
14 January/February 2007 Published by the IEEE Computer Society 0272-1716/07/$20.00 © 2007 IEEE

B y offering a natural, intuitive interface with the vir-
tual world, auditory display can enhance a user’s

experience in a multimodal virtual environment and fur-
ther improve the user’s sense of presence. However, com-
pared to graphical display, sound synthesis has not been
well investigated because of the extremely high compu-
tational cost for simulating realistic sounds. The state of
the art for sound production in virtual environments is
to use recorded sound clips that events in the virtual envi-
ronment trigger, similar to how recorded animation
sequences in the earlier days generated all the character
motion in the virtual world. Although this technique has
the clear advantage of being fast and simple, it has two
main drawbacks. First, the sound generated is repetitive.
Real sounds depend on how objects collide and where
impact occurs, and prerecorded sound clips fail to cap-
ture such factors.1,2 Second, recording original sound
clips for all the sound events in a virtual environment is
a labor-intensive and tedious process.

Physically based sound synthesis, on the other hand,
can automatically capture the subtle shift of tone and
timbre due to factors such as change in impact location,
material property, and object geometry. However, phys-
ically based sound synthesis has two computational
requirements:

■ An underlying physics engine. A physics engine informs
the sound system of the exact collision geometry and
the impact forces involved for every contact in the
scene. Many recent commercial physics engines, such
as the Havok Engine (see http://www.havok.com),
can fill this requirement.

■ Greater computing resources. Physically based sounds
take significantly more computing resources than
recorded sounds. Therefore, a brute-force sound sim-
ulation will not be able to achieve real-time perfor-
mance.

In this article, we describe several techniques for
accelerating sound simulation, thereby enabling realis-
tic, physically based sound synthesis for large-scale vir-
tual environments.

Overview
Surface vibrations of an elastic object under an exter-

nal impulse produce sound in nature. These vibrations
disturb the surrounding air resulting in a pressure wave
that travels outward from the object. If the pressure
wave’s frequency ranges from 20 to 22,000 Hz, the ear
senses it and gives people the subjective perception of
sound. The most accurate method for modeling these
surface vibrations is to directly apply classical mechan-
ics to the problem, while treating the object as a contin-
uous (as opposed to discrete) entity. This method
produces equations that have unknown analytical solu-
tions for arbitrary shapes. One possibility for remedying
this problem is to make suitable discrete approximations
of the object geometry, making the problem more
amenable to mathematical analysis.3

Our approach is based on discretizing the object
geometry. Given an input mesh comprising vertices and
connecting edges, we construct an equivalent spring-
mass system by replacing the mesh vertices with mass
particles and the edges with damped springs. As we
describe in detail, given this spring-mass system, clas-
sical mechanics can be applied to yield the spring-mass
system’s equation of motion

where M is the mass matrix, K is the elastic force matrix,
and � and � are the fluid and visco-elastic damping con-
stants for the material, respectively.2 M is diagonal with
entries on the diagonal corresponding to the masses. K
incorporates the spring connections between the parti-
cles. The variable r is the displacement vector of the par-
ticles with respect to their rest position, and f is the force
vector. Intuitively, the damping constants, spring con-
stants, and masses are determined by the material of the
object alone and serve to capture the material’s charac-
teristic sound—for example, the thud of a wooden object
versus the ringing of a metallic one. The mass and force
matrices encode the object’s geometry and hence deter-
mine the sound’s timbre as well as its dependence on the

M M K K
d

dt

d
dt

2

2

r r
r f+ +() + =γ η

Nikunj
Raghuvanshi
and Ming C. Lin
University of
North Carolina
at Chapel Hill

Physically Based Sound Synthesis for
Large-Scale Virtual Environments ____________________

Projects in VR Editors:
Larry Rosenblum and Simon Julier

IEEE Computer Graphics and Applications 15

impact forces and positions, which are contained in f.
But how exactly does the equation yield an object’s

sound? Suppose we disturb the spring-mass system by
applying an external impulse. This will set the system
in motion, and it will start vibrating. The main observa-
tion is that the local air-pressure variation in the vicini-
ty of a mass is directly proportional to its velocity. This
makes intuitive sense—the faster the object’s surface
moves, the more it compresses the air near itself, thus
raising its pressure. So, we just need to figure out each
particle’s velocity as a function of time and sum up the
pressure contributions from all of the particles. The
resulting pressure value as a function of time is the
required sound signal.

To obtain the velocity of each particle as a function of
time, we must solve the earlier set of differential equa-
tions. As we describe in earlier work, we can do this by
diagonalizing the force matrix, K.2 The operation’s intu-
itive interpretation is that it trans-
lates the original problem in
spatial domain to a much simpler
problem, in terms of the object’s
characteristic vibration modes.
The sound of each of these modes
is a sinusoid with a fixed frequen-
cy and damping rate. The key
insight is that we can represent all
of an object’s sounds as a summa-
tion of these modes in varying
proportions. From a computa-
tional viewpoint, the sound sys-
tem can perform this operation
offline as a preprocess, because
the mode frequency and damp-
ing values depend solely on the
object’s material properties and
geometry. The exact proportion
in which the modes are mixed
is computed at runtime, depend-
ing on the collision impulses and impact position.

A natural question at this stage is how efficient is this
naive approach? Typically, the number of modes of an
object with a few thousand vertices is in the range of a
few thousands, and the procedure we are discussing
runs in real time. But as the number of objects increas-
es beyond two or three, performance degrades severe-
ly. How can we increase the performance? The key idea
is to somehow decrease the number of modes mixed
and trick the listener’s perception into not noticing the
difference.

Exploiting auditory perception
A few techniques use the idea we have discussed to

improve performance dramatically and work well in
practice for interactive VR applications.

Mode compression
The perceptual study that Sek and Moore describe

shows that humans have a limited capacity to discrimi-
nate between frequencies that are close to each other.4

More specifically, if two “close enough” frequencies are
played in succession, the average human listener cannot

tell whether they were two different frequencies or the
same frequency played twice. Table 1 (next page) lists
the frequency discrimination at different frequencies. At
2 KHz, the frequency discrimination is more than 1 Hz,
which means that a human subject cannot tell apart
1,999 Hz from 2,000 Hz. The frequency discrimination
deteriorates a lot as the frequency values increase.
Therefore, while synthesizing any sound consisting of
many frequencies, we can easily cheat the listener’s per-
ception by replacing multiple frequencies close to each
other with a single frequency that represents all of them.
This streamlining saves computation because mixing one
frequency is much cheaper than mixing many—the main
idea behind mode compression.

After preprocessing an object and extracting its
modes, the sound system analyzes the modes to find any
that are too close in frequency to each other, as given by
the data in Table 1. We sum those that are too close into

one mode. The maximum num-
ber of modes needed for any
object using this technique is
always less than 1,000, a number
arrived at by purely perceptual
considerations and thus com-
pletely independent of the
object’s geometric complexity. In
practice, the number of modes
after mode compression is typi-
cally in the range of a few hun-
dred. This result is a huge gain
over the few thousand modes
needed for the naive approach.
Also, because the sound system
computes the modes in a prepro-
cessing step and knows their fre-
quencies in advance, it can
perform mode compression as an
offline step, saving a lot on run-
time cost.

Mode truncation
The sound of a typical object on being struck consists

of an attack, composed of a blend of high and low fre-
quencies, followed by a sustain, consisting mainly of
lower frequencies. The attack is essential to the sound
quality, because listeners perceive it as the object’s char-
acteristic timbre. For example, imagine striking a bell.
The initial sharp sound is the attack, which gives the bell
its distinctive timbre, and the subsequent hum is the sus-
tain. Mode truncation aims to stop mixing a mode as
soon as its contribution to the total sound falls below a
certain preset threshold. This process ensures that the
object’s attack is captured correctly, which is critical for
realism, but it aggressively removes higher frequencies
as soon as their contribution reduces to a small value.

Quality scaling
The techniques we have discussed aim to increase the

efficiency of sound synthesis for a single object.
However, when the number of sounding objects in a
scene grows beyond a few tens, increasing individual
objects’ efficiency is not sufficient.5 Additionally, it’s crit-

While synthesizing any sound

consisting of many frequencies,

we can easily cheat the listener’s

perception by replacing

multiple frequencies close to

each other with a single

frequency that represents all

of them. This streamlining

saves computation.

ical for virtual environments that the sound system has
a graceful way of varying quality in response to variable
time constraints. We achieve this flexibility by scaling
the objects’ sound quality. To do this, we control the
number of modes being mixed for synthesizing the
objects’ sound. In most cases of scenes with many sound-
ing objects, the listener’s attention is on the objects in

the foreground—that is, the objects that contribute the
most to the total sound in terms of amplitude. Therefore,
if we mix the foreground sounds at a high quality and
mix the background sounds at a relatively lower quali-
ty, the resulting degradation in perceived aural quality
should decrease. Quality scaling achieves this by assign-
ing time quotas to all objects prioritized on their ampli-
tude and then scaling their quality to force them to
complete within the assigned time quota. This simple
technique performs quite well in practice.

Putting everything together
One of our approach’s chief advantages is that it’s easy

to integrate with any virtual environment that supports
physically based interaction. Figure 1 shows a schemat-
ic of how our system integrates with a virtual environ-
ment. First, every sounding object’s mesh passes into
the sound system along with its material parameters for
preprocessing. The sound system extracts its modes and
other information pertinent to sound synthesis. Again,
by mode we mean a damped sinusoid with a fixed fre-
quency corresponding to a characteristic mode of vibra-
tion of the object. Next, the sound system performs
mode compression for the object and stores the result-
ing information for use at runtime. This completes the
offline processing.

At runtime, we perform the following steps for each
video frame: First, we complete the graphics operations
and send the current state of the scene to the graphics
card for rendering. Then, we invoke the physics system
to time-step the physical simulation. Once the physical
simulation is complete, we collect the impact position
and impulse values for all objects and pass them on to
the sound system. We also inform the sound system of
the time it has available for sound synthesis. The sound
system does quality scaling for the objects to ensure that
the deadline is met and accordingly fixes the number of
modes each object must mix for the current video frame.
For each object, the sound system samples the object’s
modes at the required sampling rate (usually 44,100 Hz),
scales their contributions depending on the impact and
force, and adds up the modes’ contributions. The result-
ing values are the sound samples, which the system sends
to the sound card for playback.

Results and demonstrations
We have integrated our sound system with two

physics engines and a public-domain graphics engine:
Pulsk, which was developed in-house, and Crystal
Space (see http://www.crystalspace3d.org), which is
one of the most widely used open-source game engines
available. Crystal Space can use many of the available
open-source physics engines. For our work, we used the
Open Dynamics Engine (see http://www.ode.org). All
the results were obtained on a 3.4-GHz Pentium 4 lap-
top with 1 Gbyte of RAM and a GeForce Go 6800 graph-
ics card.

To illustrate the realistic sounds achievable with our
approach, we first describe an application that uses Pulsk
as the physics engine. We modeled a three-octave xylo-
phone (see Figure 2 on the next page). Each of the wood-
en keys consists of about 1,000 vertices. The image shows

Projects in VR

16 January/February 2007

1 Sound system overview. (a) In preprocessing, the system converts the
input mesh for each sounding object to a spring-mass system by replacing
the mesh vertices with point masses and the edges with springs. The force
matrices are diagonalized to yield the object’s characteristic mode frequen-
cies and damping parameters. (b) At runtime, the physics simulator reports
the impulses and their locations for each object to the sound system. The
system then uses these impulses to find the proportion in which to mix the
object’s modes, mixes the modes in the determined proportion, and sends
them as output to the audio card.

DiagonalizeTransform

Object mesh Spring-mass system Modes

Frequencies
ω1
ω2

ωn

(a)

(b)

Graphics

Physics

Graphics card

Sound Audio card

Impulses

AddTransform

Impulses OutputModes

G
am

e
lo

op

C
ou

rt
es

y
H

ie
ra

rc
hi

ca
l V

ol
um

e
Re

nd
er

er
 d

ev
el

op
ed

 b
y

th
e

La
bo

ra
to

ry
 fo

r
C

om
p

ut
at

io
na

l S
ci

en
ce

 a
nd

 E
ng

in
ee

rin
g,

 U
ni

v.
 o

f M
in

ne
so

ta

Table 1. Frequency discrimination in humans.

Center frequency (Hz) Frequency discrimination (Hz)

250 1
500 1.25

1,000 2.5
2,000 4
4,000 20
8,000 88

IEEE Computer Graphics and Applications 17

many dice falling onto the xylophone keys to produce
the corresponding musical notes. The audio simulation
for this scene runs 500-700 frames per second, depend-
ing on the frequency of collisions (we define an audio
frame as enough audio samples to last one video frame).
The overall system runs at a steady frame rate of 100 FPS.
(To hear an example of sound that our system synthe-
sized, visit http://gamma.cs.unc.edu/symphony.)

To illustrate our system’s efficiency, we made a scene
with 100 rings falling onto a table in an interval of only
a second. We regard this scenario as the worst-case test
case for our system, because it’s quite rare in a virtual
environment for so many collisions to happen in such a
short time span. Figure 3 shows the system’s perfor-
mance as a function of time. Because of all the optimiza-
tion we have discussed, the sound system can stay
around 200 audio FPS (see Figure 3, top curve), while
a naive implementation would yield only about 30 FPS
(bottom curve). Although mode compression and mode
truncation do greatly accelerate sound synthesis (mid-
dle curve), quality scaling is critical for ensuring that
the system maintains high frame rates even when the
time constraints are very stringent. That’s why, when
quality scaling is not used, as in the middle curve, the
system’s performance dips after 1.5 seconds. This drop
doesn’t happen when we use quality scaling, as the top
curve shows.

To demonstrate our approach’s practicality, we inte-
grated our sound system with the Crystal Space game
engine. Figure 4 (next page) shows a screenshot from
an interactive application using the modified engine.
The scene is a typical game-like virtual environment
with complex shading involving substantial rendering
overhead. The sounding objects in this scene are the
red ammunition shells lying on the floor. Each shell con-
sists of a few hundred vertices, and the scene features
about 30 sounding shells. The shells make realistic
impact and rolling sounds after falling on the floor, and
the user can throw in more shells and interact with
them in real time. The shells’ sound varies depending
on how hard the user throws them and how they strike
the ground, making the scene much more immersive.
This demo runs steadily at over 100 FPS, with the sound
system taking approximately 10 percent of the CPU
time. The bottom of the figure shows the corresponding
sound signal. The peaks correspond to collisions of the
shells with the floor. These results clearly demonstrate
that today’s virtual environments can support physical-
ly based sounds for scenes containing numerous sound-
ing objects. (More images are available at http://
gamma.cs.unc.edu/symphony.)

Future vision
With the methodology and acceleration techniques

we have presented, we can simulate sound for a large-
scale virtual environment consisting of hundreds of
interacting objects in real time, with little loss in per-
ceived audio quality. We expect that developers can
apply similar approaches to simulate sliding sounds,
explosion noises, breaking sounds, and other more com-
plex audio effects that were difficult to generate physi-
cally at interactive rates previously, thus making future

virtual environments aurally rich and much more
immersive. ■

Acknowledgments
The research project described here was supported in

part by the National Science Foundation, Office of Naval
Research, US Army Research Office, and Intel.

References
1. K. van den Doel, P. Kry, and D. Pai, “Foleyautomatic: Phys-

ically-based Sound Effects for Interactive Simulation and
Animation,” Proc. 28th Annual Conf. Computer Graphics
and Interactive Techniques (Siggraph 01), ACM Press, 2001,
pp. 537-544.

3 Audio simulation performance. The audio simulation frames per second
for a scene with 100 rings falling onto a table in a time span of 1 second,
during which almost all the collisions take place.

1.0 1.2 1.4 1.6 1.8 2.0
0

100

200

300

400

Time (seconds)

A
ud

io
 (

fr
am

es
 p

er
 s

ec
on

d)

All optimizations
Mode compression/
truncation
Base timing

2 Falling dice on a xylophone. Numerous dice play a song by falling on a
three-octave xylophone in close succession. Our system produces the corre-
sponding musical tones at more than 500 frames per second for this com-
plex scene, with audio generation taking 10 percent of the total CPU time.

2. N. Raghuvanshi and M. Lin, “Interactive Sound Synthesis
for Large Scale Environments,” Proc. ACM Siggraph Symp.
Interactive 3D Graphics and Games, ACM Press, 2006, pp.
101-108.

3. J.F. O’Brien, C. Shen, and C.M. Gatchalian, “Synthesizing
Sounds from Rigid-body Simulations,” Proc. ACM Siggraph
2002 Symp. Computer Animation, ACM Press, 2002, pp.
175-181.

4. A. Sek and B.C. Moore, “Frequency Discrimination as a
Function of Frequency, Measured in Several Ways,” J.
Acoustic Soc. Am., vol. 97, no. 4 , 1995, pp. 2479-2486.

5. H. Fouad, J. Ballas, and J. Hahn, “Perceptually-Based
Scheduling Algorithms for Real-time Synthesis of Com-
plex Sonic Environments,” Proc. Int’l Conf. Auditory Dis-
play (ICAD 97), Int’l Community for Auditory Display,
1997, http://www.icad.org/websiteV2.0/Conferences/
ICAD97/Fouad.pdf.

Contact authors Ming Lin at lin@cs.unc.edu and Nikunj
Raghuvanshi at nikunj@cs.unc.edu.

Contact the department editors at cga-vr@computer.
org.

Projects in VR

18 January/February 2007

4 Real-time sound synthesis in a game-like virtual
environment. The red ammunition shells in this screen-
shot from an interactive VR application demonstrate
real-time sound synthesis for numerous objects. The
bottom of the figure shows the sound generated for
this scene.

