

1

Self-Verifying Execution (Position Paper)

Matt McCutchen

MIT

matt@mattmccutchen.net

Daniel Song

Rice University

dwsong@rice.edu

Shuo Chen and Shaz Qadeer

Microsoft Research

 [shuochen,qadeer]@microsoft.com

Abstract—This paper proposes a notion called self-verifying

execution (SVX). SVX substantially lowers several hurdles that

real-world programmers face when adopting traditional

program verification approaches. The current focus of SVX is

to verify safety properties for programs that implement cloud-

API integrations. We envision that, if adopted by real-world

programmers, the SVX approach will enable a positive

paradigm shift in the community toward more rigorous

reasoning about security goals of cloud-API protocols.

Keywords—program verification; self-verifying execution;

cloud-API integration; single-sign-on (SSO)

I. INTRODUCTION

Program verification, if widely adopted by real-world
programmers, would be a strong approach to ensure system
safety and security. Unfortunately, verification technologies
are usually too demanding for most programmers. As a result,
they are rarely adopted in the real world.

In this paper, we propose a notion called self-verifying
execution (SVX). The core idea is that every actual execution
in the system is responsible for collecting its own executed
code, and symbolically proving that the code satisfies all
desired safety properties. Essentially, SVX is proving
program code on a per-execution basis at runtime, whereas
traditional approaches try to verify a priori the safety
properties for all possible executions. In this sense, SVX falls
into the general notion of runtime verification [8]. However,
SVX’s amortized runtime cost is near zero, because all
theorems proven by SVX are symbolic and can be effectively
cached.

SVX addresses several classic hurdles that programmers
face when applying program verification in the real world.
These hurdles include: (1) the need for precise modeling of
the client’s behaviors and the runtime platform and (2) the
need to analyze executions of unbounded length, which is
hard to automate. SVX substantially lowers these hurdles,
because (1) programmers don’t need to model most aspects of
the client’s behaviors or the runtime platform, since every
execution to be verified is driven by a real user on a real
platform, and (2) the proof obligation is significantly lowered
– the theorem to prove is only about a set of executions similar
to the current execution, not about all possible executions.
Furthermore, the designer of a protocol can write an abstract
base class that sets up all the necessary interaction with the
SVX framework (including the desired safety properties), and
all concrete subclasses will be automatically verified against

the same properties without the end programmers who write
them having to know anything about SVX.

For these reasons, we believe that the SVX-style
verification is practical for real-world programmers in certain
application domains.

Current focus of SVX. An application domain in which
we are applying SVX is the security of cloud-API integration.
Many major companies provide services as cloud APIs. These
services include single-sign-on (SSO), online payment, social
sharing, cloud storage, etc. They are integrated into millions
of websites and mobile apps [7]. However, the current practice
is fairly ad-hoc – basically, programmers just read protocol
specifications and developer’s guides to implement their code,
but there is no assurance that the implementations meet the
security goals of the protocols (admittedly, the security goals
themselves are unclear in the protocol specifications). Studies
have shown many logic bugs in real websites and apps that
can cause serious security breaches. For example, an attacker
can sign into other people’s accounts or make purchases
without paying [4][9][10] [12][13][14]. This type of issue is
ranked by the Cloud Security Alliance as the No.4 cloud
computing top threat [5].

To fundamentally solve the problem, it is important to
bring rigor into the practice of cloud-API integration. We are
making an effort in this direction, and SVX is a key enabler.
Section III will explain our open-source framework that
incorporates SVX into an object-oriented design for SSO
solutions. We envision that protocol designers, service-
providing companies and end programmers write code at
different abstraction levels in this single codebase. SVX is
able to ensure that every concrete app implementation satisfies
the properties that protocol designers specify. The framework
can accommodate most major SSO solutions. We have
demonstrated a variety of implementations that integrate
Microsoft, Facebook, Google, Yahoo SSO services, which are
based on OpenID 2.0, OAuth 2.0 and OpenID Connect 1.0
protocols. All implementations are verified against a protocol-
independent safety property with no effort by the end
programmer.

We hope that the real-world adoption of SVX will enable
a paradigm shift so that our community puts more emphasis
on end-to-end properties, rather than step-by-step instructions,
when specifying cloud-API protocols.

This position paper describes the research direction
consisting of our published work [4] with several important

2

recent improvements. The differences from [4] are
summarized in Section IV.

II. TRADITIONAL VERIFICATION VS. SVX

A. Program verification is a demanding task

Program verification in the real world is more than simply

feeding a program “P” and a property “” into an automatic
verifier. It is much more demanding. First, the program runs
on an underlying system platform, which is often called the
environment “E” in the software-testing terminology. An
effective model for E needs to be constructed for the
verification task. Second, the program is driven by an entity
whose behavior is arbitrary (e.g., a user, an app, a client, etc.).
The entity needs to be modeled as a test harness H that can
trigger all possible execution paths. For a security problem,
modeling E and H is especially difficult because (1) H is the
attacker, whose behaviors are hard to anticipate exhaustively,
(2) it is also hard to objectively determine which aspects of the
environment E “matter” and which are “details” to abstract
away when considering a given security problem.

Even if E and H are precisely modeled, verifying property

 is still challenging. Usually P exposes several public
methods that H (i.e., the attacker) can call arbitrarily. A

traditional verification approach needs to prove that  is
satisfied even if H makes an infinite number of such calls (i.e.,
H must be modeled as an outermost infinite loop that invokes
P’s methods). Real-world code is typically complex enough
that verification requires invariants and/or lemmas to be
specified by the programmer, which is not realistic for a
typical end programmer who wants to integrate cloud APIs
into a website.

B. Basic idea of SVX

SVX is an approach to lower these hurdles so that normal

programmers can build a system that is verified against a

safety property. We use a simple example, called the “ABC

system”, to explain the idea. The system consists of three

websites Alice.com, Bob.com and Charlie.com, as shown in

Figure 1. Each website holds an integer constant and has a

public method. A client can chain together an arbitrary

sequence of calls to these methods by starting with an

arbitrary instance of class Message and feeding the output of

a method call into the next method call in the chain.

max(m1,m2) compares the two input objects based on the

value field and returns the bigger one. The system needs to

ensure that when conclude(m2) is called, m2.largestParty

should indicate the party holding the largest value of the

three, i.e., property  below must be satisfied:

((m2.largestParty == “Alice") ==>
 (Alice.value >= Bob.value  Alice.value >= Charlie.value))
  ((m2.largestParty == "Bob") ==>
 (Bob.value >= Alice.value  Bob.value >= Charlie.value))
  ((m2.largestParty == “Charlie") ==>
 (Charlie.value >= Alice.value  Charlie.value >= Bob.value))

There is an extra field SymT in class Message whose purpose
will be explained shortly.

Threat model. The threat model we consider is the web

attacker model [2]. We require that all messages are sent over

HTTPS, so threats of network attackers (e.g., routers or

sniffers) are not of our concern. Also, we consider lower-

level language bugs (e.g., buffer overrun or cross-site

scripting) orthogonal to the problem we target. There is a rich

body of literature addressing low-level issues.

Basic idea of SVX. Unlike traditional approaches, the

goal of SVX is to verify at runtime if the current execution

satisfies . The execution in Figure 2 is correct. We now

show how SVX verifies this execution by leveraging the field

SymT in class Message. SymT, the “symbolic transaction” of

the current execution, is a string that can be thought of as an

onion: for the execution in Figure 2, SymT is initially an

empty string , representing a non-deterministic input

message; as the execution goes on, the SymT in each message

wraps the newly executed method over the previous SymT.

Thus, SymT essentially denotes how the result <40,“Bob”> is

obtained through the execution (substrings #grab, #compare

and #finish represent method hashes, which will be explained

in Section II.C). In the end, the message passed to conclude()
is the following.

< 40,“Bob”,
 Charlie.com:#finish(Bob.com::#compare(Alice.com::#grab())) >

When conclude is called, SVX verifies that the code

sequence represented by m2.SymT logically implies . The

Alice.comconst int Value=10;
Message grab (Message m1)
{ Message m2;

m2 = <Value, “Alice”>
m2.SignBy(“Alice.com”);
return m2;

}
Charlie.com

const int Value=5;
Message finish(Message m1)
{ ValidateSignature(m1);

Message m2;
m2 = <Value, “Charlie”>;
m2 = max(m1,m2);
conclude(m2);
return m2;

}

Bob.com

const int Value=40;
Message compare (Message m1)
{ ValidateSignature(m1);

Message m2;
m2 = <Value, “Bob”>;
m2 = max(m1,m2);
m2.SignBy(“Bob.com”);
return m2;

}

Client
(untrusted
party)

class Message
{ int value;

string largestParty;
string SymT;

}

Figure 1: The ABC system.

Alice.com
(10)

Bob.com
(40)

Charlie.com
(5)

<10, “Alice”, Alice.com::#grab()>

client

<arbitrary, “nobody”, >

<10, “Alice”, Alice.com::#grab()>

<40, “Bob”, Bob.com::#compare(Alice.com::#grab())>

grab

compare

finish

conclude

<40, “Bob”, Bob.com::#compare(Alice.com::#grab())>

<40, “Bob”, Charlie.com:#finish(Bob.com::#compare(Alice.com::#grab()))>

Figure 2: A concrete execution of SVX.

3

verification is called certification in SVX. For the execution

in Figure 2, the certification will succeed, so the execution

leading to the result <40,“Bob”> is secure and accepted. On

the other hand, if the client calls grab on Alice.com and then

immediately calls finish on Charlie.com, Charlie’s conclusion

is not the overall maximum, but only the maximum of Alice’s

and Charlie’s values. For this execution, the last message will

be <10,“Alice”,Charlie.com:#finish(Alice.com::#grab()))>.

The computation represented by this SymT is insufficient to

ensure , so the certification fails and the execution is

rejected.

While this paper discusses only linear method

sequences, we have extended SVX to support methods with

multiple input messages and to automatically detect the most

common cases in which the same message is used more than

once in a SymT, so in general a SymT describes a directed

acyclic graph of data flow with some restrictions.

The runtime overhead of SVX may seem prohibitively

high, because the code sequence of every execution is

verified against property . Fortunately, because the SVX

verification is only about code, not concrete data, the proven

theorems can be effectively cached. Hence, every execution

only needs to pay a cache-lookup cost, unless its code

sequence is not seen before.

Trust relations in SymT. Each property verified with

SVX must specify a set of trusted parties, which are assumed

never to add false information to a SymT. These parties

should be the ones on whom the property inherently depends

(i.e., it cannot be proved without some knowledge of their

behavior) and are the same ones that would be modeled as

known programs rather than nondeterministic agents in

traditional offline verification. Because an execution goes

through different parties, trusted or untrusted, the SymT

representation denotes different trust relations: (1) unsigned

and signed messages are denoted using single-colon and

double-colon, respectively; (2) browser redirections vs.

server-to-server calls are denoted using single-parentheses

and double-parentheses, respectively. Many details about

trusting the SymT “onion” are described in Section IV.A of

our paper [4]; the following paragraph gives a sketch.

When the SymT for the execution in Figure 2 is

presented for certification, the certifier examines it like an

onion: the SymT is scanned inwards, starting from

Charlie.com:#finish. As soon as the certifier encounters an

untrusted layer, which is either an unsigned browser

redirection or an untrusted party (e.g., an unknown

David.com), the layer and everything inside are discarded

from the SymT. For example, if Bob.com forgot to sign its

message, then the second layer of SymT would be

“(Bob.com:#compare…)”, with single-parentheses enclosing

a single-colon (i.e., an unsigned browser redirection). The

certifier would discard it with everything inside, so the SymT

would be treated as “Charlie.com:#finish()”, which denotes

that Charlie.com runs finish() on an arbitrary input. It would

not pass the certification, and the execution would be

rejected.

C. Public interface and internal mechanism of SVX

We have built SVX as a library that exposes only two

public functions: RecordMe and Certify. For the “ABC

system”, programmers add m2.SymT=RecordMe(m1.SymT)
inside methods grab, compare and finish and call

Certify(m2.SymT, ) inside method conclude. RecordMe uses

the language’s reflection capability to compute the method

hash of the caller method, and concatenate it with m1.SymT

with colons and parentheses to form m2.SymT. The method

hash is computed using SHA-1 over the following pieces of

information of the caller method: the method name, the class

name of the concrete object of the method, the code of the

containing DLL, and the class names of the input/output

messages. Recording the class names is important – it allows

the SVX mechanism to be built into an abstract base class

which can record executions on every concrete

implementation. Note that the “ABC system” does not have

the aspect of abstraction/concretization. The aspect will

become clear when we discuss SSO protocols and

implementations in Section III.

Function Certify is shown in Figure 3. First, it performs

the scanning operation described earlier in order to discard

the untrusted “onion core” in the SymT, if any. The resulting

SymT represents the computational sequence that we trust.

This SymT and property  constitute the theorem to be

proven. There is a theorem cache to store the theorems that

have been examined before. If the current theorem exists in

the cache, the cached result (i.e., pass or fail) is returned.

Otherwise, the theorem is passed to a remote server, called

the certification server. The server does two things: first, it

synthesizes a program to represent the computations recorded

in the SymT. The synthesized program is called the

vProgram. This step requires a “de-hash” table, which can

retrieve method information and DLL code corresponding to

a method hash. Second, it verifies the vProgram using an off-

the-shelf program verifier, described in our paper [4]. We

currently host the certification server in the Microsoft Azure

cloud.

Theorem
cache

certify(SymT, )

Charlie.com The certification server

vProgram synthesizer

Off-the-shelf
program verifier

Scan SymT as
an “onion”

De-hash the
hash values

Assemble
the vProgramcache

hit
vProgram

Figure 3: Function Certify and the certification server.

4

D. Limitations of SVX

Monotonicity of properties. In principle, SVX can only

verify properties of the form “every time this point in the code

is reached,  holds”, where  is monotonic, i.e., one can

deduce from a recorded method sequence that  holds

regardless of what additional events may have occurred in the

system outside the current transaction. In our implementa-

tion,  is a C# expression that is evaluated on the final state

of the vProgram, so in order for it to be interpretable in terms

of the real system, some relationship must be maintained

between the states of the vProgram and the real system.

Typically,  asserts the presence of entries in append-only

data structures stating that a party determined a certain

condition to be met (e.g., the identity provider received the

correct password from a user); if the entries are present in the

vProgram, they will also be present in the real system. A

future version of SVX will enforce that  takes this form.

Ensuring that the implementation generates the entries only

under the right circumstances is outside the scope of SVX.

The closest one can come to asserting a nonmonotonic

property such as “the user’s access has never been revoked”

is to have one party generate an entry stating that it had no

revocation on record as of a specific time and then have 

assert the presence of a sufficiently recent entry, effectively

moving the nonmonotonicity outside the scope of SVX (but

still verifying any subsequent protocol logic).

Modeling. SVX cannot remove the need to model any

aspects of the environment and/or the attacker that affect the

verification of a single, known SymT. For example, the

security of SSO protocols is generally based on secret values

exchanged between websites, so a comprehensive

verification of such a protocol (going beyond the necessary

condition discussed in III.B below) must somehow model the

attacker’s knowledge of these secrets, whether or not SVX is

used. However, typically much of the “boring” complexity of

the system (such as the mapping of HTTP requests to

handlers) becomes irrelevant when a single SymT is given.

III. CURRENT APPLICATION AREA OF SVX

In the introduction, we explained the ad-hoc nature of
today’s cloud-API integration, which results in many logic
bugs in real websites. We believe that SVX is a promising
technology to fundamentally address these logic bugs.
Specifically, we are working on an open-source project named
SVAuth, which is an object-oriented framework for protocol
designers, service-providing companies and end programmers
to build single-sign-on (SSO) solutions in a common
codebase. The goal of SVAuth is to ensure that every concrete
SSO implementation that an end programmer constructs
satisfies the safety properties that the protocol designers
intend.

A. Overview of SVAuth

SVAuth is implemented using C#. It runs on .NET Core
[1], which is a light-weight .NET runtime for Windows,

Linux, OS X and Docker. An important aspect about SVX,
which was not shown in the “ABC system”, is how it works
with abstraction and concretization.

Figure 4 shows the class hierarchy of the SVAuth
framework. It consists of four levels. The top level is called
“GenericAuth”, which defines the classes for the most basic
concepts in SSO, including identity provider (IdP), relying
party (RP) and common messages in all SSO solutions.
Moreover, it defines the necessary safety properties that all
SSO executions should satisfy.

GenericAuth does not specify how the messages are
exchanged and handled, which is defined by the protocol-level
classes corresponding to each individual protocol, such as
OAuth 2.0 and OpenID 2.0. The service level consists of
classes that implement solutions for Facebook, Google and
other service companies. These classes are derived from
protocol-level classes. Note that every company’s cloud APIs
allow several reasonable solutions to be implemented, so a
box in Figure 4, e.g., Google Login, only represents a solution,
not the solution for Google login. At the fourth level,
individual websites may derive from the service level to adapt
the solutions to their specific needs.

B. Enabling SVX in the class hierarchy

The goal of SVAuth is to ensure that all concrete websites
satisfy the safety properties specified at the GenericAuth
level. Traditional approaches accomplish this goal via
refinement [11], i.e., proving that the GenericAuth-level
properties are satisfied at every level in the hierarchy, an
approach that demands a lot from end programmers. Instead,
since the proof obligations generated by SVX are simple
enough to be solved automatically, we just solve them
separately for each concrete implementation. We build the
self-verifying capability into the top two levels of the class
hierarchy; SVX ensures that all concrete websites inherit the
capability automatically. Specifically, we simply call Certify

at the GenericAuth level, and call RecordMe in every message
handler at the protocol level. Programmers at the service level
and the website specific level do not need to be aware of the
SVX mechanism. The only expertise they need is object-
oriented programming. In the rest of this subsection, we
present more details about our approach.

Safety property . Our previous paper [4] defines a safety
property that is necessary for SSO (in Section V.B on page 9
of the paper). It is defined jointly over the verifying RP and
the IdP that this RP wishes to use, which are the trusted parties

OAuth 1.0 OpenID 2.0OAuth 2.0

OpenID Connect 1.0

Microsoft
Accounts

Yahoo LoginFacebook
Connect

Twitter Login

Protocol level

Service level

Website
specific level

Derivation
for a.com

Google
Login

GenericAuth Generic level

Derivation
for b.com

Derivation
for c.com

Figure 4: The class hierarchy of SVAuth

5

(compare to the property in the ABC example, which is
defined over Alice.com, Bob.com and Charlie.com).
Intuitively, the property asserts that: when the RP has made
the conclusion that the client is “Alice”, then this SSO
execution should have witnessed an ID claim on the IdP in
which the user ID is “Alice”, the realm equals this RP’s
identifier, and the ID claim is redirected to the web address of
the RP. To give a flavor of the property’s definition, we show
the C# assertion below. Due to the space constraint, we omit
a detailed explanation of how GenericAuth defines the SSO
core concepts.

ID_claim = IdP.IdentityRecords.getEntry(
 SignInIdP_Req.IdPSessionID, RP.Realm);
Contract.Assert(ID_claim.Redir_dest == RP.Domain
 && ID_claim.UserID == conclusion.UserID);

It is important to note that this property is just one
necessary condition of SSO. There are other conditions that
should be defined for SSO security. Defining properties to
capture all real-world security concerns is an effort that needs
to involve a broader discussion in the SSO community. The
current focus of SVAuth is to build the underlying verification
technology so that if these properties can be defined, they can
be verified.

An example implementation. Figure 5 shows one of our
demo websites (called foo.com), which uses Microsoft
Accounts login. The GenericAuth level defines the parties
(e.g., GenericAuth.IdP) and messages (e.g., SignInIdP_req). It
also defines the safety property using these parties and

messages. The OAuth 2.0 protocol inherits from GenericAuth,
and the OpenID Connect 1.0 (a.k.a. OIDC 1.0) inherits from
OAuth 2.0. The protocol-level classes define message
handlers, such as ConstructTokenRequest in OIDC 1.0. Each

message handler calls RecordMe to compute the SymT string.
These handlers call some virtual methods which need to be
concretized by the service level for Microsoft, Facebook,
Google, etc., and by concrete websites like foo.com. At the
bottom two levels, programmers do not call either RecordMe

or Certify, and only need to concretize virtual methods defined
by the protocol level.

 During every execution, RecordMe records the concrete
class of the caller object. In other words, when
ConstructTokenRequest calls RecordMe, the resulting method
hash captures the fact that the class of the concrete object is
foo.RP, not just OIDC10.RelyingParty. When an execution goes

through the entire flow, the final SymT will be: foo.com:#
Concludefoo.RP((Live.com:#TokenEndpointMicrosoft.IdP((foo.com:
#ConstructTokenRequestfoo.RP(Live.com:#SignInIdPMicrosoft.IdP())
))), in which the subscripts denote the classes of the concrete
objects. If the same OIDC10 protocol flow is concretized by
a website bar.com and the Google login service, then the
SymT will lead to a different theorem to verify. This
essentially means that, without using the approach of
refinement, protocol designers can spend a one-time effort
building SVX into the protocol-level classes, so that the effort
will be massively scaled up to cover all derived
implementations.

C. Real-world deployment

In this subsection, we explain how SVAuth will be
deployed by programmers in the real world.

Platform independence. Real-world websites are built on
different platforms, such as PHP, JSP, ASP.NET, Python,
Node.JS, and many others. The current situation is that every
identity service company, such as Facebook, Google, and
Microsoft, publishes libraries for some of the platforms; for
other platforms, programmers have to search for suitable
libraries from the web or call the raw APIs according to
protocol specifications. In fact, even with a library, the
integration may not be easy, because different libraries expect
different ways of integration, so programmers need to
understand the documentation and sample code for each
library.

SVAuth provides a platform-independent solution for
every web programmer. As explained earlier, it is written in
C# and runs on .NET Core as a standalone web service,

GenericAuth.IdP
SignInIdP_req

Authentication

GenericAuth.RP

GenericAuth.RS

Untrusted party

SignInIdP_resp_SignInRP_req

Resource_req AuthTicket_Req
AuthTicket_Resp

A
ut

ho
ri

za
ti

on

OAuth20.
AuthorizationServer

AuthorizationRequest

OAuth20.Client

OAuth20.
ResourceServer

AccessTokenRequest

AccessTokenResponse

AuthorizationResponse

OIDC10.
OpenIDProvider

AuthenticationRequest

OIDC10.
RelyingParty

TokenRequest
TokenResponse

AuthenticationResponse

Browser

Browser

Untrusted party GenericAuth.AS

ConstructToken
Request()

Conclude()
TokenEndpoint()

SignInIdP()

G
en

er
ic

A
ut

h
O

A
ut

h
2.

0
O

pe
nI

D
 C

on
ne

ct
 1

.0

Classes for Microsoft Accounts IdP (login.live.com) and RP,
such as Microsoft.IdP and Microsoft.RP

foo.com’s class foo.RP, which inherits from Microsoft.RP

Figure 5: Website foo.com using Microsoft Accounts login.

Identity Provider
(IdP)

Relying Party
(RP)

SVAuth

Web app

User

Set session variable
“SVAuthResult” on
the web app

Figure 6: SVAuth is small standalone executable on the RP.

6

listening on its own port, as opposed to a library to be linked
with a web app. Figure 6 shows SVAuth in an SSO system.
The dashed-line triangle in the figure performs the SSO
execution without involving the web app. The web app can be
built in any web platform, not necessarily .NET Core.

The integration of an SSO solution into the web app is as

easy as pasting a line of code. Every SSO solution in SVAuth

is represented as a button, such as “ ”. The source

code (which is a single line of code) of the button can be

obtained by the programmer by right-clicking the button. To

integrate the solution, the programmer only needs to paste this

line of code into her web app. Consequently, when a user

clicks on the button, the entire SSO execution will be

accomplished by SVAuth, and the result will be set to the web

app’s session variable “SVAuthResult”. Therefore, the web

app does not need to be aware of the SSO protocol. The entire

SSO functionality is just like a local function – the button calls

the function, and the result will be in the session variable.

Involving identity service companies. The SVX

approach expects every web service in an execution to

participate in computing the SymT string. For SSO, this

means that identity service companies like Facebook, Google

and Microsoft need to provide method hashes in their

responses.

We envision two stages to make this happen. In the current

(first) stage, the companies are not aware of the SymT field.

Hence, the current version of SVAuth has to provide source

files that model the IdP’s methods. Every call to an IdP is sent

to the actual IdP, but the method hash of the response is

computed using the corresponding method in the IdP’s model.

Of course, the caveat is that the model is only our best-effort

approximation for the actual IdP’s logic.

In the second stage, we will reach out to the identity

service companies so that they can review and correct our

current models. Eventually, if the companies are persuaded to

attach the method hashes by themselves, the SVAuth

codebase will not need the IdP models. Services that are not

implemented in .NET can still maintain their own .NET model

and attach the corresponding hash, so other SVX-enabled

services can interoperate with them transparently.

D. Runtime performance

TABLE I shows the performance numbers that we

obtained using a Windows 8.1 machine with a 2.5GHz CPU

and 16GB RAM. The measured implementations include the

ABC system, and our RP implementations interacting with

Microsoft (LiveID) login, Yahoo login and Facebook login.

 As explained earlier, the computed method hashes and

certified SymTs are cached, so the actual runtime overhead is

near zero. Specifically, a method needs to compute its hash

only in its first run after a website starts; the vProgram

synthesis/verification happens only when an execution goes

through a previously unseen sequence of methods or any

DLLs containing recorded methods were recompiled. In

either scenario, the overhead is a one-time cost. The per-

execution cost for recording SymT is simply a set of string

concatenation operations, and that for certifying a SymT is a

string scanning (for the onion) and a local cache lookup. As

a comparison, the table provides the breakdown of the one-

time overhead, which is indeed expensive. It includes the

compilation overhead, and the overheads of RecordMe and

Certify if caching was disabled.

IV. RELATED WORK

Unlike the SVX approach, offline (i.e., completely static)

verification approaches were used by researchers to analyze

SSO protocols and implementations. For example, Bansal et

al. [3] used ProVerif to analyze OAuth 2.0. ProVerif uses

sound approximations for executions of unbounded length,

which may in general introduce false positives. This work was

based on handwritten models in the applied pi-calculus, not

implementation code. It took a long time to run the

verification (e.g., almost 3 hours for verifying the OAuth 2.0

authorization code flow). Fett et al. constructed a formal

model for the BrowserID SSO protocol, and used it to guide

their security investigation about the protocol.

The most closely related work is our earlier paper [4].
However, the current paper has three main aspects
representing new development: (1) the earlier paper did not
have the aspect of object-oriented class hierarchy, in which
SVX is built into abstract base classes and automatically
inherited by all concrete implementations; (2) we did not use

TABLE I: RUNTIME OVERHEAD – PER-EXECUTION AND ONE-TIME COSTS.

Protocol
party

Per-execution cost One-time cost

Runtime overhead
vProgram

compilation
Average overhead of

RecordMe without caching
Average overhead of

Certify without caching

The ABC system

Alice  0ms 670ms 247ms

6666ms

Bob  0ms 635ms 222ms

Charlie  0ms 646ms 231ms

Microsoft (LiveID)
login

IdP  0ms 852ms 151ms

13674ms RP  0ms 1178ms 228ms

Yahoo login

IdP  0ms 678ms 153ms

10959ms RP  0ms 1073ms 165ms

Facebook login

IdP  0ms 777ms 163ms

11968ms RP  0ms 1001ms 205ms

7

the language’s reflection capability, but required a
programmer to manually copy source code of invoked
methods as string constants for vProgram synthesis; (3) it was
not built on .NET Core runtime, and was a library only usable
for ASP.NET websites.

V. SUMMARY AND OUR VISION

This paper describes the basic idea of SVX, which

lowers the hurdles that real-world programmers face when

applying program verification. Specifically, we explain how

to apply the SVX strategy in the area of online-API

integration. We propose the SVAuth framework, which is

able to ensure that every SSO execution satisfies safety

properties that protocol designers intend. It seems promising

that all major SSO solutions can be built within the

framework. Because SVAuth is platform independent, it will

benefit all web platforms.

The vision of SVAuth is that protocol designers, service

companies and individual website programmers can work

together on a single codebase, so that the SSO security of

every concrete website can be checked end-to-end. The use

of SVAuth will enable a paradigm shift in the community that

leads to two positive impacts: (1) People will no longer think

of a protocol specification as an English document with

pseudo-code examples. Instead, a specification is a set of

abstract classes that comprises real code running on every

website. (2) The SSO community today spends most effort

specifying step-by-step instructions for programmers, but no

real effort specifying end-to-end safety properties that the

protocols must achieve. Programmers often pay much

attention trying to understand protocol-specific details, yet

fail to build secure implementations. The SVAuth effort can

motivate the community to define end-to-end properties, in

addition to step-by-step procedures for achieving those

properties.

REFERENCES

[1] .NET Core. https://www.microsoft.com/net/core

[2] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitchell, and
Dawn Song. Towards a Formal Foundation of Web Security.
Proceedings of the 23rd IEEE Computer Security Foundations
Symposium, 2010

[3] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud,
and Sergio Maffeis. Discovering concrete attacks on website
authorization by formal analysis. Journal of Computer Security, Vol.
22, No. 4, July 2014, pp. 601-657.

[4] Eric Chen, Shuo Chen, Shaz Qadeer, and Rui Wang. Securing
Multiparty Online Services via Certification of Symbolic Transactions,
IEEE Symposium on Security and Privacy 2015.

[5] Cloud Security Alliance. "The Notorious Nine – Cloud Computing Top
Threats in 2013".
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/Th
e_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf

[6] Daniel Fett, Ralf Küsters, and Guido Schmitz. An Expressive Model
for the Web Infrastructure: Definition and Application to the
BrowserID SSO System. IEEE Symposium on Security and Privacy,
2014.

[7] SimilarTech. Number of websites using Facebook Connect.
https://www.similartech.com/technologies/facebook-connect

[8] The Runtime Verificaiton Workshop. http://runtime-verification.org/

[9] Fangqi Sun, Liang Xu, Zhendong Su. Detecting Logic Vulnerabilities
in E-Commerce Applications. Proceedings of The Network and
Distributed System Security Symposium 2014

[10] San-Tsai Sun and Konstantin Beznosov. The devil is in the
(implementation) details: an empirical analysis of OAuth SSO systems.
ACM conference on Computer and Communications Security 2012.

[11] Niklaus Wirth. Program Development by Stepwise Refinement.
Communications of the ACM, Vol. 14, No. 4, April 1971, pp. 221-227.

[12] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz Qadeer. How to
Shop for Free Online – Security Analysis of Cashier-as-a-Service
Based Web Stores. IEEE Symposium on Security and Privacy, 2011

[13] Rui Wang, Shuo Chen, XiaoFeng Wang. Signing Me onto Your
Accounts through Facebook and Google: a Traffic-Guided Security
Study of Commercially Deployed Single-Sign-On Web Services. IEEE
Symposium on Security and Privacy, 2012.

[14] Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David Evans, Yuri
Gurevich. Explicating SDKs: Uncovering Assumptions Underlying
Secure Authentication and Authorization. USENIX Security, 2013.

https://www.rarnonalumber.com/net/core
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://www.similartech.com/technologies/facebook-connect
http://runtime-verification.org/

