Unsupervised Head-Modifier Detection in Search Queries

Zhongyuan Wang, Renmin University of China, Microsoft Research

Fang Wang, State Key Laboratory of Software Development Environment, Beihang University

Haixun Wang, Facebook Inc.

Zhirui Hu, Harvard University

Jun Yan, Microsoft Research

Fangtao Li, Google Research

Ji-Rong Wen, Beijing Key Laboratory of Big Data Management and Analysis Methods, Renmin University of China.
ZhOUjUﬂ Li, State Key Laboratory of Software Development Environment, Beihang University

Interpreting the user intent in search queries is a key task in query understanding. Query intent classification has been
widely studied. In this paper, we go one step further to understand the query from the view of head-modifier analysis.
For example, given the query “popular iphone 5 smart cover,” instead of using coarse-grained semantic classes (e.g., find
electronic product), we interpret that “smart cover” is the head or the intent of the query and “iphone 5” is its modifier.
Query head-modifier detection can help search engines to obtain particularly relevant content, which is also important for
applications such as ads matching and query recommendation. We introduce an unsupervised semantic approach for query
head-modifier detection. First, we mine a large number of instance level head-modifier pairs from search log. Then, we
develop a conceptualization mechanism to generalize the instance level pairs to concept level. Finally, we derive weighted
concept patterns that are concise, accurate, and have strong generalization power in head-modifier detection. The developed
mechanism has been used in production for search relevance and ads matching. We use extensive experiment results to
demonstrate the effectiveness of our approach.

CCS Concepts: * Information systems — Web log analysis; Query intent;
General Terms: Design, Algorithms, Performance
Additional Key Words and Phrases: Query Intent, Head and Modifier, Concept Pattern, Knowledge Modeling

ACM Reference Format:
Zhongyuan Wang, Fang Wang, Haixun Wang, Zhirui Hu, Jun Yan, Fangtao Li, Ji-Rong Wen, and Zhoujun Li, 2016. Unsu-
pervised Head-Modifier Detection in Search Queries. ACM Trans. Knowl. Discov. Data. 9, 4, Article 39 (March 2010), 26

pages.
DOI: 0000001.0000001

1. INTRODUCTION

Understanding a user’s intent or information need that underlies a query has long been recognized
as a crucial part of effective information retrieval [Li et al. 2011]. This is because search queries are
usually short and do not observe the grammar of a written language. For example, to find out “where
to buy the popular smart cover for iphone 5,” a user may simply search “popular smart cover iphone
5.” Most previous work in this area focuses on query intent classification [Shen et al. 2006; Li et al.
2008; Hu et al. 2009], which aims at interpreting queries in terms of predefined semantic intent
classes. Indeed, the intent is crucial in determining whether a query can be answered by certain data

A preliminary version of this paper has been accepted for publication in the Proceeding of The IEEE International Conference
on Data Engineering (ICDE’14), pp. 280-291, 2014.

Author’s addresses: Z. Wang, Renmin University of China and Microsoft Research Asia; F. Wang and Z. Li, State Key
Laboratory of Software Development Environment, Beihang University; H. Wang, Facebook Inc.; Z. Hu, Harvard University;
J. Yan, Microsoft Research Asia; F. Li, Google Research; J. Wen, Beijing Key Laboratory of Big Data Management and
Analysis Methods, Renmin University of China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions @acm.org.

(© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1556-4681/2015/-ART0 $15.00

DOI: 0000001.0000001

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2

Z. Wang et al.

sources. For example, the query “smart cover iphone 5” should be determined to contain product
intent, thereby triggering product search would return to users the relevant and essential results;
whereas “Seattle hotel jobs” should not. However, assume we can get the semantic intent classes
(e.g. find electronic product), search engines may still fail to understand that the user wants “smart
cover,” rather than “iphone 5.” This is because: (1) current search engines are still keyword-based;
(2) there may be not enough click-through signals indicating users’ real intent for this kind of

queries.

Fig. 1(a) and Fig. 1(b) give two real examples in current search engines. Both Google and Bing
do not understand that users are looking for angry birds and apps for Samsung Galaxy S6, instead

of the smartphone itself.

GO gle Samsung Galaxy s6 angry birds
intent
Web Images News Videos Shopping More~ Searchtools

About 690,000 results (048 seconds)

he Samsung Galaxy S®8

Samsung.com

amsung xY ~
Upgrade Now To The New, Innovative Galaxy S6 - Available Now.

Ratings: Prices 10/1

gt Walmart®
gifiart com/Galaxy-S6 ~
Get The Latest Samsung Phones at Walmart! Order Yours Today.

0 - Selection 9.5/10 - W

lehsite 8/10 - Store convenience 9/10

DailyTech -! amsung 's Galaxy SS Profit Surprise ...
www.dailytech.col

Apr 8, 2015 - Gadgets Samsung s Galaxy S6. Profit Surpise Overshadow

farticie37294.ntm ~ DailyTech
Angry

Birds should have access to your phone book/text messages, CM

Samsung Galaxy S6 edge) YouTube

1 day ago - Uploaded by Samsung Mobile
The Samsung S6 edge needed to be more than stunning. It had
2 o ... Angry Birds Under Pigstruction - ALL

Engineering Nexl m
- tps T be comiw Ga_aNs-a0

(a) Search “Samsung Galaxy s6 angry birds” in Google

> bing

MS Beta

Samsung Galaxy s6 apps
intent

Web Images Videos Maps

More

Alsotry: Best Apps for Galaxy S - 56 Edge Apps - Samsung S6 Forum

34,400,000 RESULTS

Any time ~

com - 1,583,800+ followers on Twitter

Never Seftie. Order a Galaxy S6® on America’s Largesl 4G LTE Network!

Samsung §6

Samsung 56 Edge

Samsung S

Trade in & Save 5200 5
2 gt Sprint®
edmiGalaxy_S6 - 275,900+ followers on Twitier

Lease For $0 Down and No Payments on Unlimited Plus Plan! Learn More.
Shop Samsung Phones

TGalaxy 56 ~

Sprint® Special Offers
Samsung GS5

| 0 |
8 signin [}

Samsung GALAXY S6
i 7 (4 Ratings)

Reviews

At a glance: Android OS, v5.0.2 (Lollipop) - 5.1 in
Display - 32 GB Memory

Color: Black Sapphire - Blue Topaz - Gold
Platinum - White Pearl

Dimensions: 5.6in (H) : 2.8 in (W) : 0.3in (D)

Newegg (1 customer rating) 5.0/5 Stars.

Engadget com (3 customer ratings) 4.0/5 Stars.

Newt s uming heads, and comers. Inroducing the Samsung Galaxy S6 edge. Welcome
to beauty without borders: a design that feels like it melts away for a stunning __

(b) Search “Samsung Galaxy s6 apps” in Bing

Fig. 1: Examples: search engines fail to understand users’ intent in semantics

In this work, we go one step further to detect the head-modifier structure in search queries. A
query contains head and modifier components, where head represents the intent, and modifier limits
the scope of the intent. Take the search query “popular iphone 5 smart cover” as an example. The

query consists of three components:

“popular,

ELINYS

iphone 5, and “smart cover.” It is obvious that

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Unsupervised Head-Modifier Detection in Search Queries 39:3

the intent of the query is to find “smart cover,” which makes “smart cover” the head component,
and “iphone 5,” “popular” modifier components. However, not all modifiers are equal. Compared
with “popular,” which is more subjective, “iphone 5” limits the intent in a more specific way. For a
search query, we may drop modifier “popular” without changing the query intent, while dropping
“iphone 5 will introduce many irrelevant results. In this paper, we call modifiers such as “iphone
5” constraint modifiers, and modifiers such as “popular” non-constraint modifiers or pure modifiers.

4,7% 2% _ 551% 5, 7% >5'|4% 1,10%

4,19%

3, 34%

(a) % of queries (b) % of distinct queries

Fig. 2: Components in Search Queries

Typically, a query contains at least one head, zero or more modifiers. We analyzed 1 week worth
of search log (from 07/25/2012 to 07/31/2012) of BING, and used Freebase [Bollacker et al. 2008;
Lee et al. 2011] and Probase [Wu et al. 2012; Song et al. 2011] as vocabularies to identify compo-
nents in each query. As Fig. 2 shows, about 56% of queries have 2 or more than 2 components (each
component may contain multiple words). If we consider distinct queries only, the ratio goes up to
90%. This means detecting components and identifying their roles as head and modifier is critical in
understanding the search query. Queries may contain multiple heads. Generally, multiple heads in
a query belong to the same category. For example, in the query “iphone Ss vs galaxy s5,” there are
two heads: “iphone 5s” and “galaxy s5,” and both of them belong to the same category smartphone.
Thus the case of multiple heads can be easily detected. In this paper, we mainly focus on single head
detection. We use examples that contain one head and one modifier in our discussion.

We focus on noun phrase queries. Head and modifiers in noun phrases have long been found
useful for information retrieval [Evans and Zhai 1996]. Identifying the head and modifiers from
queries can also be beneficial to many IR applications [Evans and Zhai 1996; Li 2010]. For example,
knowing the semantic role of each query component, we can reformulate the query into a structured
form or re-weight different query components for structured data retrieval [Robertson et al. 2004;
Kim et al. 2009; Paparizos et al. 2009]. Also, the knowledge of heads and modifiers can be used for
short text matching applications such as advertisement matching in search engines.

However, head-modifier detection in queries is a challenging task, because search queries usu-
ally do not observe the grammar of a written language. Hence, simple linguistic methods for the
detection may not be applicable. For example, a simple linguistic rule says in a noun phrase, the
last noun is the head. However, for “popular smart cover iphone 5,” this is not true. Bendersky et
al [Bendersky et al. 2010] develop a statistical approach to weight the terms in a query. But it needs
a large labeled corpus. Besides, it is more concerned with weighting query terms rather than detect-
ing the head and modifier for the query. Some other work tries to infer the intent of the input by
fitting it into templates that are common in a specific domain [Li 2010; Agarwal et al. 2010]. There
is also some work mining entity-attribute relationships but not specifically head-modifier relation-
ships [Pasca and Van Durme 2007; Pagca and Van Durme 2008; Agichtein and Gravano 2000] and
their performance depends on the seed entity-attribute pairs chosen for each domain.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

394 Z. Wang et al.

In contrast, human beings are good at deriving meaning from noisy, ambiguous, and sparse input.
We understand queries by leveraging the knowledge in our mind which enriches the input to produce
meaning. For example, given the query “popular smart cover iphone 5,” we know that “smart cover”
is an accessary and there is a kind of “smart cover” designed for “iphone 5.” Based on the above
knowledge, we infer that “smart cover” is the query head, which is modified by “iphone 5.” From
this view, in order for machines to understand user queries, we need supply such knowledge to
machines so that the gap between input and understanding can be bridged. Specifically, the open
domain knowledge we need beyond the input includes:

(1) Instance-level head-modifier knowledge: We need to know, when “smart cover” and “iphone 5”
appear together, no matter in what order, “smart cover” is usually the head, and “iphone 5 is
the modifier.

(2) Conceptual knowledge: We need to know “smart cover” is an accessary, and “iphone 5” is a
device;

(3) Concept-level head-modifier knowledge: We need to know, when an accessary and a device
appear together, the device is the modifier and the accessary is the head.

Our approach of query head-modifier detection is to derive head-modifier patterns at the con-
cept level, from a large number of instance level head-modifier pairs. The concept level head-
modifier patterns are in the following form: (concept), concept,, score). One example might
be (accessarypy,), devicey,,0.9), which indicates that when an accessary and a device appear to-
gether in a query, it is more likely (with score 0.9) that the accessary is the head and the device is
the modifier. With such knowledge, for any input, we can decide which patterns in the knowledge
base match the input. Finally, using the patterns and their corresponding scores, we can infer the
most likely head and the most likely modifiers in the input.

There are three major challenges. The most important one is that conflicts may exist between the
concept patterns, that is, there might be a pattern that says device is a head, accessory is a modi-
fier, and another pattern that says the opposite. There are two possible causes, as shown in Tab. L.
Conflict instance pairs can directly lead to conflict concept patterns. For example, “camera” is the
head and “laptop” is the modifier in “camera for laptop,” but in “laptop with camera,” they are
just the opposite. They will lead to conflict concept patterns such as (accessaryy,), devicey,,)) and
(devicey), accessary|y)). Besides, conflict can also be introduced by generalizing (also known as
Conceptualization [Song et al. 2011]) the instance head-modifier pairs to the concept level, since
different instances may belong to the same concepts. For instance, “cover” is the head in “cover for
ipad” but shares the same concept accessary with the modifier “camera” in “laptop with camera,”
and the corresponding modifier “ipad” and head “laptop” also belong to the same concept device.
This also leads to conflict concept patterns (accessarypy,), devicey,)) and (devicey,), accessaryy,)).
We need to design a sophisticated detecting process to handle conflict patterns. Second, the knowl-
edge we acquire must have enough coverage so that we can handle all possible input. Third, as
we mentioned, we differentiate constraint modifier from non-constraint modifiers. The intuition is
that non-constraint modifiers are subjective terms such as “best,” “top,” “well-known,” “popular,”
etc., and they are often used across all domains. Based on these observations, we build a modifier
network from a knowledge base and use betweenness centrality to mine non-constraint modifiers.

Table I: Examples of the two conflict reasons

Conflict Type Query Concept pattern
conflict camera for laptop (accessaryp), device|,,))
instance pairs laptop with camera | (devicefy, accessary(y,))
conflict in cover for ipad (accessary(y, device|,,))
conceptualization | laptop with camera | (device[p], acCeSSATY[m])

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Unsupervised Head-Modifier Detection in Search Queries 39:5

Mine non-constraint modifiers (offline) Head-Modifier Detection

(online)

Preprocessing

Modifier filtering
Conceptualization

‘ Concept Hierarchy H Modifier Netwrok ‘ ‘Identify modifiers‘

e ! .
. O . non-constrai
T . modifiers
L4
T °

Build head-modifier concept pattern dictionary

(offline)
i l Pattern searching
Extract A
entitv pairs| ~[Conceptualization| Eechieet Head modifier
patterns Detection

Qtjery Stanford Parser Concept | % P e)
0og clustering w\Head-Modlfler reIatlon/‘

Fig. 3: Framework for head-modifier detection in search queries

Our contributions

The technique we describe in this paper is in production for search relevance and ads matching.
Following is a summary of our contributions:

— We introduce an unsupervised, open domain mechanism for head-modifier detection. In compar-
ison, existing work usually requires labeled data and is domain specific.

— We build a concept pattern knowledge base to model head-modifier relationship at the concept
level. We “lift” head-modifier relationships at the instance level to the concept level. We analyze
the causes of conflict patterns and propose to model the head-modifier relationship in a proba-
bilistic way. The knowledge base is small but has strong generalization power.

— We design a sophisticated detecting approach for head-modifier detection in search queries.
For two-component queries, we detect the head-modifier relation by aggregating the support-
ing evidence from concept patterns. For multi-component queries, a combined detection method
is proposed by leveraging the concept pattern knowledge and the statistical information learnt
from search log. Extensive results show that the proposed approach achieves good performance
(90% accuracy) in head-modifier detection.

Paper organization

The rest of the paper is organized as follows. Section 2 describes an overall framework and the
taxonomy we use. Section 3 finds non-constraint modifiers. Section 4 derives concept level head-
modifier patterns. Section 5 conducts our query head modifier detection. Section 6 gives experiment
results and compares our approach with other methods. Section 7 introduces related work. Section 8
concludes our work.

2. OVERVIEW

In this section, we describe the framework of our approach, and the taxonomy we used in the frame-
work.

2.1. Framework

Fig. 3 depicts the framework we use for head-modifier detection. It contains two offline compo-
nents, which acquire knowledge respectively for i) non-constraint modifiers, and ii) head-modifier
concept patterns, and an online component, which performs query head-modifier detection using
the knowledge acquired offline.

As we mentioned, we classify modifiers into two categories: constraint modifiers and non-
constraint modifiers. To find terms that are often used as non-constraint modifiers, we construct

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 Z. Wang et al.

Markets

[European Markets} [Emerging Markets] II
_ [area=9.596.961 sq kn
e population = 1.3 billio

, gdp = $8.7 trillion

" sim = 0.84

’
-
-
-

P r
{ Newly Industrialized Countries } I
area = 3,287,263 sq km
population = 1.1 billion

gdp = $3.57 trillion

[Developing countries}

Fig. 4: A Snippet of Probases core taxonomy

a modifier network. For example, from “large developed country,” “developed country,” and “coun-
try,” we derive potential modifiers “large” and “developed.” In the network, nodes denote either
head concepts (e.g., “country’) or modifiers (e.g., “large” and “developed”), and edges denote mod-
ifying relationships. We show that non-constraint modifiers can be detected using a measure known
as betweenness centrality in graph analysis. We give more details in Section 3.

A more challenging task, which is also the major focus of this paper, is to identify head-modifier
patterns in the concept space. We first acquire instance level head-modifier pairs such as (“race
game”[), “mac’[,,)). We then conceptualize them into the concept level, which gives us head-
modifier patterns such as (game[h], computer[m]). This process involves how to handle the conflict
pairs. We describe this process in detail in Section 4.

Given a new query, we perform online head-modifier detection using the acquired knowledge. We
first check if there is any preposition in the query, since preposition could tell us the head-modifier
structure directly. For example, given “smart cover for ipad”, it is clear that “smart cover” is the head.
When there is no preposition in the query, we first identify and remove non-constraint modifiers.
Then, we form candidate head-modifier pairs. Finally, we match the candidates against the concept
head-modifier patterns through conceptualization and detect the head-modifier by leveraging the
acquired concept patterns. We describe the above process in detail in Section 5.

2.2. Probase: A large scale IsA taxonomy

We need a taxonomy knowledgebase to “lift” the instance level head-modifier relationships to con-
cept level. In this paper, we use an isA taxonomy known as Probase! [Wu et al. 2012] to do this
work.

Probase is a large network of multi-word terms. Figure 4 is a snippet of Probase, which consists
of concepts (e.g. emerging markets), instances (e.g., China), attributes and values (e.g., China’s
population is 1.3 billion), and relationships (e.g., emerging markets, as a concept, is closely related
to newly industrialized countries). It provides a huge concept space that covers all concepts of
worldly facts. The version of Probase we use contains 2.7 M concepts and 40 M entities. We use a
mechanism to efficiently recognize Probase concepts and entities in a query. We omit the discussion
here due to lack of space.

LProbase data is publicly available at http:/probase.msra.cn/dataset.aspx

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Unsupervised Head-Modifier Detection in Search Queries 39:7

2.2.1. Typicality. Another feature of Probase is that it is probabilistic, which means every claim
in Probase is associated with some probabilities that model the claims correctness, typicality, ambi-
guity, and other characteristics. Typicality measures the probabilities between concepts and entities.
Probase contains the following probabilities for it:

— P(c = company|e = apple): How likely people will think of the concept “company” when they
see the entity “apple.”

— P(e = stevejobs|c = ceo): How likely “steve jobs” comes into mind when people think about
the concept “ceo.”

The probabilities are derived from evidences found in web data, search log data, and other existing
taxonomies. The typicality between e and ¢, where e is an entity or a subconcept of concept c, is
weighted as follows:

6]

where n(e, ¢), n(c), and n(e) denote the frequencies of e and ¢ occur together, e occurs indepen-
dently, and c occurs independently when they are observed in information extraction.

The weights have intuitive meanings. For example, knowing that both “poodle” and “pug” are
dogs is sometimes not enough. We may also need to know that “poodle” is a much more popular
dog than “pug,” that is, when people talk about dogs, listeners are more likely to think of the image
of a “poodle” rather than that of a “pug.” Such information is essential for understanding, and is
captured by the fact that P(poodle|dog) > P(pug|dog).

2.2.2. Concept Cluster. Among the large amount of concepts in Probase, many concepts are sim-
ilar to each other, such as “country” and “nation,” “music star”” and “pop star,” etc. We use Concept
Clusters to gather similar concepts together, by using a k-Medoids clustering algorithm proposed
by Li et al. [Li et al. 2013]. One concept cluster can represent a general topic domain, recognized
with its center concept. For example, for the cluster centered around country, most of its member-
s are highly related to country, such as nation, asian country, developing country, region etc. In
this paper, we use the concept cluster in multiple-ways including sense detection in non-constraint
modifier mining and concept pattern mining.

3. MINING NON-CONSTRAINT MODIFIERS

We now describe how to find terms that are often used as non-constraint modifiers. In the query “top
Seattle hotels,” there is a difference between modifier “top” and “Seattle” in the sense that “Seattle”
is a specific modifier, while “top” is subjective. In some applications, such as search, non-constraint
modifiers can be and should be ignored.

Based on the head-modifier principle [Hippisley et al. 2005], given “large developed country” and
“developed country,” we can deduce that “large” is a potential pure modifier. But this is not always
the case For example, “hot” is not a pure modifier for “hot dog.” We solve this problem by noticing
“dog” belong to the animal concept, while “hot dog” to the snack or quick food concept. Thus, we
perform pure modifier detection within each concept domain or concept cluster [Li et al. 2013].
Besides, we observe that the modifier on the left is more likely to be a non-constraint modifier than
the one to its right. For example, people usually say “cheap red shoe” instead of “red cheap shoe.”

Therefore, we consider using a mass of phrases or concepts to mine non-constraint modifiers. We
use Probase for mining non-constraint modifiers. Probase is suitable for this purpose as it contains
2.7 million concepts, including many tail concepts such as “large developing country” that contain
non-constraint modifiers. Furthermore, Probase is an open domain knowledgebase. Because non-
constraint modifiers often work in all domains (e.g., “top” can occur in “top movies,” “top books,”
and “top hotels”), this feature of Probase is important for mining non-constraint modifiers.

We use an example to illustrate the process of mining non-constraint modifiers. Consider the
concept hierarchy in Fig. 5(a), which is for the concept domain of country. Here, each node is a

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 Z. Wang et al.

concept, and each edge is labeled with the modifier on the superconcept. We then transform Fig 5(a)
to Fig. 5(b). This is done by first keeping the root concept unchanged, and converting edges to nodes.
Edges with the same label are mapped to one node. We call the new graph the “modifier network.”

(\Cou ntry’)

o g'Country‘g
Asian T Western
e Asian N Developed ‘/V’Véstérh\‘
\country/ = \.country / P PN
T (Developed T | Asian | {Western|
Large _country ~/ Top
B et ,7,_1,, p
/Large™ dN /~Top ™\ | Developed |
[Asian | Large TOp\ (western | ‘L
\CoUNtrY” " \yestern \\\\QO[LH 154 .
N y
L v \TL,, / N
Large . Western~. Top /
(developed)(developed) developed) —— P
“.country ~ . country . country / | Large | | Top |
(a) Concept Hierarchy Tree (b) Modifier Network

Fig. 5: Mining non-constraint modifiers

Generally, a non-constraint modifier is independent with its context, or it is always a non-
constraint modifier regardless of its context. In contrast, heads and constraint modifiers depend
on their context, which means a term can be a head sometimes, and be a constraint in some other
cases. Consequently, head and constraints can be central nodes in some modifier networks, while
non-constraint modifiers tend to be nodes not in the central part of the hierarchy. Therefore, we can
leverage the node centrality to find the non-constraint modifier. The smaller centrality score a node
has, the more likely it is a non-constraint modifier. Compared with degree based approaches, be-
tweenness centrality can measure the centrality of a node based on path through globally. Therefore,
we use betweenness centrality to decide if a modifier is a non-constraint modifier.

The definition of betweenness centrality of node v is:

_ ost(v)
9y = > —~ @)
s#EVFEL
where o is the total number of shortest paths from node s to node ¢ and o4 (v) is the number of
those paths that pass through v. We build a modifier network for each concept domain or concept

cluster [Li et al. 2013], and normalize this betweenness centrality score in each modifier network:

o 9(v) = min(g)
NLg(w)) =log o o = min(g)

Then we aggregate all modifier networks to get the non-constraint modifier score PM S(¢) for a
term ¢:

3)

PMS(t) =Y NL(g(t)) 4)

Finally, we can calculate a non-constraint modifier score for each term in all modifier networks,
and rank them by this score. The smaller a term’s score is, the more probable it is a non-constraint
modifier.

4. MINING CONCEPT PATTERNS
In this section, we describe our method of deriving concept-level head-modifier patterns.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Unsupervised Head-Modifier Detection in Search Queries 39:9

4.1. Instance-level Head-Modifiers

In order to model head-modifier relationships at the concept level, we first obtain a large number
of instance level head-modifier relationships. Our intuition is the following. Although it is difficult
for machines to identify heads and modifiers from queries such as “iphone 5 smart cover” and
“smart cover iphone 5” directly, we know the same search intent is also expressed in other forms,
for example, “smart cover for iphone 5.” From the latter expression, it is clear that “smart cover” is
the intent. This suggests that in queries where “smart cover” and “iphone 5 occur together, “smart
cover” is likely to be the head even if they are not connected by the preposition for.

Prepositions play an important role for identifying head and modifiers [Hippisley et al. 2005;
Soderland et al. 1995]. We evaluate a set of prepositions, and find that when prepositions ‘for,” ‘of,
‘with,” ‘in,” ‘on,” ‘at’ are used to connect two known terms A and B (e.g., “A for B,” “A of B,” and “A
with B”), it is almost always true that A is the head and B is the modifier. We thus use the following
syntactic pattern to extract pairs of (A, B) from the query log:

{head [for|of|with|in|on|at] modifier}

To ensure correct extraction, we use Probase as a dictionary, i.e., the heads and modifiers must
be terms in Probase. Although Probase is big, there still are valid terms not included there. This is
however not a problem because our goal is to find concept-level head-modifier pairs, and concepts
can be derived from instances that exist in Probase.

4.1.1. Conflict at the instance level. There is a serious issue in using syntactic patterns described
above directly to identify head and modifiers. In particular, conflicts may exist between the identified
instance level head-modifier pairs, due to two factors: First, there are exceptions for the preposition-
based identification due to the arbitrariness of user input. For example, both “cover for ipad” and
“ipad for cover” exist in query logs, which leads to a conflict pair (cover(), ipad|,,)) and (ipad|y),
cover|y,)). We define the conflict that appears in the pairs identified by the same preposition (e.g.,
“for””) as Inner Preposition Conflict. Second, the same two instances can be connected by differ-
ent prepositions to express different search intents. For example, “built-in camera on laptop” and
“laptop with built-in camera” generate conflicting instance pairs, one of which is to search “cam-
era” while the other looks for “laptop.” This kind of conflicts that occur in the pairs identified by
different prepositions are referred to Outer Preposition Conflict in this paper, such as the conflict
pair (camerayy), laptopy,,)) and (laptopyy), cameray,,)) derived from preposition “on” and “with”

respectively.
. . . . f conflict pairs .
We investigate the conflict ratio (r, = WM) at the instance level based on 6 month of

query logs from BING. Table II shows the results. We can see that the ratio of instance level conflict
is very low, even for the outer preposition conflict. Removing these conflict pairs is an intuitive way
to reduce the conflict. However, this will increase the bias of the concept pattern and damage its
general usage.

Table II: Conflict ratio at the instance level, with statistics based on 6 months of BING query logs

Conflict Type Preposition Ratio (%)
inner preposition conflict Jor” ~0.049
“with” =~ 0.009

outer preposition conflict | “for” vs. “with” < 0.011

As can be seen from Table I1I(a), the frequency gap in the inner preposition conflict is very large.
The query “ipad for cover” seldom appears in the query log, neither does “laptop for camera.” We
can see that these rare queries are logically improbable. Thus, we can omit these rare queries to
resolve the inner preposition conflict. As for the outer preposition conflict, as shown in Table III(b),
we cannot simply ignore one of the conflict pairs and keep the other, since both of them are legal
and valid queries.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 Z. Wang et al.

Table III: Examples of frequency statistic for instance level conflict, based on 6 month of query logs
from BING.

(a) Inner preposition conflict (b) Outer preposition conflict
conflict queries Freq. conflict queries Freq.
cover for ipad 2381 camera for laptop 308
ipad for cover 1 laptop with camera 302
camera for laptop 308 smartboard for ipad 31
laptop for camera 12 ipad with smartboard 91

Based on the above observations, we propose to keep these outer preposition conflicts and model
the head-modifier relationships in a probabilistic way by using all the identified instance pairs (in-
cluding conflicts). This is reasonable, because given a query with preposition we can easily identify
its search intent, such as “built-in camera on laptop” and “laptop with built-in camera,” but only
given “laptop camera,” even we human can hardly know exactly what the user wants. Although we
don’t know exactly what the user wants, we are able to learn that it is more likely (with score 0.9)
that the accessary is the head and the device is the modifier.

4.2. Concept-level Head-Modifiers

From the instance-level head-modifier relationships obtained above, we derive concept-level rela-
tionships. The motivations are the following:

(1) The number of head-modifier relationships at the instance level is huge, which is unfavorable
for online applications. Lifting the instance pairs to concept level can largely reduce the number,
since one concept can represent a set of instances that belong to the same category. For instance,
both “iphone 5 and “samsung galaxy” belong to device.

(2) The extracted instance-level relationships do not cover everything. A generalization mechanism
is required. Lifting the instance pairs to concept level gives us a concise model that can be gen-
eralized to cover more instance-level occurrences. For example, we derive the concept pattern
(accessarypy), devicep,y,)) from “smart cover for iphone 5.” Then given a new query “samsung
galaxy smart cover,” we detect that “samsung galaxy” is a modifier, since “samsung galaxy” is
a device.

4.2.1. Levels of Conceptualization. An instance maps to many concepts, some very specific and
others very general. We can map a pair of instances such as (‘“smart cover,” “iphone 5”) to a pair of
concepts in two extreme ways. First, we can map it to itself, i.e., we treat “smart cover” and “iphone
5” as concepts on their own. But such a mapping does not have generalization power, as it covers
nothing else except itself. Second, we can map it to (object, object), where object is the root concept
that all instances belong to. But such a mapping is useless, as it does not have the power of telling
heads and modifiers apart.

A more challenging problem is the following. It may seem alright to map “skype for windows
phone” to (company), devicey,,)) and “iphone 5 for verizon” to (device), companyy,y,)). But
then, the two resulting patterns are in head-on conflict: When company and device appear together,
the first pattern says device is the head, while the second says company is the head. Clearly, the
mapping is too general or too coarse grained.

The principle of conceptualization is thus two-fold. First, we must avoid concepts that are too
specific, because specific concepts have poor generalization power. Second, we must avoid concepts
that are too general. Over generalization leads to conflict patterns, as each claims territory that it does
not own.

4.2.2. Conceptualizing Instances. We now show how to properly map a single instance to a set of
concepts. The mapping criterion for a term e must take into account both generality and specificity.
Denote C' = {c1,---,c,} is the set of e’s concepts. We map e to those concepts ¢; if P(c¢;le) -

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Unsupervised Head-Modifier Detection in Search Queries 39:11

P(e|c;) is large. A larger probability indicates stronger corpus evidence of the closeness between ¢;
and e in the semantic network of Probase.

There is a problem for using the above method to directly conceptualize instances. An instance
e can be a concept itself, and sometimes it is already the most appropriate concept. For example,
if e=“company,”’ the above method may lead to concepts such as “organization” or even “object,”
which are too vague.

Ideally, we want to keep relatively popular concepts that cover a reasonable number of instances.
Thus, in our work, we use a concept’s entropy as an indicator:

H(e)=— > Plele)log P(e|c))

e is an instance of ¢

Intuitively, a concept has large entropy if it contains many equally popular instances. For such
a concept, we prefer mapping to itself. As an example, a concept such as “device” will have large
entropy (7.54), while a concept such as “recording device” will have a small one (1.67). Specifically,
we map e to itself if i) e is a concept; ii) H(e) > H(c) for any super concept ¢ of e; and iii) the
frequency of e is above a threshold (if e is rare, H (¢) may not be meaningful).

In summary, we map an instance e to a set of k concepts C. If e is a qualified concept on its own,
then C' = {e} U topi—_1(e), otherwise C' = topy(e), where topy(e) is the top-k concepts ranked by
the probability P(c;|e) - P(e|c;). Furthermore, for any ¢; € C, we give it a score C'S(e, ¢;):

1 ci=e
Osle.c) = { P(cile) - Pleler) ; # ¢ ©
4.2.3. Conceptualizing Pairs. To map a set of head-modifier pairs to a (much smaller) set of con-
cept level head-modifier patterns, we first conceptualize the head and the modifier independently,
and then combine them to generate concept patterns.
The task of combination, however, is not trivial due to the following two facts:

(1) Ambiguous entities may lead to wrong concept pairs. For example, the term “apple” can be
conceptualized to fruit or company. Therefore, “CEO for apple” results in two possible concept
pairs: (corporate officer, company) or (corporate officer, fruit). Obviously, the latter is wrong.

(2) Conflict concept pairs may exist during the combination. As we mentioned in section 1, both
the conflict instance pairs and the conceptualization can lead to conflict concept patterns. We
investigate the concept level conflict ratio based on 1% of query logs from BING collected in 6
months, as shown in Tab. IV. Considering all kinds of conflicts introduced by six prepositions,
the conflict ratio at instance level goes up to about 1%. Then we select the top 1 concept for each
instance using the proposed conceptualization method. Finally, the conflict ratio at concept level
is about 10%, going up by 10 times after the conceptualization. This ratio may go up further if
we set a larger £ when conceptualizing instances.

Table IV: Conflict ratio goes up in concept level

Conflict Level | # total pairs | # of conflicts | Conflict Ratio
Instance level 575,367 6,019 ~ 1.04%
Concept level 367,009 37,165 ~ 10.12%

We propose to aggregate all kinds of instance-level head-modifier pairs for each concept pair.
For the first ambiguity issue, aggregating different queries has the power of disambiguation. For
example, there are similar queries such as “CEO for Microsoft” and “CEO for IBM.” Both sup-
port the (corporate officer, company) pair but not the (corporate officer, fruit) pair. After the ag-
gregation, wrong concept pairs introduced by ambiguous senses will have a low support and can
be filtered out. For the second conflict issue, aggregating helps compute the proportion of each

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 Z. Wang et al.

conflicting concept pair in the data set. One example might be (accessaryy, devicey,y,),0.9) and
(devicep,), accessarym),0.1).

Specifically, for each instance level head-modifier pair, we conceptualize its head and modifier
independently. We first combine them in all possible ways to concept pairs. After we obtain all
concept pairs (c;, c;), where ¢; is a head concept and ¢; is a modifier concept, from all instance
level head-modifier pairs, we score each concept pair by Eq. 7:

Score(c;, ¢cj) = ZCS(eu,ci) -CS(ey,cj) - log N(ey, €y) %

u,v

where C'S(e, ¢) is the score of e mapping to ¢ as defined in Eq (6), and N (e,, e,) is the frequency
of the pair (e,, e,). We take the logarithm of N(e,,e,) to prevent large frequency value having
too strong inference on the final score. This can ensure that concept pairs supported by a variety of
entity pairs have higher scores.

Finally, there is another issue of similar concept pairs, as Probase contains concepts that are sim-
ilar to each other, such as “country” and “nation.” Li et al [Li et al. 2013] proposed a k-Medoids
clustering algorithm to cluster these concepts. We leverage their clustering results directly for clus-
tering concept pairs.

5. HEAD AND MODIFIER DETECTION
We detect the head and modifiers in a query using the acquired concept patterns.

5.1. Parsing

Given a query, we first identify all the terms in the query that we can recognize. We do this by using
Probase as a lexicon of terms. During the parsing, if one term is a substring of another term (e.g.,
New York and New York Times), we choose the longest term”. We then remove non-constraint
modifiers (Section 3 describes how we detect them). For the remaining terms, we cluster terms
semantically to form components, such that each component is a group that contains one or more
semantically similar terms. We do this for two reasons. First, some queries such as “apple ipad
microsoft surface” contain more than one head (e.g., the user wants to compare two products).
Second, we want to reduce the number of concept pair candidates for conceptualization. In the above
example, it contains 4 terms: “apple,” “ipad,” “microsoft,” and “surface,” but only 2 components:
{apple, microsoft} and {ipad, surface}, the first of which is related to “company,” and the second
“device.” This is achieved with a simple co-clustering of concepts and terms by identifying the
disjoints cliques [Song et al. 2011].

Assume there are k components left. If & = 1, we return the component as the head of the
short text. In the following, we discuss cases for k£ = 2 and k& > 2, respectively. In most cases,
a component contains a single term only. Thus, we sometimes use a single term to represent a
component.

5.2. Head-modifier detection for 2 components

Consider a query with two components “smart cover” and “iphone 5.” Fig. 6 demonstrates the
process of head-modifier detection.

We first conceptualize “iphone 57 to {mobile phone, smart phone, phone, device, - - - }, and “smart
cover” to {mobile accessory, accessory, part, - - - }. Each term-concept pair (e, ¢;) is associated with
a score, C'S(e, ¢;), which is given by Eq (6).

Then, we search the concept pattern knowledgebase, and find matches such as (accessory, device),
each of which is associated with a score Score(cy, c2) given by Eq (7).

21f the longest term is a very rare term, we also consider short terms. We omit the details due to lack of space.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Unsupervised Head-Modifier Detection in Search Queries 39:13

Query Concept Concept Concept pattern
popular smart cover vectorl: vector2: cluster 1: IOy Cr:
iphone 5 = (accessory, ’
accessory > device i 2 head
SR - y device, 0.37)
arsing & Labeling mobile phone iphone 5:
accessory Concept pattern constraint
! I i Conceptu e smart phone cluster 2 modifier
popular: alization
non-constraint S’Pah“ cm;er > mobile |, |Concept pattern
modifier fpnone Gl
smart cover iphone 5

Fig. 6: Detection flow for 2-component queries

We aggregate the scores to identify the head and the modifier by Eq. 8. For two components ¢,
and to, if f{t1, t2) > f{ts, t1) then we conclude ¢; is the head and ¢ is the modifier.

f(tl,tg) = Z CS(tl,Cl) . CS(tQ, CQ) . SCO’I‘@(Cl7 CQ)

C1,C2

where CS(t,c)= Y CS(ejc

e; Ecomp

®)

Conceptually, the above function is to aggregate the supporting evidence from concept patterns,
and decide which component is more likely as the head component.

5.3. Head-modifier detection for multiple components

As we have shown in Fig. 2(b), a large number of search queries have more than two components.
To detect the head, we first use the above process to detect head-modifier relationships between any
2 components. Then, we represent a query using a directed graph, where nodes represent compo-
nents and directed edges represent head-modifier relationships between the components, as shown
in Fig. 7. The direction of an edge is from the modifier to the head.

/'\

(lphone\ (I R -
LSS, app €. pIayer H—’football\
{seattle\ € college\
e _.7/
(a) Chain structure (b) Chain with cycle structure

Fig. 7: Components connected by head-modifier relationships

There are two typical graph structures:

(1) Chain structure: The graph is acyclic, and we can find a set of chains from a sequence of
modifiers to the head. In Fig. 7(a), there are 2 paths: seattle — apple — iphone bs —
smart cover and seattle — iphone bs — smart cover, each of which describes a sequence
of modifying relationships.

(2) Chain with cycle structure: There are chains and cycles in the graph, as shown in Fig. 7(b).
Cycles are often introduced by ambiguous head-modifier relationships. In Fig. 7(b), we may
have both player—college and college—player, the former of which for the intent of finding
“player,” and the latter for finding “college.”

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 Z. Wang et al.

For the chain structure graph, we can identify the head easily as the terminal node of the chains.
As for the chain with cycle structure, we break it down into two basic cases: cycle structure and tree
structure, as shown in Fig. 8. We analyze them separately.

football
ah P <N

-~ ~
()) [hard | A \
! player ' college o] »memory\
N N _div_e/ N
(a) Cycle structure (b) Tree structure

Fig. 8: Two basic cases of the chain with cycle structure

First, for cycle structure, we propose to remove the cycle using the following method. If there
is an obvious head connected to the cycle, as in the example shown in Fig 7(b), the entire cycle
becomes a modifier of the head. Otherwise, we break the cycle by removing the weakest edge, as
each edge is associated with a weight given by Eq. 8. For example, the college — player link in
Fig. 8(a) is likely the weakest (it matches conflicting patterns and the two words are not close to
each other in the short text). After removing the cycle, we know “player” is the head, while “college”
and “football” are modifiers.

Second, in the tree structure, chains may have different terminations (leaf nodes). It implies that
there are more than one heads, which conflicts with the one-head assumption. We call this conflict as
multi-head conflict. It is often introduced by the 2-component head-modifier detection. As shown
in Fig. 8(b), “hard drive” and “memory” are detected as the heads for the query “1TB hard drive
128GB memory desktop.” However, it is more likely that we should go with the “desktop with ...”
semantics, i.e., the “desktop” is the real head. In the following subsection, we discus our solution
for multi-head conflict in detail.

5.3.1. Conflict Resolution. Intuition: In multi-component queries, the head are more likely to be
modified by all the modifiers, and tends to have certain relationship with all the other components.
Taking “1TB hard drive 128GB memory desktop” for example, “desktop” is the real head, and it has
the Attribute-Of relation with “hard drive” and “memory.” Removing one modifier such as “hard
drive,” there still is a head-modifier relationship in the query “128GB memory desktop.” However,
if removing the head “desktop,” there won’t be a clear head-modifier relation in the query “1TB
hard drive 128GB memory,” which leads to a confusing query.

Based on the above intuition, we propose to select the component that has the maximum prob-
ability as the head. We define the probability of a component being the head as the product of
the probability of it being “modified” by all other components. Here we use a strong assump-
tion that the head-modifier relationships are independent from each other. Formally, given a query
Q = {t1,12,...,t, }, we detect its head h € Q by Eq. 9, where pm(t;, ;) denotes the probability of
t; being modified by ;.

h = iy Vg
arg max I ety ©9)
ti€Q At
Estimating pm(¢;, t;) is a challenging task. Only using the proposed head-modifier score f(t;,%;)
(Eq. 8) is insufficient, which may cause multi-head conflict as shown in Fig. 8(b). This is because
usually semantics in multi-component queries are more complicated. For example, the “hard drive”

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Unsupervised Head-Modifier Detection in Search Queries 39:15

and the “memory” are attributes of the “desktop.” These are not covered by the learnt concept
patterns. The head-modifier score f(t1,%2) (Eq. 8) designed for 2 components is not enough for
multi-component queries. Therefore, we propose to leverage extra statistical information to estimate
pm(tiv tj)

We first learn pr(t;,t;), the prior probability of two components having a certain relationship,
from the search log. Our intuition is as follows:

Intuition: For queries containing two instances, usually the two instances have a certain rela-
tionship (e.g., head-modifier relationship). For example, there are many queries that are composed
of “desktop” and “hard drive” in search log. But we hardly find a query that is composed of only
“memory” and “hard drive.”

Then we combine the prior probability with the head-modifier score to detect the head from
multiple components, since the learnt prior probability pr(t;,t;) only reflects the probability of
the two components having a certain relationship, which cannot capture the head-modifier relation
explicitly. Formally, we estimate pm(t;,t;) by Eq. 10:

pm(ts, ty) = f(ts, t;) x pr(ts,t;)

4 10
~ Fltnt) x c(tj\,/tj) (10)

where ¢(t;,t;) is the number of times that component ¢; and ¢; compose a query and ' denotes the
total number of queries in the search log.
A smoothing method is needed when ¢(t;,t;) = 0, which will lead to a zero score in Eq 10.

In this case, we estimate pr(t;,t;) = pr(t;) x pr(t;), where pr(t) ~ c/(\%) is the probability of
(t;,t;) b

component ¢ appearing in the search log. To sum up, we estimate pm y Eq. 11. Note N is
uniform to each component and so do not affect the ranking in Eq. 9.

(tit;) .
pm(ti,tj) ~ f(ti,tj) f(% : C(ti,t]‘) >0
Fltisty) x =R eltisty) = 0 (1)
) : C(ti,tj) >0

~ f(ti,t;) x Cg.ti’ﬂ
f(ti7tj) X o Ij)\?(1) : C(ti,tj) =0

It is clear that our head-modifier detection approach does not solely depend on words’ relative
position in a phrase. This makes it useful for short texts that do not strictly follow the grammar. For
applications such as sponsored search that require to match two short texts (e.g., query and ads bid
keywords), we may match heads first and then modifiers, and use the weight of each component to
quantify the match.

6. EXPERIMENTS

We present a comprehensive experimental study of our query head-modifier detection mechanism.
We compare it with previous approaches and discuss applications such as sponsored search that
benefit from the technique.

6.1. Mining Non-Constraint Modifiers

We mine non-constraint modifiers from the large concept space in Probase. From the 2.7 million
concepts, we build 4,819 concept hierarchies, which are then converted to 4,819 modifier networks.
We then calculate the logarithmic normalized betweenness centrality in each modifier network and
aggregate them to get the score for each modifier. The top ranked modifiers are shown in Table VI.

To measure the quality of our method and determine an optimal threshold for qualifying as a non-
constraint modifier, we randomly select and manually label 300 terms with score 0, 1, or 2 using the
criteria listed in Table VII.

Then we bin the labeled terms in intervals of non-constraint modifier scores (e.g., terms whose
PMS is from -1000 and -500 are in one bin). For terms in each interval, we calculate their average

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 Z. Wang et al.

Table V: Statistics of Data Set

6 month query log
(freq>3)

total # of matches | 205,527,614 | 287,473,958 | 46,441,556 | 220,571,952 | 63,145,259 | 18,895,978
unique matches 13,368,405 14,189,485 3,420,457 17,276,873 5,032,200 1,458,932
filtered # of matches | 120,345,688 | 211,852,494 | 29,865,611 | 151,359,122 | 40,286,256 | 11,978,341

AFORB AOFB | AWITHB AINB AONB A AT B

filtered unique matches 3,336,475 3,398,661 1,031,810 4,627,184 1,539,772 508,981
unique heads 235,797 149,544 125,149 337,605 167,085 83,560
unique modifiers 253,919 327,001 121,499 166,086 143,703 61,341
Total unique queries 308,183,923
Total traffic 12,871,641,724

Table VI: Top Ranked Non-Constraint Modifiers

Rank | Modifier Rank | Modifier Rank | Modifier Rank | Modifier
1 good 11 popular 21 single 31 high
2 traditional 12 conventional 22 normal 32 suitable
3 common 13 standard 23 second 33 specialty
4 typical 14 local 24 complex 34 so-called
5 great 15 regular 25 famous 35 powerful
6 small 16 basic 26 true 36 minor
7 large 17 big 27 first 37 natural
8 modern 18 classic 28 commercial 38 non
9 simple 19 real 29 strong 39 external
10 well-known 20 key 30 sometimes 40 ordinary

Table VII: Manual Label Criteria for Non-Constraint Modifier

Score Explanation Examples
2 always be non-constraint modifier top, best
1 be non-constraint modifier sometimes | electronic, thermally
0 generally can’t be negligible American, library

labeled score (0~2). The result is shown in Fig. 9(a), where the x-axis represents the non-constraint
modifier score intervals, and the y-axis represents the average labeled score for terms in each inter-
val. We also use different thresholds to test the precision of predicting on the test data. We assume
that non-constraint modifiers with score 2 or 1 are correct, and score O wrong. The results, shown in
Fig. 9(b), are good for top ranked modifiers(x-axis represents the threshold we choose). We select a
score cutoff with precision greater than 90%, which produce a total of 800 non-constraint modifiers.

6.2. Mining Instance-Level Patterns

We mine instance-level head-modifier pairs from 6 month (2012/07-2012/12) worth of search log
of BING (queries whose frequency < 3 are filtered). We use the syntactic patterns described in
Section 4.1 for mining. Take the ‘A for B’ pattern as an example. From 308,183,923 unique queries,
we obtain 13,368,405 unique matches following the ‘A for B’ pattern. Among these matches, there
are 3,892,152 unique queries whose A and B are in Probase. However, in many cases, the preposition
for does not indicate head-modifier relationships. For example, patterns such as “* for sale” and
“search for *” appear frequently in queries, creating a lot of noise in the extracted head-modifier
pairs. Although conceptualizing is able to filter out noise automatically, we perform some simple
cleaning by removing patterns that are apparently unrelated (e.g., “* for sale”) to save the cost of
conceptualizing. Also, we remove non-constraint modifiers in the query. We finally obtain 3,336,475
unique queries for the ‘A for B’ pattern, and the total number of unique instance level head-modifier
pairs is 14,144,235. Table V breaks down the number across different syntactic patterns. Patterns
with ‘of’, ‘in’, ‘for’ have similar proportion in all of the matches while patterns with ‘with,” ‘on,’
‘at’ account for a smaller proportion.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Unsupervised Head-Modifier Detection in Search Queries 39:17

2.0 1.0
o 16 0.9 ™~
3
% 1.2 .5 0.8
Q)
< 038 g 07
@0 o
= 0.6
< 04
0.5
° D720 0 PO 04
,\/000 0,459 QH?) 0.4»'1« Qﬂﬁ Qr»\
2N P o0 00 A5 -800 -600 -400 -200 0
Pure modifier score Thresholds of pure modifier score
(a) Label score vs. modifier score (b) Precision vs. modifier score

Fig. 9: Performance of modifier detection

6.3. Building Concept Pattern Knowledge base

Using the method described in Section 4, we conceptualize instance pairs to concept level patterns,
summing up the score for each concept pair and clustering similar concept pairs into concept pat-
terns. Thus, we build a concept pattern knowledgebase for head-modifier relationships with each
concept pattern comprising a number of concept pairs.

Table VIII: Concept-level head-modifier patterns

of instance level pairs 14,144,235
of concept level pairs 84,207,802
of concept level pairs after filtering 386,283
of concept patterns after clustering 169,966

As shown in Table VIII, from 14,144,235 instance level pairs we obtain 84 million concept level
pairs. In some cases, both a concept pair and its reverse (head-modifier reversed) are included, but
almost always at least one of them has very low score. In fact, in our system, we only keep concept
pairs whose score is above a threshold of 3. This gives us 386,283 concept-level pairs, which are only
2.73% of the instance-level pairs mined from the log. Then, by leveraging the concept clustering
results using k-Medoids [Li et al. 2013] (available in the download link with Probase dataset), we

Table IX: Examples of concept pattern

a
Index | Cluster Size Sﬁ:;deﬂ;zg;gerg Examples of Concept Pairs
1 615 pet, state dog, state;pet, southern state;pet, team
2 192 home, city home, city;home, town;home, place
3 143 cheat, game cheat, title;cheat, video game;cheat, online game
4 124 weather, city weather, county;weather, urban area;weather, town;
5 110 recipe, dish recipe, food;recipe, appetizer;recipe, favorite
6 89 coupon, store coupon, store;coupon, retailer;coupon, business
7 136 antibiotic, infection drug, infection;antibiotic, illness;antibiotic, virus
8 296 game, platform game, computer;video game, platform;game, console game pad
. treatment, disease;treatment, autoimmune disease;
9 100 treatment, disease .
treatment, medical problem
10 153 accessory, vehicle accessory, car;pump, vehicle;optional attachment, truck

¢ We choose the concept pair with the largest score as the representative of the concept pattern. Cluster size is the
number of concept pairs in each concept pattern.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 Z. Wang et al.

further reduce to 169,966 pairs. Thus, we obtain a concise model for head-modifier relationships.
Table IX shown some top concept level patterns.

We can see concept patterns in many different domains in Table IX, including “Game,” “Car,”
“Health,” “Food,” etc. Previous work on understanding head-modifier relationships is domain spe-
cific. Our method, on the other hand, models head-modifier relationships for the open domain.

Table X: Top Concept Level Patterns

\ for \ of \ with |
home city map city movie celebrity
recipe dish picture celebrity | problem vehicle

pet state university city people disease
cheat game cast movie state city
game platform song film interview celebrity
coupon store player team container lid
antibiotic infection | diagnosis illness job state
lyrics song skill professional| sport injury
code symptom | episode show dessert topping
shoe women | symptom disease food nutrient

Note: the first column is head, the second is modifier for each Prep.

Table X shows concept patterns obtained from different syntactic patterns. We find that different
syntactic patterns lead to concept patterns of different distribution. Concept patterns obtained from
the ‘for’ syntactic pattern are most diverse (# of unique head concepts) and have the best coverage,
and are more consistent with our manually labeled head and modifier dataset. Concept patterns
from ‘of” is less diverse, while patterns from ‘with’ contain valuable patterns missed by ‘for.” An
interesting thing we can do with the patterns is that, given two terms, we can predict the preposition
between them. In predicting, we are coming up with the missing semantics to make a meaningful
phrase out of two terms.

6.4. Accuracy of Head-Modifier Detection

6.4.1. Data. To evaluate our proposed detection method, we collect queries from real search logs.
To avoid biases in labeling, we use the ’for’ syntactic pattern to generate the labeled data. We find
queries matching the ‘for’ pattern in the search log from a separate 6 month interval (2013/01-
2013/06), and label the instance before ‘for’ as the head and the one after ‘for’ as the modifier. We
remove conflicting pairs in the labeled data (i.e., if (A[h], Blm)) and (B, A[m]) exist in the data,
we remove both of them). This gives us a high quality, automatically labeled head/modifier pairs:
(A[n], Bpm)). We then create two types of testing datasets from all queries (no matter it contains
“for” or not): (1) for 2 components, the query in this dataset should contain A and B, where (A,
B) is an entry in the labeled set; (2) for 3 components, the query in this dataset should contain A,
B, and C'. Finally, we get 6 testing datasets for 2-component queries (from 6-month query log with
frequency>5, and five monthly query log with frequency>5), and 1 testing dataset for 3-component
queries (from 6-month query log with frequency>5).

6.4.2. Metrics. We measure accuracy of the analysis. Specifically, let us assume that the true
heads and modifiers of a query are Q;, = {t},t5,....,t%} and Q,,, = {t7*, 5, ..., t7, }. We say that
a component ¢ is a true positive if it is detected as a head and ¢ € @}, or a modifier and ¢ € @,,,. The
detection is correct if all components are true positives. Query accuracy is measured by the total
number of correct queries divided by the total number of queries.

6.4.3. Detection accuracy for 2 components. Table XI shows the accuracy of our method on the 6
testing data sets. As we can see, our method achieves 90+% accuracy in all testing data sets, which
demonstrates that the mechanism we proposed for query head-modifier detection is effective.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Unsupervised Head-Modifier Detection in Search Queries 39:19

Table XI: Statistics of Testing Data Sets and Detection Accuracy

Query Log 6 month| 1 month| 1month] 1month] 1month| 1 month
frequency>5 |2013/01-2013/06/ 2013/02| 2013/03] 2013/04| 2013/05] 2013/06
queries 434,516,723|36,373,640|35,384,389(28,457,571(27,233,436|31,013,819

unique queries 3,640,441| 408,270| 422,397| 373,530 374,446] 403,792
Accuracy 90.44%| 91.90%| 91.35%| 91.93%| 91.74%| 91.42%

To investigate the performance of our method on conflicting queries, we select ten such cases
from the search log and recruit five human judges to label the head and modifier for each query. To
avoid biases in labeling, we also use another statistical method for the labeling by leveraging query
click log. Intuitively, queries with the same intent tend to have same clicked URLs. Thus, for each
conflicting query such as “laptop built-in camera,” we collect its related queries through co-clicked
URLSs. Then, we find queries matching the ‘for’ pattern from its related queries (e.g., “camera for
laptop™). Finally, the role of each component is voted by their pattern-based related queries. For ex-
ample, (“camera”},, “laptop”,,) will get one vote from “camera for laptop.” As shown in Table XII,
there is a general consensus among the annotators about the most likely head in each conflicting
query. And so does the query click log, which further proves the fairness of the annotators’ judge-
ment. Although it is hard to know exactly which one is the head in conflicting queries, our method
is able to detect the heads consistently with human thinking.

Table XII: Results of conflicting query detection

‘ Query [Human Votes|Click-log Votes|

clothes women 5/5 788/790

kids video 4/5 360/405

toys kids 5/5 366/370

frosting cupcakes 4/5 266/315
pasta sauce 3/5 87/128
smart cover ipad 5/5 777
laptop built-in camera 5/5 17/27
built-in cabinets kitchen 5/5 23/26
camera laptop 4/5 11/15

500 G hd drive desktop 515 8/11

Note: Head is in bold; modifier is in italics and underlined.

6.4.4. Detection performance on multi-components. Unlike 2-component queries, it is hard to
automatically collect large-scale high quality labeled data for multi-component queries. Thus, we
investigate the performance of the combined detection approach for multi-components through a
qualitative evaluation. We select 10 queries from the testing data set for 3-component queries. The
selected queries are then labeled by the same 5 annotators as the above conflict test. Table XIII
shows the results on queries with multiple components. As can be seen from Table XIII, it achieves
good performance in most cases. But it performs a little worse on multi-component queries than 2-
component queries, with one error detection for the query “beachfront lodging myrtle beach.” This
is reasonable because in the detection, we rely on 2-component detection results where errors may
exist, in addition to the estimation error on prior probability of two components by Eq. 11.

6.4.5. A comparison with a position-based method. We also verify one important point in head-
modifier detection for queries. Usually, in a phrase, the head appears as the last noun, and words
appearing before the head is its modifier. However, this rule does not work for search queries that do
not observe grammars of a natural language. We conduct an experiment to validate it. Using the 2
components queries in the 6 month testing data set, we calculate how many times the head appears

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 Z. Wang et al.

Table XIII: Results of 3-component query detection

\ Query [Human Votes|
abercrombie winter cloth 5/5
red hat server hardware 5/5
business grants for women 5/5
seattle jobs craigslist 5/5
kids cooking games 5/5
beachfront lodging myrtle beach 1/5
women seeking men marriage 5/5
1TB hd drive 128GB memory desktop 5/5
enlistment rexas ww2 4/5
toyota headlight cover cleaner 5/5

Note: Head is in bold; modifier is in italics and underlined.

last after the modifier and find that head appears last in only 4/.45% unique queries. This suggests
that only using the position to detect the head does not work well.

6.5. A Comparison with Other Methods

We compare the performance of our method with an existing approach [Bendersky et al. 2010], and
3 alternative approaches based on our approach.

6.5.1. Comparison with an existing method. Bendersky et al. [Bendersky et al. 2010] proposed a
weighting mechanism to measure the concept importance, which is a classical way of query intent
detection. In a query, different terms will be assigned different weights. The terms with the highest
weight could be seen as the head of this query. We implemented the method of term weighting. The
features used in that work include features of uni- or the N-gram count (Google uni/bi-gram); how
many times the term appears as a query and within a query (1-month query log); how many times
the term appears as a Wikipedia Title or within a Wikipedia Title. They also consider the ratio of

bi-gram and the product of its two unigrams for each feature (e.g., %). They use a linear

combination of these features to assign the weight to each term in the query.

After collecting the features as they do, we use SVM to classify the head and the modifier. We
use ‘A for B’ queries in 6 month query log as the training set as our approach and another 6-
month query log for test as before. We compute the feature vectors for each uni-/bi- grams in head
and constraint entity, and add up these vectors for head (i_i) and modifier (1) respectively. We
use libSVM package [Chang and Lin 2011] with linear kernel to train and classify. However, the
performance of this approach is poor and the accuracy is only about 55%. The reasons may be
the features they chose do not have direct relationship with our head-modifier relationship. By this
experiment, we can also conclude that traditional term weighting approach cannot resolve the head-
modifier detection problem.

6.5.2. Comparison with 3 alternative approaches. To assess the effectiveness of the proposed
method, we compare it with 3 possible alternative approaches based on our approach. We first
briefly describe the alternative approaches as follows:

— Entity-oriented modifier detection (EOMT): In this alternative approach, we create a dictionary
with two columns: (entity, score). The score is computed as a frequency difference, i.e., the differ-
ence between the frequency of the entity serving as a head and the frequency of it as a modifier.
We rank entities by their scores and make sure the entity dictionary is of roughly the same size
as the concept pattern knowledgebase. For a 2-component query, we check each component to
see whether it is a head (score>0) or a modifier (score<0). If the scores of both components are
greater than 0, less than 0, or equal to 0, we cannot detect the head and modifier in this way, and
we classify these queries as Not Identifiable.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Unsupervised Head-Modifier Detection in Search Queries 39:21

— Entity-oriented pattern detection (EOPT): In this approach, we create a dictionary of three
columns: (entityy), entityyy), score). The score is calculated from the frequency difference
between ‘A for B” and ‘B for A’. Similarly, we still keep the same size of this dictionary as other
dictionaries’ sizes to make a fair comparison. For a new query, we check whether it has matched
pair in the entity pair dictionary. If not, we classify the query as Not Identifiable.

— Concept-oriented modifier detection (COMT): In this approach, we create a dictionary with only
the modifier concepts and their scores, with two columns: (concept, score). For a given concept,
first we collect its entities which serve as heads in the training data set, and then get their concep-
tualization scores C'SH by Equation (6). Similarly, we can get C'S JM . The score of this concept in
the dictionary will be Score(c) = > CSM — 37 CSJ. For a new query, we conceptualize each
entity as Equation (6) and get the modifier score of each entity by > . CS(e, c) - Score(c). The
entity with higher modifier score is the modifier. If the score of both entities are the same (both
0), the query is classified as Not Identifiable.

We evaluate these methods and our method (which we call COPT or concept-oriented pattern
detection) using the same testing data set. Two evaluation metrics Accuracy and Not Identifiable
Rate are used in this evaluation. Table XIV shows the results, * denotes the improvement over the
baseline is statistically significant (sign-test, p value < 0.05). From this table, we draw the following
observations:

First, the concept based methods (COMT and COPT) perform much better than entity-based
methods (EOMT and EOPT). Compared with the best entity-based method EMOT, the accuracy was
significantly improved by 14.29% (COMT) and 20.06% (COPT) (in Table XIV(a)). It indicates that
lifting the instances to a higher level of concepts is effective for the head-modifier detection task.
As can be seen from Table XIV(b), the not identifiable rate of concept-based methods decreased
significantly. This shows that concept-based method achieves much better coverage.

Second, our method COPT is superior to COMT. The accuracy was improved by 5.77% and the
not identifiable rate declined markedly. COMT handles each entity independently and ignores the
relationships between entities in a query. In contrast, our COPT takes the head-modifier relationship
into consideration. This shows that the mined concept pattern knowledge works well on this task.

Third, EOPT is inferior to EOMT in terms of accuracy. This is reasonable. EOPT considered the
head-modifier relationship between entities. However, it also suffered a lot from the low coverage of
the entity pattern dictionary, as can be seen from its high not identifiable rate (40% in Table XIV(b)).
From another angle, it shows the importance of the conceptual knowledge in the task of head-
modifier detection.

Table XIV: Comparison of different methods on 6 month query log

(a) Accuracy comparison (b) Non-identifiable comparison

Different methods|Accuracy (%)[Impro. (%) Different methods|Not-identifiable
EOMT 70.38 - EOMT 0.10252
EOPT 56.85 -13.53 EOPT 0.40370
COMT 84.67* +14.29 COMT 0.00733
COPT 90.44* +20.06 COPT 0.00005

We also conduct a 5-fold cross validation of our method on a 6 month test data set. We split
the query log into 5 parts, generate the concept pattern dictionary on 4 parts and test our method
on the remaining queries. The accuracy is about 87% and the non-identifiable rate is near 0. For
comparison, we do 5-fold cross validation for EOMT, and the accuracy is only about 64% and the
non-identifiable rate is about 33%. These results show that our concept-oriented pattern detection
approach has better extendibility to unknown queries than entity-based method.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 Z. Wang et al.

1 1
> 1’ l FF 1’ —F OCOPT 5 0.1 S — CICOPT
g \ HEOMT E _ ©EOMT
3’] m] .] T@EOPT 2 \ EOPT

— — — — — —ocomT 2 ‘ comt

| | L || | | 0.01 - —

: . 0.001 . : , . . s
MAR APR MAY JUN JuL MAR APR MAY JUN JuL
Month Month
(a) Accuracy performance (b) Not Identifiable rate

Fig. 10: Test on each month query log

Comparing the results of different methods by month, neither the accuracy nor the not-
identifiable-rate changes much (Fig. 10). Comparing the pattern-based methods (including entity-
oriented pattern-based EOPT and concept-oriented pattern-based COPT) and non-pattern-based
methods (EOMT and COMT), we find that the pattern-based methods resulted in fewer errors. The
error rate of EOPT is near zero since it directly stores the head and modifier instance pairs. Besides,
the error rate of COPT (pattern-based) is about 10% lower than that of COMT (non-pattern-based).
This also indicates the advantage of mining patterns. The essence is that a term (or concept) can be
a head or a modifier in different context, so we can decide whether it is a head or a modifier only
when its context is given. For example, When the concept “game” accompanies “phone, platfor-
m, technology,” it is the head. E.g., in queries like “angry birds for windows phone 7” and “juice
defender for android,” “angry birds” (game) and ‘juice defender” (game) are the heads. While in
queries such as “angry birds walkthrough,” “game” is a modifier while “walkthrough” is the head.
Also, in queries like “zombie mod for minecraft,” “deadly boss mods for wow,” “game” is a modifier
concept while “mod” is the head concept.

6.6. Impact of Scoring Functions and Parameters

We evaluate the influence of dictionary sizes (i.e., the number of concept pairs) on accuracy. As
can bee seen from Fig. 11, for all methods, the accuracy increases and the Not Identifiable rate
decreases when the dictionary becomes larger, but different methods reach saturation at different
dictionary sizes. EOPT is not saturated even at 0.7M while COMT saturates at about 0.1M. It is
not surprising, because the coverage of entity-based method is much less than the concept-based
method. Besides, non-pattern-based dictionary contains less diverse entities or concepts than the
pattern-based dictionary. For our method, when the dictionary size reach 0.3M, the accuracy tends
to be saturated. It means that about 0.3M concept pairs can cover most entity pairs with modifying
relationship in queries.

Then, we test whether our conceptualization score function is suitable. We do the experiment on
6 month test data set using P(c|e) (“Probability”) and P(e|c) (“Typicality”) as conceptualization
score functions separately. Table XV shows the performances of different parameters, where * de-
notes the improvement over the baseline is statistically significant (sign-test, p value < 0.05). As
Table XV(a) shows, the accuracy using the former is 86% and the latter one is 87%. Both are less
than our method (“Top10”). On the other hand, the Not Identifiable rate of “Probability” is less than
that of “Typicality” while our method (“Top10”) is in the middle (in Table XV(b)). As described
above, using P(c|e) as the conceptualization score function often results in general concepts while
P(elc) results in more specific concepts. Thus, the coverage of the former is larger. Our score func-
tion is better than both methods, since our score function takes into account both typicality and
generality of a concept. We also test the performance of mapping to top 5 concepts for each entity

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Unsupervised Head-Modifier Detection in Search Queries 39:23

Accuracy
Not Identify

0 L L L L L L 0
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Dictionary Size (K) Dictionary Size (K)
(a) Accuracy performance (b) Not identifiable rate

Fig. 11: Performance on different dictionary size

instead of top 10. The accuracy is 87.5% and the Not Identifiable rate is larger than that of “Top 10.”
Thus, mapping to 10 concepts achieves better coverage and accuracy.

Table XV: Comparison of different parameters on 6 month query log

(a) Accuracy comparison (b) Non-identifiable comparison
Different parameters[Accuracy (%)|Improvement (%) Different parameters[Not-identifiable
Typicality §7.04 - Typicality 0.000382
Probability 86.33 -0.71 Probability 0.000007
Top5 87.51.44 +0.47 Top5 0.000049
Top10 90.44* +3.40 Top10 0.000348

6.7. Application on Sponsored Search

It is a challenging task to find matching ads for search queries, especially for tail queries, since tail
queries do not have click through data nor enough context to suggest the best match. We use our
method to calculate a similarity score between a tail query and an ad bid keyword. We first remove
the non-constraint modifiers from both queries and ads bid keywords. We then identify the head and
modifier components, and generate their concept representation (a concept vector for the head and a
concept vector for the modifier). We put more weight on the concept representation of the head, and
less on that of the modifier. Then, we use cosine similarity of the weighted vectors to measure the
similarity between queries and ad keywords. We randomly select and manually label 100 tail query
and bid keyword matching pairs: if the query and bid keywords are matched, we label 2’ for the
pair; if the query and bid keywords share the same main component but with different non-negligible
modifiers, we label ‘1’ for the pair; we label ‘0 for pairs with no matching components. There are
75 pairs labeled 2° and 11 queries labeled ‘1’ while 14 queries labeled ‘0. Some examples of
matched query and bid keyword pairs are shown in Table XVI.

The computational cost of our head-modifier detection approach is acceptable. As the framework
in Figure 3 shows, we did much offline work to mine two important knowledge: non-constraint
modifier list and concept pattern dictionary. During the online head-modifier detection, the compu-
tational cost of Modifier filtering and Pattern searching can be largely reduced by using dictionary
matching method. The process of Conceptualization can be also seen as a dictionary matching
method, where the isA relationships with probabilistic scores in Probase are regarded the dictio-
nary. For head-modifier detection, the most cost part is computing the product of different matched
scores costs (i.e., Eq. 8 and Eq. 11), which is also not complex. In practice, the average time cost

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:24 Z. Wang et al.

Table XVI: Examples of Query and Bid Keyword pairs

‘ Query | Query Substitute | Bid Keywords |
benny hill wiki benny hill benny hill videos
all Samsung Galaxy phone cases phone cases case Samsung Galaxy; phone covers Samsung Galaxy
appropriate preteen girl books preteen books books preteens;teen book;
Asturias guitar music guitar music classical guitar lessons; free guitar music
best ion ceramic hair dryer hair dryer best hair dryer; ionic hair dryer
are benefits exercise concerning heart health | benefits exercise exercise tips;10 benefits exercise;

of the proposed head-modifier detection approach is less than 0.01 s/query, which is acceptable for
online applications. This mechanism we developed for ads matching has been used in production.

7. RELATED WORK

Most query intent detection methods are based on query topic classification [Shen et al. 2006; Li
et al. 2008; Hu et al. 2009]. The task of KDD Cup 2005 was to classify queries into 67 categories [Li
et al. 2005]. These methods typically do not have good coverage, as they are constrained by existing
taxonomies. Another problem is that the taxonomies usually do not have appropriate granularity
for intent detection. For example, job search and job interview have different intents but both are
classified into the category of job. As an alternative, grouping queries into intents by means of
query clustering has also been popularly studied [Cheung and Li 2012a; Hu et al. 2012; Ren et al.
2014]. However, the implicit intents (clusters) are too coarse-grained to interpret the specific intent
in search queries, for example, interpreting that the user wants “smart cover,” rather than “iphone
5” given “popular smart cover iphone 5.”

Bendersky et al [Bendersky et al. 2010] worked on the problem of assigning different weights to
different terms in a query. Kumaran et al [Kumaran and Carvalho 2009] turned long queries into
short ones by dropping less significant terms in the query. Both of these two methods defined some
features to weight the terms or rank the sub-queries based on the terms statistics in collections. In
the former one, the authors defined query terms and bi-grams as concepts and gathered the concept
frequency in documents, Wikipedia title, and Google n-grams as features. They used the linear
combination of these features as weight or importance of each concept in the query. Then, they built
a weighted dependence model based on the concept weights for information retrieval. However, in
their work, concepts are just terms in the query. In the latter paper, the authors implemented several
predictors for query quality, such as mutual information between two terms, query clarity (i.e.,
the KL divergence of query model and collection model), and so on. Then, the authors used these
features to train a classifier by RankSVM and learn a ranking function for sub-queries. These two
methods learned the weight of terms in the query by term statistics features and need large amount of
corpus and labeling data. However, these features are not related to the meaning of the term directly
and thus it is hard to explain how these features decide the head-modifier relationship. Instead, our
method uses semantic features (concept patterns) directly. Our features are interpretable as they
explicitly reflect the head-modifier relationships.

Instead of using term statistics, recent works derive query intent by fitting queries into tem-
plates [Li 2010; Cheung and Li 2012b; Agarwal et al. 2010; Li et al. 2013]. Li et al. [Li 2010]
used semantic and syntactic features to decompose queries into intent head and intent modifier.
They considered attribute names as heads of the intent and attribute values as values of the intent.
However, they needed a head and modifier lexicon and knowledge about attributes and their values
for a specific domain. Li et al. [Li et al. 2013] proposed a clustering framework for finding syn-
onymous query intent templates for canonical query intent templates. Cheung et al. [Cheung and
Li 2012b] clustered queries and constructed patterns for each domain, aiming at domain-dependent
structured search. Chang et al. [Agarwal et al. 2010] developed a sophisticated probabilistic infer-
encing framework based on both forward and backward random walks to construct query templates
in each domain. Although all of these work and our method are to find the relationship between
terms in the query, they focused on queries that fit certain templates in a specific domain. Instead,

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Unsupervised Head-Modifier Detection in Search Queries 39:25

our work aims at finding general head-modifier relationships, dealing with all noun phrase queries
without assuming underlying common structures, and are not confined to a specific domain.

There are some existing works [Pasca and Van Durme 2007; Pasca and Van Durme 2008] on at-
tribute extraction that takes advantage of syntactic patterns with prepositions such as ‘for,” ‘of, etc.
Certainly, attributes can be used to define head-modifier relationships. But head-modifier relation-
ships are not confined by entity-attribute relationships. For example, in “movie review,” “side effect
for drug,” reviews and side effects are not really attributes for movies and drugs. Head-modifier
relationships are more general, such as in “game for girls,” “accessory for vehicle.” In our work,
we model head-modifier relationships as relationships between two concepts. There is much work
on mining all instance pairs with certain relationships. For example, Agichtein et al [Agichtein and
Gravano 2000] fould templates such as ORGANIZATION s headquarters in LOCATION for a spe-
cific relationship. These templates are generated by bootstrapping from seed instance pairs. One big
difference between such work and our work is that we are modeling relationships at the concept
level.

8. CONCLUSION

In this paper, we introduce a semantic approach for query head-modifier detection. We use an unsu-
pervised learning approach to obtain a large amount of instance level head-modifier relationships,
then we “lift” them into the concept level to derive a general and concise model for head-modifier
relationships in all domains. Extensive results have shown that our method achieves good perfor-
mance in identifying the head and modifiers in search queries. The technique described in this paper
can directly benefit semantic similarity calculation between two queries as it is able to assign differ-
ent weights to different components of these queries based on their head and modifier structures.

This work suggests some interesting directions for future work. For example, when handling
the multi-component queries, statistical information is used to estimate the extra semantic rela-
tion strength in each component pair. A very interesting future work is combining more semantic
knowledge (e.g., Attribute-Of relation) with existing detection mechanism. Besides, recognizing
those unseen entities and mapping them to appropriate concept patterns can further improve the
coverage and performance of our approach.

Acknowledgments

This work was partially supported by the National Key Basic Research Program (973 Program)
of China under grant No.2014CB340403. It was also supported by Beijing Advanced Innovation
Center for Imaging Technology (No.BAICIT-2016001), the National Natural Science Foundation
of China (Grand Nos. 61370126, 61672081), National High Technology Research and Develop-
ment Program of China (No.2015AA016004),the Fund of the State Key Laboratory of Software
Development Environment (No.SKLSDE-2015ZX-16).

REFERENCES
Ganesh Agarwal, Govind Kabra, and Kevin Chen-Chuan Chang. 2010. Towards rich query interpretation: walking back and
forth for mining query templates. In WWW. ACM, Raleigh, North Carolina, USA, 1-10.

Eugene Agichtein and Luis Gravano. 2000. Snowball: extracting relations from large plain-text collections. In DL. ACM,
San Antonio, Texas, United States, 85-94.

Michael Bendersky, Donald Metzler, and W. Bruce Croft. 2010. Learning concept importance using a weighted dependence
model. In WSDM. ACM, New York, USA, 31-40.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: a collaboratively created
graph database for structuring human knowledge. In SIGMOD. ACM, Vancouver, Bc, Canada, 1247-1250.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst.
Technol. 2, 3 (2011), 27:1-27:27.

Jackie Chi Kit Cheung and Xiao Li. 2012a. Sequence clustering and labeling for unsupervised query intent discovery. In
WSDM. ACM, Seattle, Wa, USA, 383-392.

Jackie Chi Kit Cheung and Xiao Li. 2012b. Sequence clustering and labeling for unsupervised query intent discovery. In
WSDM. ACM, Seattle, Washington, USA, 383-392.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:26 Z. Wang et al.

David A Evans and Chengxiang Zhai. 1996. Noun-phrase analysis in unrestricted text for information retrieval. In ACL.
ACL, Santa Cruz, California, USA, 17-24.

Andrew Hippisley, David Cheng, and Khurshid Ahmad. 2005. The head-modifier principle and multilingual term extraction.
Nat. Lang. Eng. 11, 2 (2005), 129-157.

Jian Hu, Gang Wang, Fred Lochovsky, Jian-tao Sun, and Zheng Chen. 2009. Understanding user’s query intent with wikipedi-
a. In WWW. ACM, Madrid, Spain, 471-480.

Yunhua Hu, Yanan Qian, Hang Li, Daxin Jiang, Jian Pei, and Qinghua Zheng. 2012. Mining query subtopics from search log
data. In SIGIR. ACM, Portland, Oregon, USA, 305-314.

Jinyoung Kim, Xiaobing Xue, and W Bruce Croft. 2009. A probabilistic retrieval model for semistructured data. In ECIR.
Springer, Toulouse, France, 228-239.

Giridhar Kumaran and Vitor R. Carvalho. 2009. Reducing long queries using query quality predictors. In SIGIR. ACM,
Boston, MA, USA, 564-571.

Taesung Lee, Zhongyuan Wang, Haixun Wang, and Seung Won Hwang. 2011. Web Scale Taxonomy Cleansing. Proceedings
of the VLDB Endowment 4 (2011), 1295-1306.

Hang Li, Gu Xu, Bruce Croft, and others. 2011. Query representation and understanding. In SIGIR Workshop on Query
Representation and Understanding, Vol. 44. ACM, Beijing, China, 48-53.

Peipei Li, Haixun Wang, Kenny Zhu, Zhongyuan Wang, and Xindong Wu. 2013. Computing Term Similarity by Large
Probabilistic isA Knowledge. In CIKM. ACM, San Francisco, CA, USA, 1401-1410.

Xiao Li. 2010. Understanding the semantic structure of noun phrase queries. In ACL. ACL, Uppsala, Sweden, 1337-1345.

Xiao Li, Ye-Yi Wang, and Alex Acero. 2008. Learning query intent from regularized click graphs. In SIGIR. ACM, Singa-
pore, Singapore, 339-346.

Yanen Li, Bo-June Paul Hsu, and ChengXiang Zhai. 2013. Unsupervised identification of synonymous query intent templates
for attribute intents. In CIKM. ACM, San Francisco, CA, USA, 2029-2038.

Ying Li, Zijian Zheng, and Honghua (Kathy) Dai. 2005. KDD CUP-2005 report: facing a great challenge. SIGKDD Explor.
Newsl. 7,2 (2005), 91-99.

Marius Pagca and Benjamin Van Durme. 2008. Weakly-Supervised Acquisition of Open-Domain Classes and Class At-
tributes from Web Documents and Query Logs. In Proceedings of ACL-08: HLT. ACL, Columbus, Ohio, 19-27.

Stelios Paparizos, Alexandros Ntoulas, John Shafer, and Rakesh Agrawal. 2009. Answering web queries using structured
data sources. In SIGMOD. ACM, Providence, Rhode Island, USA, 1127-1130.

Marius Pasca and Benjamin Van Durme. 2007. What you seek is what you get: extraction of class attributes from query logs.
In IJCAI. Morgan Kaufmann Publishers Inc., Hyderabad, India, 2832-2837.

Xiang Ren, Yujing Wang, Xiao Yu, Jun Yan, Zheng Chen, and Jiawei Han. 2014. Heterogeneous graph-based intent learning
with queries, web pages and Wikipedia concepts. In WSDM. ACM, New York City, USA, 23-32.

Stephen Robertson, Hugo Zaragoza, and Michael Taylor. 2004. Simple BM25 extension to multiple weighted fields. In
CIKM. ACM, Washington, DC, USA, 42-49.

Dou Shen, Jian-Tao Sun, Qiang Yang, and Zheng Chen. 2006. Building bridges for web query classification. In SIGIR. ACM,
Seattle, Washington, USA, 131-138.

Stephen Soderland, David Fisher, Jonathan Aseltine, and Wendy Lehnert. 1995. CRYSTAL: Inducing a conceptual dictio-
nary. In IJCAI, Vol. 2. AAAI, Montreal, Quebec, Canada, N12.

Yangqiu Song, Haixun Wang, Zhongyuan Wang, Hongsong Li, and Weizhu Chen. 2011. Short Text Conceptualization using
a Probabilistic Knowledgebase. In IJCAI. AAAI Press, Barcelona, Catalonia, Spain, 2330-2336.

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q. Zhu. 2012. Probase: a Probabilistic Taxonomy for Text Understand-
ing. In SIGMOD. ACM, Scottsdale, Arizona, USA, 481-492.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.

