture from 'Yt(j) of the previous

iteration of the algorithm. Suppose we find that usageA = 0.25 and usageB = 0.75. Then

we select 25 representative observations taken evenly over the examples from gesture A and

75 from B. By varying the sample rate in this way, we allow some states to eventually

become completely associated with one gesture and also permit a state to be shared among

a number of gestures.

Unfortunately, the current algorithm tends not to share all states among two gestures if

all training examples are in fact taken from the same gesture. However, given two different

gestures, the algorithm as it stands will perform reasonably with two different gestures.

For example, two different gestures were trained concurrently: a waving gesture and a

throwing gesture. Plots of -yt(j) and dm for the single model (eigenvector decomposition)

are shown in Figure 5-3. The plots of gammat(j) indicate that the states were divided

evenly between the two gestures, though some states are show nonzero values for -t(j)

simultaneously, indicating that to some degree states were shared. Given that that the

training image sequences for both examples were of the same arm moving in approximately

the same location in the frame, the slight sharing of states is not surprising.

Future work with the concurrent training of multiple gestures may involve reevaluating

the procedure of selecting representative values based on ^t(j).

1One other possibility is that all states are shared among all gestures, but the order of the states differs
for each gesture.

Wave gesture

State 1 -. .
0.5 . -,

0

State 20.50.5
0

State 30 . .

0

Throw gesture
1

go

S

0.5 --

0.5 - -
0

State 4 1 -?.o --
0.5 ** ***S

0-5

State 5 .
0.5 --

-

State 6-0.5--' ----
.- -- -....

State 7

State 8

0 0.5 1
t, Time

0.5-0
0

0.5
0

0.501
0
0 0.5 1

t, Time

Figure 5-3: Plots of gammat(j) (black) and dm (gray) for two gestures trained concurrently. The
plots of gammat(j) indicate that
each gesture), though some states

the states were divided evenly over the gestures (four states for
are briefly shared (states 1 and 5). (dm was scaled to fit.)

5.4 Summary

The motivation for developing the framework presented in Chapter 4 to train multiple ges-

tures concurrently were presented. In general, training in this way allows the establishment

of relationships between gestures that the training of a single, independent HMM's for each

gesture does not permit. Thus, the concurrent training of multiple gestures gives a new

level of gesture understanding.

The current alogrithm presented in the chapter is the result of some preliminary study

of techniques to train multiple gestures concurrently.

Chapter 6

Review and Future Work

6.1 Review

The thesis presents two techniques for computing a representation of gesture. The first

defines a sequence of states along a prototype through a configuration space. The prototype

is used to parameterize the samples and define the states. Dynamic programming may

then be used to perform the recognition of new trajectories. The second technique, the

multiple independent model subspace HMM, expands on the first by embedding a multiple

model approach to the HMM framework. States are no longer computed with respect to a

prototype, but arise out of an algorithm that interleaves the estimation of model paramters

and the Baum-Welch algorithm.

By way of review, we highlight a number of differences between the techniques:

The configuration states method computes a prototype gesture, while the multiple

independent model subspace HMM does not.

The multiple independent model subspace HMM relies on a combination of multiple

models at each state; thus each state is associated with its own set of bases or coordi-

nate axes. The configuration states method defines states that all reside in the same

measurement space.

The multiple independent model subspace HMM computes the exact form of the

measurements to be taken by computing the parameters to several model instances

that are consistent with the temporal model. In the configuration states method, the

measurement space is determined in advance.

In the configuration states method, states are computed in a direct fashion, without an

iterative method. The multiple independent model subspace HMM uses an iterative

method much like a clustering algorithm to compute the states.

The configuration states method defines a gesture as a linear sequence of states, while

the multiple independent model subspace HMM generalizes the sequence of states to

a Markov model of states.

The configuration states method may be viewed as a particular specialization of the

multiple model HMM. In fact, if we exchange the distance metric used for state membership

for a probabilistic formulation of membership, the first method comes very close to the

HMM framework. The important difference from the HMM framework is the way that

assumptions about the task of representing gesture are used to make the task easier (non-

iterative). Namely, these assumptions are that a gesture is a sequence of states, and that

the trajectories that we take as the set of training gestures are smooth and "well-behaved".

The smoothness and well-behaved nature of the training samples enables the computation

of the prototype (see Appendix) which in turn is used to parameterize the samples and

define the states.

Of the two techniques presented, the multiple independent model subspace HMM tech-

nique is superior:

The system may be used to "compile" a set of models to produce a description of

visual behavior that may be useful as an efficient recognition or coding scheme (a set

of model instances, and a Markov model).

The technique develops a representation concurrently with the temporal model, so that

both are suited for each other; neither embodies unreasonable assumptions about the

other.

The system should be able to make use of a wide variety of models that return distance

measurements.

The possibility of the realistic use of multiple models exist, including selection of useful

subsets of many models.

In the next section we explore possible future developments of the multiple model HMM

technique.

6.2 Future Work

The multiple independent model subspace HMM framework leaves a number of interesting

avenues of future research. The directions mentioned in this chapter are:

Real time coding: A robust, low-complexity coding algorithm is needed to make

the framework practical for real time implementation.

Diverse models: The multiple model aspect has yet to be thoroughly explored with

the use of a diverse collection of models.

Automatic model selection: The possibility exists for the framework to decide

which models types to use, in a kind of feature selection.

Model combination: More sophisticated ways of combining model outputs may be

better able to characterize the observations.

Multiple gestures: The ability to train multiple gestures concurrently may permit

a higher level of gesture understanding.

Each of these issues is presented in turn.

6.2.1 Real time coding

In HMM applications, recognition may be performed by the "forward-backward" algorithm,

which returns the probability of an observation sequence given a particular HMM. The

algorithm requires computing the observation probability at each state, at each time step.

When there is a large number of states to consider or the cost of computing b,(x) is high,

the forward-backward algorithm may not scale to a reasonable number of states, especially

in a real time recognition or coding application.

In the HMM framework of Chapter 4, the cost of computing the probability of a new

observation is quite high, since we must compute dm for all model instances m E M3 . For

example, if we were to use the eigenvector decomposition of the image as our model with

four HMM's with 25 states each, keeping the top 10 eigenvectors at each state, then 1,000

image correlations would be required at every time step.

The development of a robust coding method of low complexity is an important step in

a real time implementation of the framework. One possibility is to use a beam search in

which bj(x) is computed for a small subset of the available states, chosen to maximize the

probability of being in the states given the past observations. This strategy is suboptimal

in the sense that it will miss paths through the model that are locally of low probability

but globally of high probability. It remains to be seen whether this limitation has practical

merit: beam search may return a suboptimal, but qualitatively correct path, especially if

the Markov model has many ways of producing the same gesture. In recovering the visual

behavior of the gesture, a qualitatively correct solution will be adequate. However, if the

beam search is very narrow (consider exploring just one state) and the Markov model is

very strict about the sequence of states allowed to produce a completed gesture (consider

a strict, linear Markov model), then a beam search may be so fragile as to often return a

qualitatively incorrect solution.

6.2.2 Diverse Models

One clear direction of future work is in the use of more diverse models. The combination of

models framework has been designed such that any models that return a distance measure

may be combined at a state. A very interesting combination of models that we would like to

explore is that of shape and motion. For example, we can use the eigenvector decomposition

of images for a spatial description of the image and an optic flow field summary to describe

the motion. An optic flow field summary might consist simply of the mean flow of the pixels

corresponding to the objects of interest, or we may compute an eigenvector decomposition of

the optic flow field and use the residual of reconstruction as the distance to model subspace.

The shape and motion pairing invites interesting analyses as to whether the particular

spatial information or motion information is important in human gesture. It also may be

the case that the particular relevant feature changes between gestures, or even within the

same gesture.

Figure 6-1: Each state of the Markov model (gray) is associated with a unimodal observation pdf,
each defined in the space of distances to a number of model instances, drawn from a set of four
model types, M = {A, B, C, D}.

6.2.3 Automatic Model Selection

Because the observation distribution b(x) is a joint distribution on the distances to multiple

independent model subspaces, the set of model types at each state does not have to be same

across all states. One topic of future work involves the automatic selection of model types

at each state. For example, one state may be characterized by motion sufficiently, while in

another both motion and shape are required to characterize the observations. This use of

different models at each each state is depicted in Figure 6-1.

Automatic selection of models is desirable for a number of reasons. First, a particular

model type may be unable to characterize the training examples at a state, in which case

erroneous model instances should not contribute to the state and should be removed from

the set of models at the state. Secondly, if the appropriate set of features is not known

beforehand, a good approach is to use all available models and let the system select the

useful ones, possibly subject to a cost constraint. Lastly, the selection of different subsets

of model types at each state allows the characterization of behaviors in which the set of

relevant features changes over time. Automatic selection of models may provide insight into

the degree to which this happens in the case of human gesture.

One criterion for model selection is the minimization of model error. If a model is

unable to match even the observations that belong to the state in consideration, it should

be removed from the set of model types used at the state. Model error is not a problem in the

use of eigenvector decomposition, since there is no set of images that cannot be reconstructed

well by some number of eigenvectors. In our current system, the number of eigenvectors

is selected to account for a certain percentage of the variance of the examples, and so the

model always fits the examples well. However, one could imagine that a certain model type

might fail altogether (the "failure" criterion depending on the model type used) in matching

the observations. By detecting model types that fail to characterize the observations at a

state, a number of models that are highly specialized to detect certain kinds of observations

may be used practically.

Another criterion might be the minimization of the classification error of the examples at

each state. Ignoring the temporal aspect of the signals, we can simply compute the degree to

which the observation distributions bg(x) overlap by computing their divergence [58]. Note

that by ignoring the temporal aspect of the signal, a selection of models that minimizes the

overlap of the observation distributions may be more thorough than necessary; for instance,

if two states are several transitions away in the Markov model, the degree to which their

observation distributions overlap may not be important, since the Markov model removes

most of the chance of ambiguity.

The selection may also be done with respect to a cost function. If the goal is the real

time implementation of a recognition system, for example, then a good cost constraint

might involve the run-time of the computation necessary to compute dm,. The cost con-

straints might be designed to take advantage of the hardware available; for example, if two

computations may be done in parallel, then the cost function should penalize the system

appropriately.

Lastly, there is the question of whether model selection should occur after training

is completed, or during the training. Selecting models during training may complicate

convergence, but may also result in a more optimal combination of model instances and

temporal models as well as lower computational complexity of training. Selection after

training has the benefit that the selection of models is always a matter of taking away

model types and never one of adding model types, but may result in a very lengthy training

session.

6.2.4 Model combination

In the multiple model approach presented in Chapter 4, a particularly simple form of the

combination of model outputs has been adopted. Namely, a conjunctive combination of

model outputs is used. A more general formulation would consider a wider variety of

combination rules. For example, model outputs may be combined by disjunction ('OR' or

'XOR'). Additionally, one might model the observation distribution b3 (x) with a distribution

with more degrees of freedom, such as a mixture of Gaussians, rather than the simple

unimodal multivariate Gaussian used.

To a certain extent, the lack of additional degrees of freedom in representing model

outputs in the current system should be balanced against the ability of an HMM with

many states to assume the same degrees of freedom. For example, it may be the case

that an HMM with unimodal output distributions and many states is no less powerful a

representation than an HMM with few states and a mixture of Gaussians used to estimate

each b3(x). As an example, consider a single state with its output distribution approximated

by a mixture of two Gaussians. The same functionality may be assumed by two states with

identical transition probabilites, each with a unimodal output distribution.

In the case of the combination of models in a disjunctive or conjunctive way, the relevant

particular combinations might be assumed over a number of states; for example, one state

may capture one set of conditions ("either") and another an exclusive set of other conditions

("or").

The recovery of topology from very weak initial conditions, as discussed in the previous

chapter, may allow such rich representations to fall out of simple unimodal distribution and

transition probability primitives.

6.3 Unsupervised Clustering of Gestures

Another interesting treatment of training multiple gestures involves starting from a number

of unlabeled training sequences and by a hierarchical clustering technique, arriving at a

set of individually defined gestures. For example, the training procedure may begin by

assuming that all training sequences are from the same gesture, and proceed as usual with

a large number of states. The Viterbi algorithm [24] may be used to calculate the most

likely sequence of states associated with each training example. Training sequences may

the be clustered according to which states of the large Markov model were actually used; the

larger model may be split into a number of smaller models and training may proceed with

multiple gestures, each with its own Markov model, but sharing observation distributions.

Such a procedure would be appropriate in situations in which the labels of gestures are

unknown. If the techniques presented in the thesis are applied to a domain in which the

relationship between the visual appearance of the sequence and the labeling is weak (as in

the coding of unconstrained video), such an unsupervised approach may be used to find a

set of labels implicitly defined by the sensors used. Or it may be useful if the labels are

known, but we wish to determine if the movements are distinct given the sensors.

Again, the treatment of multiple gesture concurrently may provide a higher level of

understanding.

6.3.1 Summary of future work

A number of interesting additions to the multiple model HMM framework were presented.

The need for a robust, real time coding scheme was discussed briefly. The development of

such an algorithm will be driven by the need for a real time implementation, as well as to

demonstrate that the complexity of the recognition or coding phase of the framework does

not preclude its practical use.

The application of more diverse models is an obvious extension to the current work,

and may provide interesting results in how to best to characterize gesture given the current

framework.

The automatic selection of model types will enable the framework to be useful in a wide

variety of visual scenarios, by enabling the framework to use a large number of models.

The use of more sophisticated model combinations may be an interesting topic that may

be useful in helping the framework to use a large number of models more effectively.

The multitude of interesting possibilities for future work attest to the framework's gen-

eral utility in characterizing visual behavior.

6.4 Conclusion

In conclusion, we believe that the techniques presented in the thesis are a significant step

forward in the development of methods that bring "killer demos" of Chapter 1 closer to

reality. A number of interesting and significant topics pave the way for a powerful, flexible

and practical implementation of the coding of visual behavior for gesture analysis.

Appendix A

Computation of Time-Collapsed

Prototype Curve

For each trajectory Ti(t), we have a Ti(t) = Ti(!), where s is a scalar that maps the

time parameterization of Ti(t) and Ti(t). The time course of all example trajectories are

first normalized to the same time interval [0, s]. The smooth approximation of the time-

normalized sample points gives a rough starting point in determining which of the sample

points correspond to a point on the prototype. These correspondences can be refined by

iteratively recomputing the approximation while successively reducing the time scale s. If

the prototype curve is not allowed to change drastically from one iteration to the next, a

temporally coherent prototype curve in the original configuration space will result.

To compute the prototype curve P(A), we use Hastie and Stuetzle's "principal curves"

[22]. Their technique results in a smooth curve which minimizes the sum of perpendicular

distances of each sample to the nearest point on the curve. The arc length along the

prototype of the nearest point is a useful way to parameterize the samples independently

of the time of each sample. That is, for each sample x; there is a lambda which minimizes

the distance to P(A): A(xi) =argmin I|P(A) - xill. An example is shown in Figure A-1.
A

The algorithm for finding principal curves is iterative and begins by computing the line

along the first principal component of the samples. Each data point is then projected to

its nearest point on the curve and the arc length of each projected point is saved. All the

points that project to the same arc length along the curve are then averaged in space. These

average points define the new curve. This projection and averaging iteration proceeds until

-2 -1 0 1 2

Figure A-1: A principal curve calculated from a number of points randomly scattered about an
arc. Only a fraction of the data points are shown; the distances of these points to the closest points
on the curve are indicated.

the change in approximation error is small.

In practice, no sample points will project to a particular arc length along the curve.

Therefore, a number of points that project to approximately equal arc lengths are averaged.

The approach suggested by Hastie and Stuetzle and used here is to compute a weighted

least squares line fit of the nearby points, where the weights are derived from a smooth,

symmetric and decreasing kernel centered about the target arc length. The weight w for a

sample x; and curve point p = P(A) is given by

| A(p) - A(xi)| 3)
W 1.0 -(h)3

where h controls the width of the kernel.

The new location of the curve point is then the point on the fitted line that has the

same arc length. For efficiency, if the least squares solution involves many points, a fixed

number of the points may be selected randomly to obtain a reliable fit.

By starting with a time scaling s which renders the trajectories slowly varying in the

configuration space parameters as a function of arc length, the principal curve algorithm

computes a curve which is consistent with the temporal order of the trajectory samples.

Then the time scale s can be reduced somewhat and the algorithm run again, starting

with the previous curve. In the style of a continuation method, this process of computing

the curve and rescaling time repeats until the time scale is zero, and the curve is in the

original configuration space. To ensure that points along the prototype do not coincide nor

spread too far from one another as the curve assumes its final shape, the principal curve is

re-sampled between time scaling iterations so that the distance between adjacent points is

constant.

The inductive assumption in the continuation method is that the curve found in the

previous iteration is consistent with the temporal order of the trajectory samples. This

assumption is maintained in the current iteration by a modification of the local averaging

procedure in the principal curves algorithm. When the arc length of each point projected

on the curve is computed, its value is checked against the point's arc length computed

in the previous iteration. If the new arc length is drastically different from the previously

computed arc length (IAt(x;) - At_1(xi)I > threshold), it must be the case that by reducing

the time scale some other part of the curve is now closer to the sample point. This sample

point to prototype arc length correspondence is temporally inconsistent with the previous

iteration, and should be rejected. The next closest point on the curve P(A) is found and

checked. This process repeats until a temporally consistent projection of the data point is

found.

By repeatedly applying the principal curve algorithm and collapsing time, a temporally

consistent prototype P(A) is found in configuration space. Additionally, the arc length

associated with each projected point, A(xi), is a useful time-invariant but order-preserving

parameterization of the samples. An example of this time-collapsing process is shown in

Figure A-2.

(a) 3~-~- ()-3 () -3

2-

1.5-

8

6,
0.5-

4, 0-

-0.5-

2

022

0

S-.5

-252

(c) (d) -3-2 -

Figure A-2: The principal curve is tracked while time is slowly collapsed in this series: (a) s = 8,

(b) s = 5, (c) s = 0. In each of these graphs, the vertical axis is time. (d) shows the final, temporally

consistent curve.

c-- 3
2

Bibliography

[1] Mark Allman and Charles R. Dyer. Towards human action recognition using dynamic

perceptual organization. In Looking at People Workshop, IJCAI-93, Chambery, Fr,

1993.

[2] D. Beymer, A. Shashue, and T. Poggio. Example based image analysis and synthesis.

Artificial Intellgence Laboratory Memo 1431, Massacusetts Institute of Technology,

1993.

[3] A. F. Bobick and A. D. Wilson. A state-based technique for the summarization and

recognition of gesture. Proc. Int. Conf. Comp. Vis., 1995.

[4] R. A. Bolt and E. Herranz. Two handed gesture in multi-modal natural dialog. In

Proc. of UIST '92, Fifth Annual Symp. on User Interface Software and Technology,

Monterey, CA, 1992.

[5] L. W. Campbell and A. F. Bobick. Recognition of human body motion using phase

space constraints. In Proc. Int. Conf. Comp. Vis., 1995.

[6] E. Catmull and R. Rom. A class of local interpolating splines. In R. Barnhill and

R. Riesenfeld, editors, Computer Aided Geometric Design, pages 317-326, San Fran-

cisco, 1974. Academic Press.

[7] C. Cedras and M. Shah. Motion-based recognition: a survey. Computer Vision Labo-

ratory Technical Report, University of Central Florida, 1994.

[8] C. Cedras and M. Shah. A survey of motion analysis from moving light displays. Proc.

Comp. Vis. and Pattern Rec., pages 214-221, 1994.

[9] C. Charayaphan and A.E. Marble. Image processing system for interpreting motion in

American Sign Language. Journal of Biomedical Engineering, 14:419-425, September

1992.

[10] Z. Chen and H. Lee. Knowledge-guided visual perception of 3-D human gait from a

single image sequence. IEEE Trans. Sys., Man and Cyber., 22(2), 1992.

[11] Y. Cui and J. Weng. Learning-based hand sign recognition. In Proc. of the Intl.

Workshop on Automatic Face- and Gesture-Recognition, Zurich, 1995.

[12] T.J. Darrell and A.P. Pentland. Space-time gestures. Proc. Comp. Vis. and Pattern

Rec., pages 335-340, 1993.

[13] J. W. Davis and M. Shah. Gesture recognition. Proc. European Conf. Comp. Vis.,

pages 331-340, 1994.

[14] B. Dorner. Hand shape identification and tracking for sign language interpretation. In

IJCAI Workshop on Looking at People, 1993.

[15] S. Edelman. Representation of similarity in 3D object discrimination. Department of

Applied Mathematics and Computer Science Technical Report, The Weizmann Insti-

tute of Science, 1993.

[16] I. Essa, T. Darrell, and A. Pentland. Tracking facial motion. In Proc. of the Workshop

on Motion of Non-Rigid and Articulated Objects, Austin, Texas, Nov. 1994.

[17] I. Essa, T. Darrell, and A. Pentland. A vision system for observing and extracting

facial action parameters. In Proc. Comp. Vis. and Pattern Rec., pages 76-83, 1994.

[18] W. T. Freeman and M. Roth. Orientation histograms for hand gesture recognition.

In Proc. of the Intl. Workshop on Automatic Face- and Gesture-Recognition, Zurich,

1995.

[19] K. Gould, K. Rangarajan, and M. Shah. Detection and representation of events in

motion trajectories. In Gonzalez and Mahdavieh, editors, Advances in Image Analysis,

pages 393-426. SPIE Optical Engineering Press, 1992.

[20] K. Gould and M. Shah. The trajectory primal sketch: a multi-scale scheme for rep-

resenting motion characteristics. Proc. Comp. Vis. and Pattern Rec., pages 79-85,

1989.

[21] P. M. Grant. Speech recognition techniques. Electronics and communication engineer-

ing journal, pages 37-48, February 1991.

[22] T. Hastie and W. Stuetzle. Principal curves. Journal of the American Statistical

Association, 84(406):502-516, 1989.

(23] David Hogg. Model-based vision: a program to see a walking person. Image and Vision

Computing, 1(1):5-20, Feb 1983.

[24] X.D. Huang, Y. Ariki, and M. A. Jack. Hidden Markov Models for Speech Recognition.

Edinburgh University Press, 1990.

[25] G. Johansson. Visual perception of biological motion and a model for its analysis.

Perception and Psychophysics, 14(2):201-211, 1973.

[26] R. Kjeldsen and J. Kender. Visual hand gesture recognition for window system control.

In Proc. of the Intl. Workshop on Automatic Face- and Gesture-Recognition, Zurich,

1995.

[27] J.S. Lipscomb. A trainable gesture recognizer. Pattern Recognition, 24(9):895-907,

1991.

[28] D. G. Lowe. Robust model-based motion tracking through the integration of search

and estimation. Int. J. of Comp. Vis., 8(2):113-122, 1992.

[29] P. Maes, T. Darrell, B. Blumberg, and A. Pentland. The ALIVE system: full-body

interaction with animated autonomous agents. MIT Media Lab Perceptual Computing

Group Technical Report No. 257, Massachusetts Institute of Technology, 1994.

[30] K. V. Mardia, N. M. Ghali, M. Howes T. J. Hainsworth, and N. Sheehy. Techniques for

online gesture recognition on workstations. Image and Vision Computing, 11(5):283-

294, 1993.

[31] D. McNeill. Hand and Mind: What Gestures Reveal About Thought. Univ. of Chicago

Press, Chicago, 1992.

[32] B. Moghaddam and A. Pentland. Maximum likelihood detection of faces and hands.

In Proc. of the Intl. Workshop on Automatic Face- and Gesture-Recognition, Zurich,

1995.

[33] B. Moghaddam and A. Pentland. Probabalistic visual learning for object detection. In

Proc. Int. Conf. Comp. Vis., Cambridge, MA, 1995.

[34] H. Morita, S. Hashimoto, and S. Ohteru. A computer music system that follows a

human conductor. Computer, 24(7):44-53, July 1991.

[35] H. Murase and S. Nayar. Learning and recognition of 3d objects from appearance. In

IEEE 2nd Qualitative Vision Workshop, New York, June 1993.

[36] H. Murase and S. K. Nayar. Parametric eigenspace representation for visual learning

and representation. Department of Computer Science Technical Report CUCS-054-92,

Columbia University, 1992.

[37] D. H. Parish, G. Sperling, and M.S. Landy. Intelligent temporal subsampling of ameri-

can sign language using event boundaries. Journal of Experimental Psychology: Human

Perception and Performance, 16(2):282-294, 1990.

[38] A. Pentland, B. Moghaddam, and T. Starner. View-based and modular eigenspaces

for face recognition. Proc. Comp. Vis. and Pattern Rec., 1994.

[39] R. W. Picard and T. P. Minka. Vision texture for annotation. Journal of Multimedia

Systems, 3:3-14, 1995.

[40] T. Poggio and S. Edelman. A network that learns to recognize three-dimensional

objects. Nature, 343(6225):263-266, 1990.

[41] R. Polana and R. Nelson. Low level recognition of human motion. In Proc. of the

Workshop on Motion of Non-Rigid and Articulated Objects, pages 77-82, Austin, Texas,

Nov. 1994.

[42] F. Quek. Hand gesture interface for human-machine interaction. In Proc. of Virtual

Reality Systems, volume Fall, 1993.

[43] J. R. and N. I. Badler. Model based image analysis of human motion using constraint

propagation. IEEE Trans. Patt. Analy. and Mach. Intell., 2(6), November 1980.

[44] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech

recognition. Proc. of the IEEE, 77(2):257-285, February 1989.

[45] L. R. Rabiner and B. H. Juang. An introduction to hidden markov models. IEEE

ASSP Magazine, pages 4-16, January 1986.

[46] L. R. Rabiner and B. H. Juang. Fundamentals of speech recognition. Prentice Hall,

Englewood Cliffs, 1993.

[47] K. Rangarajan, W. Allen, and M. Shah. Matching motion trajectories using scale-

space. Pattern Recognition, 26(4):595-610, 1993.

[48] R. Rashid. Towards a system for the interpretation of moving light displays. IEEE

Trans. Patt. Analy. and Mach. Intell., 2:574-581, 1980.

[49] J. M. Rehg and T. Kanade. DigitEyes: vision-based human hand tracking. School

of Computer Science Technical Report CMU-CS-93-220, Carnegie Mellon University,

December 1993.

[50] J. M. Rehg and T. Kanade. Visual tracking of high DOF articulated, structures: an

application to human hand tracking. Proc. European Conf. Comp. Vis., 2:35-46, 1994.

[51] K. Rohr. Towards model-based recognition of human movements in image sequences.

Comp. Vis., Graph., and 1mg. Proc., 59(1):94-115, 1994.

[52] J. Schlenzig, E. Hunter, and R. Jain. Recursive identification of gesture inputs using

hidden markov models. Proc. Second Annual Conference on Applications of Computer

Vision, pages 187-194, December 1994.

[53] J. Schlenzig, E. Hunter, and R. Jain. Vision based hand gesture interpretation using

recursive estimation. In Proc. of the Twenty-Eighth Asilomar Conf. on Signals, Systems

and Comp., October 1994.

[54] A. Shio and J. Sklansky. Segmentation of people in motion. In Proc. IEEE Workshop

on Visual Motion, pages 325-332, 1991.

[55] G. Sperling, M. Landy, Y. Cohen, and M. Pavel. Intelligible encoding of ASL image

sequences at extremely low information rates. Comp. Vis., Graph., and 1mg. Proc.,

31:335-391, 1985.

[56] T. E. Starner and A. Pentland. Visual recognition of american sign language using

hidden markov models. In Proc. of the Intl. Workshop on Automatic Face- and Gesture-

Recognition, Zurich, 1995.

[57] A.I. Tew and C.J. Gray. A real-time gesture recognizer based on dynamic programming.

Journal of Biomedical Eng., 15:181-187, May 1993.

[58] C. W. Therrien. Decision Estimation and Classfication. Wiley, New York, 1989.

[59] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-

science, 3(1):71-86, 1991.

[60] J. Weng. On comprehensive visual learning. In Proc. NSF/ARPA Workshop on Per-

formance vs. Methodology in Computer Vision, pages 152-166, Seattle, 1994.

[61] A. Wexelblat. A feature-based approach to continuous-gesture analysis. Master's thesis,

Masschusetts Institute of Technology, 1994.

[62] A. D. Wilson and A. F. Bobick. Using configuration states for the representation

and recognition of gesture. MIT Media Lab Perceptual Computing Group Technical

Report No. 308, Massachusetts Institute of Technology, 1994. Available at http://www-

white.media.mit.edu/vismod.

[63] A. D. Wilson and A. F. Bobick. Learning visual behavior for gesture analysis. In Proc.

IEEE Int'l. Symp. on Comp. Vis., 1995. submitted for publication.

[64] J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-sequential images

using hidden markov model. Proc. Comp. Vis. and Pattern Rec., pages 379-385, 1992.

