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Abstract—This paper proposes a notion called self-verifying 

execution (SVX). SVX substantially lowers several hurdles that 

real-world programmers face when adopting traditional 

program verification approaches. The current focus of SVX is 

to verify safety properties for programs that implement cloud-

API integrations. We envision that, if adopted by real-world 

programmers, the SVX approach will enable a positive 

paradigm shift in the community toward more rigorous 

reasoning about security goals of cloud-API protocols. 
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I. INTRODUCTION  

Program verification, if widely adopted by real-world 
programmers, would be a strong approach to ensure system 
safety and security. Unfortunately, verification technologies 
are usually too demanding for most programmers. As a result, 
they are rarely adopted in the real world.  

In this paper, we propose a notion called self-verifying 
execution (SVX). The core idea is that every actual execution 
in the system is responsible for collecting its own executed 
code, and symbolically proving that the code satisfies all 
desired safety properties. Essentially, SVX is proving 
program code on a per-execution basis at runtime, whereas 
traditional approaches try to verify a priori the safety 
properties for all possible executions. In this sense, SVX falls 
into the general notion of runtime verification [8]. However, 
SVX’s amortized runtime cost is near zero, because all 
theorems proven by SVX are symbolic and can be effectively 
cached. 

SVX addresses several classic hurdles that programmers 
face when applying program verification in the real world. 
These hurdles include: (1) the need for precise modeling of 
the client’s behaviors and the runtime platform and (2) the 
need to analyze executions of unbounded length, which is 
hard to automate. SVX substantially lowers these hurdles, 
because (1) programmers don’t need to model most aspects of 
the client’s behaviors or the runtime platform, since every 
execution to be verified is driven by a real user on a real 
platform, and (2) the proof obligation is significantly lowered 
–  the theorem to prove is only about a set of executions similar 
to the current execution, not about all possible executions. 
Furthermore, the designer of a protocol can write an abstract 
base class that sets up all the necessary interaction with the 
SVX framework (including the desired safety properties), and 
all concrete subclasses will be automatically verified against 

the same properties without the end programmers who write 
them having to know anything about SVX. 

For these reasons, we believe that the SVX-style 
verification is practical for real-world programmers in certain 
application domains.  

Current focus of SVX. An application domain in which 
we are applying SVX is the security of cloud-API integration. 
Many major companies provide services as cloud APIs. These 
services include single-sign-on (SSO), online payment, social 
sharing, cloud storage, etc. They are integrated into millions 
of websites and mobile apps [7]. However, the current practice 
is fairly ad-hoc – basically, programmers just read protocol 
specifications and developer’s guides to implement their code, 
but there is no assurance that the implementations meet the 
security goals of the protocols (admittedly, the security goals 
themselves are unclear in the protocol specifications). Studies 
have shown many logic bugs in real websites and apps that 
can cause serious security breaches. For example, an attacker 
can sign into other people’s accounts or make purchases 
without paying [4][9][10] [12][13][14]. This type of issue is 
ranked by the Cloud Security Alliance as the No.4 cloud 
computing top threat [5].  

To fundamentally solve the problem, it is important to 
bring rigor into the practice of cloud-API integration. We are 
making an effort in this direction, and SVX is a key enabler. 
Section III will explain our open-source framework that 
incorporates SVX into an object-oriented design for SSO 
solutions. We envision that protocol designers, service-
providing companies and end programmers write code at 
different abstraction levels in this single codebase. SVX is 
able to ensure that every concrete app implementation satisfies 
the properties that protocol designers specify.  The framework 
can accommodate most major SSO solutions. We have 
demonstrated a variety of implementations that integrate 
Microsoft, Facebook, Google, Yahoo SSO services, which are 
based on OpenID 2.0, OAuth 2.0 and OpenID Connect 1.0 
protocols. All implementations are verified against a protocol-
independent safety property with no effort by the end 
programmer. 

We hope that the real-world adoption of SVX will enable 
a paradigm shift so that our community puts more emphasis 
on end-to-end properties, rather than step-by-step instructions, 
when specifying cloud-API protocols. 

This position paper describes the research direction 
consisting of our published work [4] with several important 
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recent improvements. The differences from [4] are 
summarized in Section IV. 

II. TRADITIONAL VERIFICATION VS. SVX 

A. Program verification is a demanding task 

Program verification in the real world is more than simply 

feeding a program “P” and a property “” into an automatic 
verifier. It is much more demanding. First, the program runs 
on an underlying system platform, which is often called the 
environment “E” in the software-testing terminology. An 
effective model for E needs to be constructed for the 
verification task. Second, the program is driven by an entity 
whose behavior is arbitrary (e.g., a user, an app, a client, etc.). 
The entity needs to be modeled as a test harness H that can 
trigger all possible execution paths. For a security problem, 
modeling E and H is especially difficult because (1) H is the 
attacker, whose behaviors are hard to anticipate exhaustively, 
(2) it is also hard to objectively determine which aspects of the 
environment E “matter” and which are “details” to abstract 
away when considering a given security problem. 

Even if E and H are precisely modeled, verifying property 

 is still challenging. Usually P exposes several public 
methods that H (i.e., the attacker) can call arbitrarily. A 

traditional verification approach needs to prove that  is 
satisfied even if H makes an infinite number of such calls (i.e., 
H must be modeled as an outermost infinite loop that invokes 
P’s methods). Real-world code is typically complex enough 
that verification requires invariants and/or lemmas to be 
specified by the programmer, which is not realistic for a 
typical end programmer who wants to integrate cloud APIs 
into a website. 

B. Basic idea of SVX 

SVX is an approach to lower these hurdles so that normal 

programmers can build a system that is verified against a 

safety property. We use a simple example, called the “ABC 

system”, to explain the idea. The system consists of three 

websites Alice.com, Bob.com and Charlie.com, as shown in 

Figure 1. Each website holds an integer constant and has a 

public method. A client can chain together an arbitrary 

sequence of calls to these methods by starting with an 

arbitrary instance of class Message and feeding the output of 

a method call into the next method call in the chain. 

max(m1,m2) compares the two input objects based on the 

value field and returns the bigger one. The system needs to 

ensure that when conclude(m2) is called, m2.largestParty 

should indicate the party holding the largest value of the 

three, i.e., property  below must be satisfied: 

((m2.largestParty == “Alice") ==> 
      (Alice.value >= Bob.value  Alice.value >= Charlie.value)) 
    ((m2.largestParty == "Bob") ==>  
      (Bob.value >= Alice.value  Bob.value >= Charlie.value)) 
    ((m2.largestParty == “Charlie") ==>  
       (Charlie.value >= Alice.value  Charlie.value >= Bob.value)) 
 

There is an extra field SymT in class Message whose purpose 
will be explained shortly. 

Threat model. The threat model we consider is the web 

attacker model [2]. We require that all messages are sent over 

HTTPS, so threats of network attackers (e.g., routers or 

sniffers) are not of our concern. Also, we consider lower-

level language bugs (e.g., buffer overrun or cross-site 

scripting) orthogonal to the problem we target. There is a rich 

body of literature addressing low-level issues.  

Basic idea of SVX. Unlike traditional approaches, the 

goal of SVX is to verify at runtime if the current execution 

satisfies . The execution in Figure 2 is correct. We now 

show how SVX verifies this execution by leveraging the field 

SymT in class Message.  SymT, the “symbolic transaction” of 

the current execution, is a string that can be thought of as an 

onion: for the execution in Figure 2, SymT is initially an 

empty string , representing a non-deterministic input 

message; as the execution goes on, the SymT in each message 

wraps the newly executed method over the previous SymT. 

Thus, SymT essentially denotes how the result <40,“Bob”> is 

obtained through the execution (substrings #grab, #compare 

and #finish represent method hashes, which will be explained 

in Section II.C). In the end, the message passed to conclude() 
is the following. 

<  40,“Bob”, 
   Charlie.com:#finish(Bob.com::#compare(Alice.com::#grab())) > 

When conclude is called, SVX verifies that the code 

sequence represented by m2.SymT logically implies . The 

Alice.comconst int Value=10;
Message grab (Message m1)
{   Message m2;

m2 = <Value, “Alice”>
m2.SignBy(“Alice.com”);
return m2;

}  
Charlie.com

const int Value=5;
Message finish(Message m1)
{    ValidateSignature(m1);  

Message m2;
m2 = <Value, “Charlie”>;
m2 = max(m1,m2);
conclude(m2);
return m2;

}  

Bob.com

const int Value=40;
Message compare (Message m1)
{    ValidateSignature(m1);

Message m2;
m2 = <Value, “Bob”>;
m2 = max(m1,m2);
m2.SignBy(“Bob.com”);
return m2;

}  

Client 
(untrusted 
party)

class Message 
{    int value;

string largestParty;
string SymT;

}  

 

Figure 1: The ABC system. 

Alice.com
(10)

Bob.com
(40)

Charlie.com 
(5)

<10, “Alice”, Alice.com::#grab()>

client

<arbitrary, “nobody”, >

<10, “Alice”, Alice.com::#grab()>

<40, “Bob”, Bob.com::#compare(Alice.com::#grab())>

grab

compare

finish

conclude

<40, “Bob”, Bob.com::#compare(Alice.com::#grab())>

<40, “Bob”, Charlie.com:#finish(Bob.com::#compare(Alice.com::#grab()))>

 

Figure 2: A concrete execution of SVX. 
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verification is called certification in SVX. For the execution 

in Figure 2, the certification will succeed, so the execution 

leading to the result <40,“Bob”> is secure and accepted. On 

the other hand, if the client calls grab on Alice.com and then 

immediately calls finish on Charlie.com, Charlie’s conclusion 

is not the overall maximum, but only the maximum of Alice’s 

and Charlie’s values. For this execution, the last message will 

be <10,“Alice”,Charlie.com:#finish(Alice.com::#grab()))>. 

The computation represented by this SymT is insufficient to 

ensure , so the certification fails and the execution is 

rejected.   

While this paper discusses only linear method 

sequences, we have extended SVX to support methods with 

multiple input messages and to automatically detect the most 

common cases in which the same message is used more than 

once in a SymT, so in general a SymT describes a directed 

acyclic graph of data flow with some restrictions. 

The runtime overhead of SVX may seem prohibitively 

high, because the code sequence of every execution is 

verified against property . Fortunately, because the SVX 

verification is only about code, not concrete data, the proven 

theorems can be effectively cached. Hence, every execution 

only needs to pay a cache-lookup cost, unless its code 

sequence is not seen before. 

Trust relations in SymT. Each property verified with 

SVX must specify a set of trusted parties, which are assumed 

never to add false information to a SymT. These parties 

should be the ones on whom the property inherently depends 

(i.e., it cannot be proved without some knowledge of their 

behavior) and are the same ones that would be modeled as 

known programs rather than nondeterministic agents in 

traditional offline verification. Because an execution goes 

through different parties, trusted or untrusted, the SymT 

representation denotes different trust relations: (1) unsigned 

and signed messages are denoted using single-colon and 

double-colon, respectively; (2) browser redirections vs. 

server-to-server calls are denoted using single-parentheses 

and double-parentheses, respectively. Many details about 

trusting the SymT “onion” are described in Section IV.A of 

our paper [4]; the following paragraph gives a sketch. 

When the SymT for the execution in Figure 2 is 

presented for certification, the certifier examines it like an 

onion: the SymT is scanned inwards, starting from 

Charlie.com:#finish. As soon as the certifier encounters an 

untrusted layer, which is either an unsigned browser 

redirection or an untrusted party (e.g., an unknown 

David.com), the layer and everything inside are discarded 

from the SymT. For example, if Bob.com forgot to sign its 

message, then the second layer of SymT would be 

“(Bob.com:#compare…)”, with single-parentheses enclosing 

a single-colon (i.e., an unsigned browser redirection). The 

certifier would discard it with everything inside, so the SymT 

would be treated as “Charlie.com:#finish()”, which denotes 

that Charlie.com runs finish() on an arbitrary input. It would 

not pass the certification, and the execution would be 

rejected.    

C. Public interface and internal mechanism of SVX 

We have built SVX as a library that exposes only two 

public functions: RecordMe and Certify. For the “ABC 

system”, programmers add m2.SymT=RecordMe(m1.SymT) 
inside methods grab, compare and finish and call 

Certify(m2.SymT, ) inside method conclude. RecordMe uses 

the language’s reflection capability to compute the method 

hash of the caller method, and concatenate it with m1.SymT 

with colons and parentheses to form m2.SymT. The method 

hash is computed using SHA-1 over the following pieces of 

information of the caller method: the method name, the class 

name of the concrete object of the method, the code of the 

containing DLL, and the class names of the input/output 

messages. Recording the class names is important – it allows 

the SVX mechanism to be built into an abstract base class 

which can record executions on every concrete 

implementation. Note that the “ABC system” does not have 

the aspect of abstraction/concretization. The aspect will 

become clear when we discuss SSO protocols and 

implementations in Section III. 

Function Certify is shown in Figure 3. First, it performs 

the scanning operation described earlier in order to discard 

the untrusted “onion core” in the SymT, if any. The resulting 

SymT represents the computational sequence that we trust. 

This SymT and property  constitute the theorem to be 

proven. There is a theorem cache to store the theorems that 

have been examined before. If the current theorem exists in 

the cache, the cached result (i.e., pass or fail) is returned. 

Otherwise, the theorem is passed to a remote server, called 

the certification server. The server does two things: first, it 

synthesizes a program to represent the computations recorded 

in the SymT. The synthesized program is called the 

vProgram. This step requires a “de-hash” table, which can 

retrieve method information and DLL code corresponding to 

a method hash. Second, it verifies the vProgram using an off-

the-shelf program verifier, described in our paper [4]. We 

currently host the certification server in the Microsoft Azure 

cloud.  

Theorem 
cache

certify(SymT, )

Charlie.com The certification server

vProgram synthesizer

Off-the-shelf 
program verifier

Scan SymT as 
an “onion”

De-hash the 
hash values

Assemble 
the vProgramcache 

hit
vProgram

Figure 3: Function Certify and the certification server. 
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D. Limitations of SVX 

Monotonicity of properties. In principle, SVX can only 

verify properties of the form “every time this point in the code 

is reached,  holds”, where  is monotonic, i.e., one can 

deduce from a recorded method sequence that  holds 

regardless of what additional events may have occurred in the 

system outside the current transaction. In our implementa-

tion,  is a C# expression that is evaluated on the final state 

of the vProgram, so in order for it to be interpretable in terms 

of the real system, some relationship must be maintained 

between the states of the vProgram and the real system. 

Typically,  asserts the presence of entries in append-only 

data structures stating that a party determined a certain 

condition to be met (e.g., the identity provider received the 

correct password from a user); if the entries are present in the 

vProgram, they will also be present in the real system. A 

future version of SVX will enforce that  takes this form. 

Ensuring that the implementation generates the entries only 

under the right circumstances is outside the scope of SVX. 

The closest one can come to asserting a nonmonotonic 

property such as “the user’s access has never been revoked” 

is to have one party generate an entry stating that it had no 

revocation on record as of a specific time and then have  

assert the presence of a sufficiently recent entry, effectively 

moving the nonmonotonicity outside the scope of SVX (but 

still verifying any subsequent protocol logic). 

Modeling. SVX cannot remove the need to model any 

aspects of the environment and/or the attacker that affect the 

verification of a single, known SymT. For example, the 

security of SSO protocols is generally based on secret values 

exchanged between websites, so a comprehensive 

verification of such a protocol (going beyond the necessary 

condition discussed in III.B below) must somehow model the 

attacker’s knowledge of these secrets, whether or not SVX is 

used. However, typically much of the “boring” complexity of 

the system (such as the mapping of HTTP requests to 

handlers) becomes irrelevant when a single SymT is given. 

III. CURRENT APPLICATION AREA OF SVX 

In the introduction, we explained the ad-hoc nature of 
today’s cloud-API integration, which results in many logic 
bugs in real websites. We believe that SVX is a promising 
technology to fundamentally address these logic bugs. 
Specifically, we are working on an open-source project named 
SVAuth, which is an object-oriented framework for protocol 
designers, service-providing companies and end programmers 
to build single-sign-on (SSO) solutions in a common 
codebase. The goal of SVAuth is to ensure that every concrete 
SSO implementation that an end programmer constructs 
satisfies the safety properties that the protocol designers 
intend. 

A. Overview of SVAuth 

SVAuth is implemented using C#. It runs on .NET Core 
[1], which is a light-weight .NET runtime for Windows, 

Linux, OS X and Docker. An important aspect about SVX, 
which was not shown in the “ABC system”, is how it works 
with abstraction and concretization.  

Figure 4 shows the class hierarchy of the SVAuth 
framework. It consists of four levels. The top level is called 
“GenericAuth”, which defines the classes for the most basic 
concepts in SSO, including identity provider (IdP), relying 
party (RP) and common messages in all SSO solutions. 
Moreover, it defines the necessary safety properties that all 
SSO executions should satisfy.  

GenericAuth does not specify how the messages are 
exchanged and handled, which is defined by the protocol-level 
classes corresponding to each individual protocol, such as 
OAuth 2.0 and OpenID 2.0. The service level consists of 
classes that implement solutions for Facebook, Google and 
other service companies. These classes are derived from 
protocol-level classes. Note that every company’s cloud APIs 
allow several reasonable solutions to be implemented, so a 
box in Figure 4, e.g., Google Login, only represents a solution, 
not the solution for Google login. At the fourth level, 
individual websites may derive from the service level to adapt 
the solutions to their specific needs.  

B. Enabling SVX in the class hierarchy  

The goal of SVAuth is to ensure that all concrete websites 
satisfy the safety properties specified at the GenericAuth 
level. Traditional approaches accomplish this goal via 
refinement [11], i.e., proving that the GenericAuth-level 
properties are satisfied at every level in the hierarchy, an 
approach that demands a lot from end programmers. Instead, 
since the proof obligations generated by SVX are simple 
enough to be solved automatically, we just solve them 
separately for each concrete implementation. We build the 
self-verifying capability into the top two levels of the class 
hierarchy; SVX ensures that all concrete websites inherit the 
capability automatically. Specifically, we simply call Certify 

at the GenericAuth level, and call RecordMe in every message 
handler at the protocol level. Programmers at the service level 
and the website specific level do not need to be aware of the 
SVX mechanism. The only expertise they need is object-
oriented programming. In the rest of this subsection, we 
present more details about our approach. 

Safety property . Our previous paper [4] defines a safety 
property that is necessary for SSO (in Section V.B on page 9 
of the paper). It is defined jointly over the verifying RP and 
the IdP that this RP wishes to use, which are the trusted parties 

OAuth 1.0 OpenID 2.0OAuth 2.0

OpenID Connect 1.0

Microsoft 
Accounts

Yahoo LoginFacebook 
Connect

Twitter Login

Protocol level

Service  level

Website 
specific level

Derivation 
for a.com

Google
Login

GenericAuth Generic level

Derivation 
for b.com

Derivation 
for c.com  

Figure 4: The class hierarchy of SVAuth 
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(compare to the property in the ABC example, which is 
defined over Alice.com, Bob.com and Charlie.com). 
Intuitively, the property asserts that: when the RP has made 
the conclusion that the client is “Alice”, then this SSO 
execution should have witnessed an ID claim on the IdP in 
which the user ID is “Alice”, the realm equals this RP’s 
identifier, and the ID claim is redirected to the web address of 
the RP. To give a flavor of the property’s definition, we show 
the C# assertion below. Due to the space constraint, we omit 
a detailed explanation of how GenericAuth defines the SSO 
core concepts.  

ID_claim = IdP.IdentityRecords.getEntry( 
                          SignInIdP_Req.IdPSessionID, RP.Realm); 
Contract.Assert(ID_claim.Redir_dest == RP.Domain  
                         && ID_claim.UserID == conclusion.UserID); 

It is important to note that this property is just one 
necessary condition of SSO. There are other conditions that 
should be defined for SSO security. Defining properties to 
capture all real-world security concerns is an effort that needs 
to involve a broader discussion in the SSO community. The 
current focus of SVAuth is to build the underlying verification 
technology so that if these properties can be defined, they can 
be verified.  

An example implementation. Figure 5 shows one of our 
demo websites (called foo.com), which uses Microsoft 
Accounts login. The GenericAuth level defines the parties 
(e.g., GenericAuth.IdP) and messages (e.g., SignInIdP_req). It 
also defines the safety property using these parties and 

messages. The OAuth 2.0 protocol inherits from GenericAuth, 
and the OpenID Connect 1.0 (a.k.a. OIDC 1.0) inherits from 
OAuth 2.0. The protocol-level classes define message 
handlers, such as ConstructTokenRequest in OIDC 1.0. Each 

message handler calls RecordMe to compute the SymT string. 
These handlers call some virtual methods which need to be 
concretized by the service level for Microsoft, Facebook, 
Google, etc., and by concrete websites like foo.com. At the 
bottom two levels, programmers do not call either RecordMe 

or Certify, and only need to concretize virtual methods defined 
by the protocol level. 

 During every execution, RecordMe records the concrete 
class of the caller object. In other words, when 
ConstructTokenRequest calls RecordMe, the resulting method 
hash captures the fact that the class of the concrete object is 
foo.RP, not just OIDC10.RelyingParty. When an execution goes 

through the entire flow, the final SymT will be: foo.com:# 
Concludefoo.RP((Live.com:#TokenEndpointMicrosoft.IdP((foo.com:
#ConstructTokenRequestfoo.RP(Live.com:#SignInIdPMicrosoft.IdP()) 
))), in which the subscripts denote the classes of the concrete 
objects. If the same OIDC10 protocol flow is concretized by 
a website bar.com and the Google login service, then the 
SymT will lead to a different theorem to verify. This 
essentially means that, without using the approach of 
refinement, protocol designers can spend a one-time effort 
building SVX into the protocol-level classes, so that the effort 
will be massively scaled up to cover all derived 
implementations.  

C. Real-world deployment 

In this subsection, we explain how SVAuth will be 
deployed by programmers in the real world.  

Platform independence. Real-world websites are built on 
different platforms, such as PHP, JSP, ASP.NET, Python, 
Node.JS, and many others. The current situation is that every 
identity service company, such as Facebook, Google, and 
Microsoft, publishes libraries for some of the platforms; for 
other platforms, programmers have to search for suitable 
libraries from the web or call the raw APIs according to 
protocol specifications. In fact, even with a library, the 
integration may not be easy, because different libraries expect 
different ways of integration, so programmers need to 
understand the documentation and sample code for each 
library.   

SVAuth provides a platform-independent solution for 
every web programmer. As explained earlier, it is written in 
C# and runs on .NET Core as a standalone web service, 

GenericAuth.IdP
SignInIdP_req

Authentication

GenericAuth.RP

GenericAuth.RS

Untrusted party

SignInIdP_resp_SignInRP_req

Resource_req AuthTicket_Req
AuthTicket_Resp

A
ut

ho
ri

za
ti

on

OAuth20.
AuthorizationServer

AuthorizationRequest

OAuth20.Client

OAuth20.
ResourceServer

AccessTokenRequest

AccessTokenResponse

AuthorizationResponse

OIDC10.
OpenIDProvider

AuthenticationRequest

OIDC10.
RelyingParty

TokenRequest
TokenResponse

AuthenticationResponse

Browser

Browser

Untrusted party GenericAuth.AS

ConstructToken
Request()

Conclude()
TokenEndpoint()

SignInIdP()

G
en

er
ic

A
ut

h
O

A
ut

h 
2.

0
O

pe
nI

D
 C

on
ne

ct
 1

.0

Classes for Microsoft Accounts IdP (login.live.com) and RP, 
such as Microsoft.IdP and Microsoft.RP

foo.com’s class foo.RP, which inherits from Microsoft.RP
 

Figure 5: Website foo.com using Microsoft Accounts login. 

Identity Provider 
(IdP)

Relying Party 
(RP)

SVAuth

Web app

User

Set session variable 
“SVAuthResult” on 
the web app

 
Figure 6: SVAuth is small standalone executable on the RP. 
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listening on its own port, as opposed to a library to be linked 
with a web app. Figure 6 shows SVAuth in an SSO system. 
The dashed-line triangle in the figure performs the SSO 
execution without involving the web app. The web app can be 
built in any web platform, not necessarily .NET Core.  

The integration of an SSO solution into the web app is as 

easy as pasting a line of code.  Every SSO solution in SVAuth 

is represented as a button, such as “ ”. The source 

code (which is a single line of code) of the button can be 

obtained by the programmer by right-clicking the button. To 

integrate the solution, the programmer only needs to paste this 

line of code into her web app. Consequently, when a user 

clicks on the button, the entire SSO execution will be 

accomplished by SVAuth, and the result will be set to the web 

app’s session variable “SVAuthResult”. Therefore, the web 

app does not need to be aware of the SSO protocol. The entire 

SSO functionality is just like a local function – the button calls 

the function, and the result will be in the session variable. 

Involving identity service companies. The SVX 

approach expects every web service in an execution to 

participate in computing the SymT string. For SSO, this 

means that identity service companies like Facebook, Google 

and Microsoft need to provide method hashes in their 

responses.  

We envision two stages to make this happen. In the current 

(first) stage, the companies are not aware of the SymT field. 

Hence, the current version of SVAuth has to provide source 

files that model the IdP’s methods. Every call to an IdP is sent 

to the actual IdP, but the method hash of the response is 

computed using the corresponding method in the IdP’s model. 

Of course, the caveat is that the model is only our best-effort 

approximation for the actual IdP’s logic. 

In the second stage, we will reach out to the identity 

service companies so that they can review and correct our 

current models. Eventually, if the companies are persuaded to 

attach the method hashes by themselves, the SVAuth 

codebase will not need the IdP models. Services that are not 

implemented in .NET can still maintain their own .NET model 

and attach the corresponding hash, so other SVX-enabled 

services can interoperate with them transparently. 

D. Runtime performance 

TABLE I shows the performance numbers that we 

obtained using a Windows 8.1 machine with a 2.5GHz CPU 

and 16GB RAM. The measured implementations include the 

ABC system, and our RP implementations interacting with 

Microsoft (LiveID) login, Yahoo login and Facebook login. 

 As explained earlier, the computed method hashes and 

certified SymTs are cached, so the actual runtime overhead is 

near zero. Specifically, a method needs to compute its hash 

only in its first run after a website starts; the vProgram 

synthesis/verification happens only when an execution goes 

through a previously unseen sequence of methods or any 

DLLs containing recorded methods were recompiled. In 

either scenario, the overhead is a one-time cost. The per-

execution cost for recording SymT is simply a set of string 

concatenation operations, and that for certifying a SymT is a 

string scanning (for the onion) and a local cache lookup. As 

a comparison, the table provides the breakdown of the one-

time overhead, which is indeed expensive. It includes the 

compilation overhead, and the overheads of RecordMe and 

Certify if caching was disabled.  

IV. RELATED WORK 

Unlike the SVX approach, offline (i.e., completely static) 

verification approaches were used by researchers to analyze 

SSO protocols and implementations. For example, Bansal et 

al. [3] used ProVerif to analyze OAuth 2.0. ProVerif uses 

sound approximations for executions of unbounded length, 

which may in general introduce false positives. This work was 

based on handwritten models in the applied pi-calculus, not 

implementation code. It took a long time to run the 

verification (e.g., almost 3 hours for verifying the OAuth 2.0  

authorization code flow). Fett et al. constructed a formal 

model for the BrowserID SSO protocol, and used it to guide 

their security investigation about the protocol. 

The most closely related work is our earlier paper [4]. 
However, the current paper has three main aspects 
representing new development: (1) the earlier paper did not 
have the aspect of object-oriented class hierarchy, in which 
SVX is built into abstract base classes and automatically 
inherited by all concrete implementations; (2) we did not use 

TABLE I: RUNTIME OVERHEAD  –  PER-EXECUTION AND ONE-TIME COSTS.  

  

Protocol 
party 

 

Per-execution cost One-time cost 

Runtime overhead 
vProgram 

compilation  
Average overhead of 

RecordMe without caching 
Average overhead of 

Certify without caching 

The ABC system 
 

Alice  0ms 670ms 247ms 

6666ms 
 

Bob  0ms 635ms 222ms 

Charlie  0ms 646ms 231ms 

Microsoft (LiveID) 
login  

IdP  0ms 852ms 151ms 

13674ms RP  0ms 1178ms 228ms 

Yahoo login 
  

IdP  0ms 678ms 153ms 

10959ms RP  0ms 1073ms 165ms 

Facebook login 
 

IdP  0ms 777ms 163ms 

11968ms RP  0ms 1001ms 205ms 
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the language’s reflection capability, but required a 
programmer to manually copy source code of invoked 
methods as string constants for vProgram synthesis; (3) it was 
not built on .NET Core runtime, and was a library only usable 
for ASP.NET websites.  

V. SUMMARY AND OUR VISION 

This paper describes the basic idea of SVX, which 

lowers the hurdles that real-world programmers face when 

applying program verification.  Specifically, we explain how 

to apply the SVX strategy in the area of online-API 

integration. We propose the SVAuth framework, which is 

able to ensure that every SSO execution satisfies safety 

properties that protocol designers intend. It seems promising 

that all major SSO solutions can be built within the 

framework. Because SVAuth is platform independent, it will 

benefit all web platforms. 

The vision of SVAuth is that protocol designers, service 

companies and individual website programmers can work 

together on a single codebase, so that the SSO security of 

every concrete website can be checked end-to-end. The use 

of SVAuth will enable a paradigm shift in the community that 

leads to two positive impacts: (1) People will no longer think 

of a protocol specification as an English document with 

pseudo-code examples. Instead, a specification is a set of 

abstract classes that comprises real code running on every 

website. (2) The SSO community today spends most effort 

specifying step-by-step instructions for programmers, but no 

real effort specifying end-to-end safety properties that the 

protocols must achieve. Programmers often pay much 

attention trying to understand protocol-specific details, yet 

fail to build secure implementations. The SVAuth effort can 

motivate the community to define end-to-end properties, in 

addition to step-by-step procedures for achieving those 

properties. 
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