
ReasoNet: Learning to Stop Reading in Machine Comprehension
Yelong Shen, Po-Sen Huang, Jianfeng Gao, Weizhu Chen

Microsoft Research
One Microsoft Way

Redmond, WA 98053
yeshen,pshuang,jfgao,wzchen@microsoft.com

ABSTRACT
Teaching a computer to read and answer general questions per-
taining to a document is a challenging yet unsolved problem. In
this paper, we describe a novel neural network architecture called
the Reasoning Network (ReasoNet) for machine comprehension
tasks. ReasoNets make use of multiple turns to e�ectively exploit
and then reason over the relation among queries, documents, and
answers. Di�erent from previous approaches using a �xed num-
ber of turns during inference, ReasoNets introduce a termination
state to relax this constraint on the reasoning depth. With the use
of reinforcement learning, ReasoNets can dynamically determine
whether to continue the comprehension process after digesting
intermediate results, or to terminate reading when it concludes that
existing information is adequate to produce an answer. ReasoNets
achieve superior performance in machine comprehension datasets,
including unstructured CNN and Daily Mail datasets, the Stanford
SQuAD dataset, and a structured Graph Reachability dataset.

KEYWORDS
Machine Reading Comprehension, Deep Reinforcement Learning,
ReasoNet

1 INTRODUCTION
Teaching machines to read, process, and comprehend natural lan-
guage documents is a coveted goal for arti�cial intelligence [2, 7, 19].
Genuine reading comprehension is extremely challenging, since
e�ective comprehension involves thorough understanding of docu-
ments and sophisticated inference. Toward solving this machine
reading comprehension problem, in recent years, several works
have collected various datasets, in the form of question, passage,
and answer, to test machine on answering a question based on the
provided passage [7, 8, 18, 19]. Some large-scale cloze-style datasets
[7, 8] have gained signi�cant attention along with powerful deep
learning models.

Recent approaches on cloze-style datasets can be separated into
two categories: single-turn and multi-turn reasoning. Single turn
reasoning models utilize attention mechanisms [1] to emphasize
speci�c parts of the document which are relevant to the query.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
KDD’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 ACM. 978-1-4503-4887-4/17/08. . . $15.00
DOI: 10.1145/3097983.3098177

These attention models subsequently calculate the relevance be-
tween a query and the corresponding weighted representations of
document subunits (e.g. sentences or words) to score target candi-
dates [7–9]. However, considering the sophistication of the problem,
after a single-turn comprehension, readers often revisit some spe-
ci�c passage or the question to grasp a better understanding of the
problem. With this motivation, recent advances in reading com-
prehension have made use of multiple turns to infer the relation
between query, document and answer [6, 8, 21, 25]. By repeatedly
processing the document and the question after digesting inter-
mediate information, multi-turn reasoning can generally produce
a better answer and these existing works have demonstrated its
superior performance consistently.

Existing multi-turn models have a pre-de�ned number of hops
or iterations in their inference without regard to the complexity
of each individual query or document. However, when human
read a document with a question in mind, we often decide whether
we want to stop reading if we believe the observed information
is adequate already to answer the question, or continue reading
after digesting intermediate information until we can answer the
question with con�dence. This behavior generally varies from doc-
ument to document or question to question because it is related to
the sophistication of the document or the di�culty of the question.
Meanwhile, the analysis in [3] also illustrates the huge variations
in the di�culty level with respect to questions in the CNN/Daily
Mail datasets [7]. For a signi�cant part of the datasets, this analy-
sis shows that the problem cannot be solved without appropriate
reasoning on both its query and document.

With this motivation, we propose a novel neural network ar-
chitecture called Reasoning Network (ReasoNet). which tries to
mimic the inference process of human readers. With a question in
mind, ReasoNets read a document repeatedly, each time focusing
on di�erent parts of the document until a satisfying answer is found
or formed. This reminds us of a Chinese proverb: “The meaning
of a book will become clear if you read it hundreds of times.”. More-
over, unlike previous approaches using �xed number of hops or
iterations, ReasoNets introduce a termination state in the inference.
This state can decide whether to continue the inference to the next
turn after digesting intermediate information, or to terminate the
whole inference when it concludes that existing information is suf-
�cient to yield an answer. The number of turns in the inference is
dynamically modeled by both the document and the query, and can
be learned automatically according to the di�culty of the problem.

One of the signi�cant challenges ReasoNets face is how to design
an e�cient training method, since the termination state is discrete
and not connected to the �nal output. This prohibits canonical
back-propagation method being directly applied to train ReasoNets.

ar
X

iv
:1

60
9.

05
28

4v
3

 [
cs

.L
G

]
 2

0
Ju

n
20

17

Motivated by [15, 31], we tackle this challenge by proposing a rein-
forcement learning approach, which utilizes an instance-dependent
reward baseline, to successfully train ReasoNets. Finally, by ac-
counting for a dynamic termination state during inference and ap-
plying proposed deep reinforcement learning optimization method,
ReasoNets achieve the state-of-the-art results in machine com-
prehension datasets, including unstructured CNN and Daily Mail
datasets, and the proposed structured Graph Reachability dataset,
when the paper is �rst publicly available on arXiv.1 At the time of
the paper submission, we apply ReasoNet to the competitive Stan-
ford Question Answering Dataset(SQuAD), ReasoNets outperform
all existing published approaches and rank at second place on the
test set leaderboard.2

This paper is organized as follows. In Section 2, we review and
compare recent work on machine reading comprehension tasks. In
Section 3, we introduce our proposed ReasoNet model architecture
and training objectives. Section 4 presents the experimental set-
ting and results on unstructured and structured machine reading
comprehension tasks .

2 RELATEDWORK
Recently, with large-scale datasets available and the impressive
advance of various statistical models, machine reading comprehen-
sion tasks have attracted much attention. Here we mainly focus
on the related work in cloze-style datasets [7, 8]. Based on how
they perform the inference, we can classify their models into two
categories: single-turn and multi-turn reasoning.

Single-turn reasoning: Single turn reasoning models utilize
an attention mechanism to emphasize some sections of a document
which are relevant to a query. This can be thought of as treating
some parts unimportant while focusing on other important ones
to �nd the most probable answer. Hermann et al. [7] propose
the attentive reader and the impatient reader models using neural
networks with an attention over passages to predict candidates. Hill
et al. [8] use attention over window-based memory, which encodes
a window of words around entity candidates, by leveraging an end-
to-end memory network [22]. Meanwhile, given the same entity
candidate can appear multiple times in a passage, Kadlec et al. [9]
propose the attention-sum reader to sum up all the attention scores
for the same entity. This score captures the relevance between a
query and a candidate. Chen et al. [3] propose using a bilinear term
similarity function to calculate attention scores with pretrained
word embeddings. Trischler et al. [25] propose the EpiReader which
uses two neural network structures: one extracts candidates using
the attention-sum reader; the other reranks candidates based on a
bilinear term similarity score calculated from query and passage
representations.

Multi-turn reasoning: For complex passages and complex
queries, human readers often revisit the given document in or-
der to perform deeper inference after reading a document. Several
recent studies try to simulate this revisit by combining the informa-
tion in the query with the new information digested from previous
iterations [6, 8, 13, 21, 29]. Hill et al. [8] use multiple hops memory
network to augment the query with new information from the

1https://arxiv.org/abs/1609.05284
2http://www.stanford-qa.com

previous hop. Gated Attention reader [6] is an extension of the
attention-sum reader with multiple iterations by pushing the query
encoding into an attention-based gate in each iteration. Iterative
Alternative (IA) reader [21] produces a new query glimpse and
document glimpse in each iteration and utilizes them alternatively
in the next iteration. Cui et al. [5] further propose to extend the
query-speci�c attention to both query-to-document attention and
document-to-query attention, which is built from the intermediate
results in the query-speci�c attention. By reading documents and
enriching the query in an iterative fashion, multi-turn reasoning
has demonstrated their superior performance consistently.

Our proposed approach explores the idea of using both attention-
sum to aggregate candidate attention scores and multiple turns to
attain a better reasoning capability. Unlike previous approaches
using a �xed number of hops or iterations, motivated by [15, 16],
we propose a termination module in the inference. The termination
module can decide whether to continue to infer the next turn after
digesting intermediate information, or to terminate the whole in-
ference process when it concludes existing information is su�cient
to yield an answer. The number of turns in the inference is dynam-
ically modeled by both a document and a query, and is generally
related to the complexity of the document and the query.

3 REASONING NETWORKS
ReasoNets are devised to mimic the inference process of human
readers. ReasoNets read a document repeatedly with attention
on di�erent parts each time until a satisfying answer is found.
As shown in Figure 1, a ReasoNet is composed of the following
components:

Memory: The external memory is denoted as M . It is a list of
word vectors, M = {mi }i=1..D , where mi is a �xed dimensional
vector. For example, in the Graph Reachability, mi is the vector
representation of each word in the graph description encoded by a
bidirectional-RNN. Please refer to Section 4 for the detailed setup
in each experiment.

Attention: The attention vectorxt is generated based on the cur-
rent internal state st and the external memoryM : xt = fatt (st ,M ;θx).
Please refer to Section 4 for the detailed setup in each experiment.

Internal State: The internal state is denoted as s which is a vec-
tor representation of the question state. Typically, the initial state s1
is the last-word vector representation of query by an RNN. The t-th
time step of the internal state is represented by st . The sequence
of internal states are modeled by an RNN: st+1 = RNN(st ,xt ;θs),
where xt is the attention vector mentioned above.

Termination Gate: The termination gate generates a random
variable according to the current internal state; tt ∼ p(·| ftд(st ;θtд))).
tt is a binary random variable. If tt is true, the ReasoNet stops, and
the answer module executes at time step t ; otherwise the ReasoNet
generates an attention vector xt+1, and feeds the vector into the
state network to update the next internal state st+1.

Answer: The action of answer module is triggered when the
termination gate variable is true: at ∼ p(·| fa (st ;θa)).

In Algorithm 1, we describe the stochastic inference process of
a ReasoNet. The process can be considered as solving a Partially
Observable Markov Decision Process (POMDP) [10] in the rein-
forcement learning (RL) literature. The state sequence s1:T is hidden

St St+1 St+2

QueryQuery

Xt

tt tt+1

ftg(θtg) ftg(θtg) False

fatt(θx) Xt+1fatt(θx)

False

Termination

Answer

Attention

Controller

fa(θa)

at+2

tt+2

ftg(θtg)

True

Memory M

Figure 1: A ReasoNet architecture with an episode of {t1 = 0,
. . ., tt+1 = 0, tt+2 = 1}

Algorithm 1: Stochastic Inference in a ReasoNet
Input :Memory M ; Initial state s1; Step t = 1; Maximum

Step Tmax
Output :Termination Step T , Answer aT

1 Sample tt from the distribution p(·| ftд(st ;θtд));
2 if tt is false, go to Step 3; otherwise Step 6;
3 Generate attention vector xt = fatt (st ,M ;θx);
4 Update internal state st+1 = RNN(st ,xt ;θs);
5 Set t = t + 1; if t < Tmax go to Step 1; otherwise Step 6;
6 Generate answer at ∼ p(·| fa (st ;θa));
7 Return T = t and aT = at ;

and dynamic, controlled by an RNN sequence model. The ReasoNet
performs an answer action aT at the T -th step, which implies that
the termination gate variables t1:T = (t1 = 0, t2 = 0, ..., tT−1 =
0, tT = 1). The ReasoNet learns a stochastic policy π ((tt ,at)|st ;θ)
with parameters θ to get a distribution of termination actions, to
continue reading or to stop, and of answer actions if the model
decides to stop at the current step. The termination step T varies
from instance to instance.

The learnable parameters θ of the ReasoNet are the embedding
matrices θW , attention network θx , the state RNN network θs , the
answer action network θa , and the termination gate network θtд .
The parameters θ = {θW ,θx ,θs ,θa ,θtд} are trained by maximizing
the total expect reward. The expected reward for an instance is
de�ned as:

J (θ) = Eπ (t1:T ,aT ;θ)

[T∑
t=1

rt

]
The reward can only be received at the �nal termination step

when an answer action aT is performed. We de�ne rT = 1 if tT = 1
and the answer is correct, and rT = 0 otherwise. The rewards on
intermediate steps are zeros, {rt = 0}t=1...T−1. J can be maximized
by directly applying gradient based optimization methods. The

gradient of J is given by:

∇θ J (θ) = Eπ (t1:T ,aT ;θ) [∇θ logπ (t1:T ,aT ;θ)rT]

Motivated by the REINFORCE algorithm [31], we compute∇θ J (θ):

Eπ (t1:T ,aT ;θ) [∇θ logπ (t1:T ,aT ;θ)rT] =∑
(t1:T ,aT)∈A†

π (t1:T ,aT ;θ) [∇θ logπ (t1:T ,aT ;θ)(rT − bT)]

where A† is all the possible episodes, T , t1:T ,aT and rT are the
termination step, termination action, answer action, and reward,
respectively, for the (t1:T , aT) episode. bT is called the reward base-
line in the RL literature to lower the variance [23]. It is common to
select bT = Eπ [rT] [24], and can be updated via an online moving
average approach : bT = λbT + (1 − λ)rT . However, we empirically
�nd that the above approach leads to slow convergence in training
ReasoNets. Intuitively, the average baselines {bT ;T = 1..Tmax} are
global variables independent of instances. It is hard for these base-
lines to capture the dynamic termination behavior of ReasoNets.
Since ReasoNets may stop at di�erent time steps for di�erent in-
stances, the adoption of a global variable without considering the
dynamic variance in each instance is inappropriate. To resolve
this weakness in traditional methods and account for the dynamic
characteristic of ReasoNets, we propose an instance-dependent
baseline method to calculate ∇θ J (θ), as illustrated in Section 3.1.
Empirical results show that the proposed reward schema achieves
better results compared to baseline approaches.

3.1 Training Details
In the machine reading comprehension tasks, a training dataset
is a collection of triplets of query q, passage p, and answer a. Say
〈qn ,pn ,an〉 is the n-th training instance.

The �rst step is to extract memory M from pn by mapping each
symbolic in the passage to a contextual representation given by
the concatenation of forward and backward RNN hidden states,
i.e., mk = [−→pnk ,←−pn |pn |−k+1], and extract initial state s1 from qn
by assigning s1 = [−→qn |qn | ,←−qn1]. Given M and s1 for the n-th
training instance, a ReasoNet executes |A† | episodes, where all
possible episodes A† can be enumerated by setting a maximum
step. Each episode generates actions and a reward from the last
step: 〈(t1:T ,aT), rT 〉(t1:T ,aT)∈A† . Therefore, the gradient of J can be
rewritten as:

∇θ J (θ) =
∑

(t1:T ,aT)∈A†
π (t1:T ,aT ;θ) [∇θ logπ (t1:T ,aT ;θ)(rT − b)]

where the baseline b =
∑
(t1:T ,aT)∈A† π (t1:T ,aT ;θ)rT is the average

reward on the |A† | episodes for the n-th training instance. It allows
di�erent baselines for di�erent training instances. This can be bene-
�cial since the complexity of training instances varies signi�cantly.
In experiments, we empirically �nd using (rTb − 1) in replace of
(rT − b) can lead to a faster convergence. Therefore, we adopt this
approach to train ReasoNets in the experiments.

4 EXPERIMENTS
In this section, we evaluate the performance of ReasoNets in ma-
chine comprehension datasets, including unstructured CNN and

Daily Mail datasets, the Stanford SQuAD dataset, and a structured
Graph Reachability dataset.

4.1 CNN and Daily Mail Datasets
We examine the performance of ReasoNets on CNN and Daily
Mail datasets.3 The detailed settings of the ReasoNet model are as
follows.

Vocab Size: For training our ReasoNet, we keep the most fre-
quent |V | = 101k words (not including 584 entities and 1 place-
holder marker) in the CNN dataset, and |V | = 151k words (not
including 530 entities and 1 placeholder marker) in the Daily Mail
dataset.

Embedding Layer: We choose 300-dimensional word embed-
dings, and use the 300-dimensional pretrained Glove word embed-
dings [17] for initialization. We also apply dropout with probability
0.2 to the embedding layer.

Bi-GRU Encoder: We apply bidirectional GRU for encoding
query and passage into vector representations. We set the number
of hidden units to be 256 and 384 for the CNN and Daily Mail
datasets, respectively. The recurrent weights of GRUs are initialized
with random orthogonal matrices. The other weights in GRU cell
are initialized from a uniform distribution between −0.01 and 0.01.
We use a shared GRU model for both query and passage.

Memory andAttention: The memory of the ReasoNet on CNN
and Daily Mail dataset is composed of query memory and pas-
sage memory. M = (Mquery ,Mdoc), where Mquery and Mdoc

are extracted from query bidirectional-GRU encoder and passage
bidirectional-GRU encoder respectively. We choose projected co-
sine similarity function as the attention module. The attention
score adoct,i on memory mdoc

i given the state st is computed as
follows: adoct,i = softmaxi=1, ..., |Mdoc |γ cos(W doc

1 mdoc
i ,W doc

2 st),
where γ is set to 10. W doc

1 and W doc
2 are weight vectors asso-

ciated with mdoc
i and st , respectively, and are joint trained in

the ReasoNet. Thus, the attention vector on passage is given by
xdoct =

∑ |Mdoc |
i adoct,i m

doc
i . Similarly, the attention vector on query

is xqueryt =
∑ |Mquery |
i a

query
t,i m

query
i . The �nal attention vector

is the concatenation of the query attention vector and the pas-
sage attention vector xt = (xqueryt ,xdoct). The attention module is
parameterized by θx = (W query

1 ,W
query
2 ,W doc

1 ,W doc
2);

Internal State Controller: We choose GRU model as the in-
ternal state controller. The number of hidden units in the GRU
state controller is 256 for CNN and 384 for Daily Mail. The initial
state of the GRU controller is set to be the last-word of the query
representation by a bidirectional-GRU encoder.

TerminationModule: We adopt a logistical regression to model
the termination variable at each time step:

ftд(st ;θtд) = sigmoid(Wtдst + btд);θtд = (Wtд ,btд)

whereWtд and btд are the weight matrix and bias vector, respec-
tively.

Answer Module: We apply a linear projection from GRU out-
puts and make predictions on the entity candidates. Following the

3The CNN and Daily Mail datasets are available at https://github.com/deepmind/rc-
data

Table 1: The performance of Reasoning Network on CNN
and Daily Mail dataset.

CNN Daily Mail

valid test valid test
Deep LSTM Reader [7] 55.0 57.0 63.3 62.2
Attentive Reader [7] 61.6 63.0 70.5 69.0
MemNets [8] 63.4 66.8 - -
AS Reader [9] 68.6 69.5 75.0 73.9
Stanford AR [3] 72.2 72.4 76.9 75.8
DER Network [12] 71.3 72.9 - -
Iterative Attention Reader [21] 72.6 73.3 - -
EpiReader [25] 73.4 74.0 - -
GA Reader [6] 73.0 73.8 76.7 75.7
AoA Reader [5] 73.1 74.4 - -
ReasoNet 72.9 74.7 77.6 76.6

Figure 2: The termination step distribution of a ReasoNet
(Tmax = 5) in the CNN dataset.

settings in AS Reader [9], we sum up scores from the same candi-
date and make a prediction. Thus, AS Reader can be viewed as a
special case of ReasoNets with Tmax = 1.4

Other Details: The maximum reasoning step, Tmax is set to
5 in experiments on both CNN and Daily Mail datasets. We use
ADAM optimizer [11] for parameter optimization with an initial
learning rate of 0.0005, β1 = 0.9 and β2 = 0.999; The absolute value
of gradient on each parameter is clipped within 0.001. The batch
size is 64 for both CNN and Daily Mail datasets. For each batch
of the CNN and Daily Mail datasets, we randomly reshu�e the
assignment of named entities [7]. This forces the model to treat the
named entities as semantically meaningless labels. In the prediction
of test cases, we randomly reshu�e named entities up to 4 times,
and report the averaged answer. Models are trained on GTX TitanX
12GB. It takes 7 hours per epoch to train on the Daily Mail dataset
and 3 hours per epoch to train on the CNN dataset. The models are
usually converged within 6 epochs on both CNN and Daily Mail
datasets.
4When ReasoNet is set with Tmax = 1 in CNN and Daily Mail, it directly applies s0
to make predictions on the entity candidates, without performing attention on the
memory module. The prediction module in ReasoNets is the same as in AS Reader. It
sums up the scores from the same entity candidates, where the scores are calculated
by the inner product between st and mdoc

e , where mdoc
e is an embedding vector of

one entity candidate in the passage.

Query: passenger @placeholder , 36 , died at the scene

Passage: (@entity0) what was supposed to be a fantasy sports car ride at
@entity3 turned deadly when a @entity4 crashed into a guardrail . the crash
took place sunday at the @entity8 , which bills itself as a chance to drive your
dream car on a racetrack . the @entity4 's passenger , 36 - year - old @entity14
of @entity15 , @entity16 , died at the scene , @entity13 said . the driver of the
@entity4 , 24 - year - old @entity18 of @entity19 , @entity16 , lost control of
the vehicle , the @entity13 said . he was hospitalized with minor injuries .
@entity24 , which operates the @entity8 at @entity3 , released a statement
sunday night about the crash . " on behalf of everyone in the organization , it is
with a very heavy heart that we extend our deepest sympathies to those
involved in today 's tragic accident in @entity36 , " the company said . @entity24
also operates the @entity3 -- a chance to drive or ride in @entity39 race cars
named for the winningest driver in the sport 's history . @entity0 's @entity43
and @entity44 contributed to this report .

Answer: @entity14

Step
Termination
Probability

Attention
Sum

1 0.0011 0.4916
2 0.5747 0.5486
3 0.9178 0.5577

Step 3

11 1

11233

3 1

22

Step 1 Step 2

Figure 3: Results of a test example 69e1f777e41bf67d5a22b7c69ae76f0ae873cf43.story from the CNN dataset. The numbers
next to the underline bars indicate the rank of the attention scores. The corresponding termination probability and the sum
of attention scores for the answer entity are shown in the table on the right.

Results: Table 1 shows the performance of all the existing sin-
gle model baselines and our proposed ReasoNet. Among all the
baselines, AS Reader could be viewed as a special case of ReasoNet
with Tmax = 1. Comparing with the AS Reader, ReasoNet shows
the signi�cant improvement by capturing multi-turn reasoning
in the paragraph. Iterative Attention Reader, EpiReader and GA
Reader are the three multi-turn reasoning models with �xed rea-
soning steps. ReasoNet also outperforms all of them by integrating
termination gate in the model which allows di�erent reasoning
steps for di�erent test cases. AoA Reader is another single-turn
reasoning model, it captures the word alignment signals between
query and passage, and shows a big improvement over AS Reader.
ReasoNet obtains comparable results with AoA Reader on CNN test
set. We expect that ReasoNet could be improved further by incor-
porating the word alignment information in the memory module
as suggested in AoA Reader.

We show the distribution of termination step distribution of
ReasoNets in the CNN dataset in Figure 2. The distributions spread
out across di�erent steps. Around 70% of the instances terminate
in the last step. Figure 3 gives a test example on CNN dataset,
which illustrates the inference process of the ReasoNet. The model
initially focuses on wrong entities with low termination probability.
In the second and third steps, the model focuses on the right clue
with higher termination probability. Interestingly, we also �nd its
query attention focuses on the placeholder token throughout all
the steps.

4.2 SQuAD Dataset
In this section, we evaluate ReasoNet model on the task of question
answering using the SQuAD dataset [18].5 SQuAD is a machine
comprehension dataset on 536 Wikipedia articles, with more than
100,000 questions. Two metrics are used to evaluate models: Exact
Match (EM) and a softer metric, F1 score, which measures the
weighted average of the precision and recall rate at the character
level. The dataset consists of 90k/10k training/dev question-context-
answer tuples with a large hidden test set. The model architecture
used for this task is as follows:

5SQuAD Competition Website is https://rajpurkar.github.io/SQuAD-explorer/

Table 2: Results on the SQuAD test leaderboard.

Single Model Ensemble Model

EM F1 EM F1
Logistic Regression Baseline [18] 40.4 51.0 - -
Dynamic Chunk Reader [34] 62.5 71.0 - -
Fine-Grained Gating [33] 62.5 73.3 - -
Match-LSTM [26] 64.7 73.7 67.9 77.0
RaSoR [14] - - 67.4 75.5
Multi-Perspective Matching [28] 68.9 77.8 73.7 81.3
Dynamic Coattention Networks [32] 66.2 75.9 71.6 80.4
BiDAF [6] 68.0 77.3 73.3 81.1
ReasoNet 69.1 78.9 73.4 81.8

Iterative Co-attention Networkα 67.5 76.8 - -
FastQA [30] 68.4 77.1 70.8 78.9
jNet [36] 68.7 77.4 - -
Document Reader [4] 69.9 78.9 - -
R-Net [27] 71.3 79.7 75.9 82.9

Vocab Size: We use the python NLTK tokenizer6 to prepro-
cess passages and questions, and obtain about 100K words in the
vocabulary.

Embedding Layer: We use the 100-dimensional pretrained
Glove vectors [17] as word embeddings. These Glove vectors are
�xed during the model training. To alleviate the out-of-vocabulary
issue, we adopt one layer 100-dimensional convolutional neural
network on character-level with a width size of 5 and each char-
acter encoded as an 8-dimensional vector following the work [20].
The 100-dimensional Glove word vector and the 100-dimensional
character-level vector are concatenated to obtain a 200-dimensional
vector for each word.

Bi-GRU Encoder: We apply bidirectional GRU for encoding
query and passage into vector representations. The number of
hidden units is set to 128.

Memory: We use bidirectional-GRU encoders to extract the
query representation Mquery and the passage representation Mdoc ,
given a query and a passage. We compute the similarity matrix

6NLTK package could be downloaded from http://www.nltk.org/

Table 3: Reachability statistics of the Graph Reachability dataset.

Small Graph Large Graph

Reachable Step No Reach 1–3 4–6 7–9 No Reach 1–3 4–6 7–13
Train (%) 44.16 42.06 13.51 0.27 49.02 25.57 21.92 3.49
Test (%) 45.00 41.35 13.44 0.21 49.27 25.46 21.74 3.53

Table 4: Small and large random graph in the Graph Reachability dataset. Note that “A → B” represents an edge connected
from A to B and the # symbol is used as a delimiter between di�erent edges.

Small Graph Large Graph

Graph Description 0→ 0 # 0→ 2 # 1→ 2 # 2→ 1 # 0→ 17 # 1→ 3 # 1→ 14 # 1→ 6 #
3→ 2 # 3→ 3 # 3→ 6 # 3→ 7 # 2→ 11 # 2→ 13 # 2→ 15 # 3→ 7#
4→ 0 # 4→ 1 # 4→ 4 # 5→ 7 # 5→ 0 # 5→ 7 # 6→ 10 # 6→ 5#
6→ 0 # 6→ 1 # 7→ 0 # 7→ 15 # 7→ 7 # 8→ 11 # 8→ 7 #

10→ 9 # 10→ 6 # 10→ 7 # 12→ 1 #
12→ 12 # 12→ 6 # 13→ 11 # 14→ 17 #
14→ 14 # 15→ 10 # 16→ 2 # 17→ 4 #
17→ 7 #

Query 7→ 4 10→ 17
Answer No Yes

between each word in the query and each word in the passage.
The similarity matrix is denoted as S ∈ RT×J , where T and J
are the number of words in the passage and query, respectively,
and St j = w

ᵀ
S [M

doc
:t ;Mquery

:j ;Mdoc
:t ◦Mquery

:j] ∈ R, where wS is a
trainable weight vector, ◦ denotes the elementwise multiplication,
and [;] is the vector concatenation across row. We then compute
the context-to-query attention and query-to-context attention from
the similarity matrix S by following recent co-attention work [20]
to obtain the query-aware passage representation G. We feed G to
a 128-dimensional bidirectional GRU to obtain the memory M =
bidirectional-GRU(G), where M ∈ R256×T .

Internal State Controller: We use a GRU model with 256-
dimensional hidden units as the internal state controller. The initial
state of the GRU controller is the last-word representation of the
query bidirectional-GRU encoder.

Termination Module: We use the same termination module
as in the CNN and Daily Mail experiments.

Answer Module: SQuAD task requires the model to �nd a
span in the passage to answer the query. Thus the answer module
requires to predict the start and end indices of the answer span in
the passage. The probability distribution of selecting the start index
over the passage at state st is computed by :

p1t = softmax(wᵀp1 [M ;M ◦ St])

where St is given via tiling st byT times across the column andwp1

is a trainable weight vector. The probability distribution of selecting
the end index over passage is computed in a similar manner:

p2t = softmax(wᵀp2 [M ;M ◦ St])

Other Details: The maximum reasoning stepTmax is set to 10 in
SQuAD experiments. We use AdaDelta optimizer [35] for parameter
optimization with an initial learning rate of 0.5 and a batch size

of 32. Models are trained on GTX TitanX 12GB. It takes about 40
minutes per epoch for training, with 18 epochs in total.

Results : In the Table 2, we report the performance of all mod-
els in the SQuAD leaderboard.7 In the upper part of the Table 2,
we compare ReasoNet with all published baselines at the time of
submission. Speci�cally, BiDAF model could be viewed as a special
case of ReasoNet withTmax = 1. It is worth noting that this SQuAD
leaderboard is highly active and competitive. The test set is hidden
to all models and all the results on the leaderboard are produced
and reported by the organizer; thus all the results here are repro-
ducible. In Table 2, we demonstrate that ReasoNet outperforms
all existing published approaches. While we compare ReasoNet
with BiDAF, ReasoNet exceeds BiDAF both in single model and
ensemble model cases. This demonstrates the importance of the
dynamic multi-turn reasoning over a passage. In the bottom part
of Table 2, we compare ReasoNet with all unpublished methods at
the time of this submission, ReasoNet holds the second position in
all the competing approaches in the SQuAD leaderboard.

4.3 Graph Reachability Task
Recent analysis and results [3] on the cloze-style machine compre-
hension tasks have suggested some simple models without multi-
turn reasoning can achieve reasonable performance. Based on
these results, we construct a synthetic structured Graph Reach-
ability dataset8 to evaluate longer range machine inference and
reasoning capability, since we anticipate ReasoNets to have the
capability to handle long range relationships.

We generate two synthetic datasets: a small graph dataset and
a large graph dataset. In the small graph dataset, it contains 500K
small graphs, where each graph contains 9 nodes and 16 direct

7Results shown here re�ect the SQuAD leaderboard (stanford-qa.com) as of 17 Feb
2017, 9pm PST. We include the reference in the camera-ready version. α : Fudan
University.
8The dataset is available at https://github.com/MSRDL/graph_reachability_dataset

Table 5: The performance of Reasoning Network on the Graph Reachability dataset.

Small Graph Large Graph

ROC-AUC PR-AUC Accuracy ROC-AUC PR-AUC Accuracy
Deep LSTM Reader 0.9619 0.9565 0.9092 0.7988 0.7887 0.7155
ReasoNet-Tmax = 2 0.9638 0.9677 0.8961 0.8477 0.8388 0.7607
ReasoNet-Last 1 1 1 0.8836 0.8742 0.7895
ReasoNet 1 1 1 0.9988 0.9989 0.9821

Step 1

Step 2

Step 0

Step 3

Step 4,
5, 7

Step 6,
8

Step 9

Step Termination Probability Prediction
1 1.00E-06 0.172
2 1.00E-06 0.625
3 1.00E-06 0.752
4 1.00E-06 0.202
5 1.00E-06 0.065
6 1.00E-06 0.041
7 2.30E-06 0.137
8 0.0017 0.136
9 0.49 0.761

10 0.99 0.927

Step 2

Step 3

Step 1

Step 4

Steps 5, 6, 8

Steps 7, 9

Step 10

Figure 4: An example of graph reachability result, given a query “10 → 17” (Answer: Yes). The red circles highlight the
nodes/edges which have the highest attention in each step. The corresponding termination probability and prediction results
are shown in the table. The model terminates at step 10.

edges to randomly connect pairs of nodes. The large graph dataset
contains 500K graphs, where each graph contains 18 nodes and 32
random direct edges. Duplicated edges are removed. Table 3 shows
the graph reachability statistics on the two datasets.

In Table 4, we show examples of a small graph and a large graph
in the synthetic dataset. Both graph and query are represented by a
sequence of symbols. The details settings of the ReasoNet are listed
as follows in the reachability tasks.

Embedding Layer We use a 100-dimensional embedding vector
for each symbol in the query and graph description.

Bi-LSTM Encoder: We apply a bidirectional-LSTM layer with
128 and 256 cells on query embeddings in the small and large
graph datasets, respectively. The last states of bidirectional-LSTM
on query are concatenated to be the initial internal state s1 =
[−→q |q | ,←−q 1] in the ReasoNet.

Memory: We apply another bidirectional-LSTM layer with 128
and 256 cells on graph description embeddings in the small and
large graph datasets, respectively. It maps each symbol дi to a
contextual representation given by the concatenation of forward
and backward LSTM hidden statesmi = [−→д i ,←−д |д |−i+1].

Internal State Controller: We use a GRU model with 128-
dimensional and 256-dimensional hidden units as the internal state
controller for the small and large graph datasets, respectively. The
initial state of the GRU controller is s1.

Answer Module: The �nal answer is either “Yes” or “No” and
hence logistical regression is used as the answer module: at =
σ (Wast + ba); θa = (Wa ,ba).

Termination Module: We use the same termination module
as in the CNN and Daily Mail experiments.

Other Details: The maximum reasoning step Tmax is set to 15
and 25 for the small graph and large graph dataset, respectively.
We use AdaDelta optimizer [35] for parameter optimization with
an initial learning rate of 0.5 and a batch size of 32.

We denote “ReasoNet” as the standard ReasoNet with termina-
tion gate, as described in Section 3.1. To study the e�ectiveness of
the termination gate in ReasoNets, we remove the termination gate
and use the prediction from the last state, â = aTmax (Tmax is the max-
imum reasoning step), denoted as “ReasoNet-Last”. To study the
e�ectiveness of multi-turn reasoning, we choose “ReasoNet-Tmax =
2”, which only has single-turn reasoning. We compare ReasoNets
with a two layer deep LSTM model [7] with 128 hidden units, de-
noted as “Deep LSTM Reader”, as a baseline. Table 5 shows the per-
formance of these models on the graph reachability dataset. Deep
LSTM Reader achieves 90.92% and 71.55% accuracy in the small
and large graph dataset, respectively, which indicates the graph
reachibility task is not trivial. The results of ReasoNet-Tmax = 2
are comparable with the results of Deep LSTM Reader, since both
Deep LSTM Reader and ReasoNet-Tmax = 2 perform single-turn
reasoning. The ReasoNet-Last model achieves 100% accuracy on
the small graph dataset, while the ReasoNet-Last model achieves

1 -> 16 # 1 -> 12 # 1 -> 14 # 1 -> 7 # 2 -
> 17 # 3 -> 1 # 4 -> 0 # 4 -> 1 # 4 -> 12
4 -> 6 # 6 -> 0 # 6 -> 3 # 6 -> 7 # 8 ->
2 # 8 -> 4 # 8 -> 13 # 8 -> 14 # 9 -> 16
10 -> 0 # 10 -> 6 # 11 -> 10 # 11 -> 2
12 -> 2 # 13 -> 2 # 13 -> 6 # 14 -> 2 #
14 -> 7 # 16 -> 13 # 16 -> 14 # 17 -> 0

17 -> 13 #

Step Termination Probability Prediction
1 1.40E-05 4.49E-04
2 0.999 1.40E-05

Step 1

Step 2

Step 2

Step 1 Step 1

Step 1

3
1

2

2 1

3

Step 2

Figure 5: An example of graph reachability result, given a query “4→ 9” (Answer: No). The numbers next to the underline
bars indicate the rank of the attention scores. The corresponding termination probability and prediction results are shown in
the table.

only 78.95% accuracy on the large graph dataset, as the task be-
comes more challenging. Meanwhile, the ReasoNet model con-
verges faster than the ReasoNet-Last model. The ReasoNet model
converges in 20 epochs in the small graph dataset, and 40 epochs
in the large graph dataset, while the ReasoNet-Last model con-
verges around 40 epochs in the small graph dataset, and 70 epochs
in the large graph dataset. The results suggest that the termina-
tion gate variable in the ReasoNet is helpful when training with
sophisticated examples, and makes models converge faster. Both
the ReasoNet and ReasoNet-Last models perform better than the
ReasoNet-Tmax = 2 model, which demonstrates the importance of
the multi-turn reasoning.

To further understand the inference process in ReasoNets, Fig-
ures 4 and 5 show test examples of the large graph dataset. In
Figure 4, we can observe that the model does not make a �rm pre-
diction till step 9. The highest attention word at each step shows
the reasoning process of the model. Interestingly, the model starts
from the end node (17), traverses backward till �nding the starting
node (10) in step 9, and makes a �rm termination prediction. On
the other hand, in Figure 5, the model learns to stop in step 2. In
step 1, the model looks for neighbor nodes (12, 6, 16) to 4 and 9.
Then, the model gives up in step 2 and predict “No". All of these
demonstrate the dynamic termination characteristic and potential
reasoning capability of ReasoNets.

To better grasp when ReasoNets stop reasoning, we show the
distribution of termination steps in ReasoNets on the test set. The
termination step is chosen with the maximum termination probabil-
ity p(k) = tk

∏k−1
i=1 (1 − ti), where ti is the termination probability

at step i . Figure 6 shows the termination step distribution of Rea-
soNets in the graph reachability dataset. The distributions spread
out across di�erent steps. Around 16% and 35% of the instances
terminate in the last step for the small and large graph, respectively.
We study the correlation between the termination steps and the
complexity of test instances in Figure 7. Given the query, we use
the Breadth-First Search (BFS) algorithm over the target graph to
analyze the complexity of test instances. For example, BFS-Step

(a) Small Graph

(b) Large Graph

Figure 6: Termination step distribution of ReasoNets in the
graph reachability dataset, where Tmax is set to 15 and 25 in
the small graph and large graph dataset, respectively.

= 2 indicates that there are two intermediate nodes in the shortest
reachability path. Test instances with larger BFS-Steps are more
challenging. We denote BFS-Step = −1 as there is no reachable
path for the given query. Figure 7 shows that test instances with
larger BFS-Steps require more reasoning steps.

(a) Small Graph

(b) Large Graph

Figure 7: The correlation between BFS steps and ReasoNet
termination steps in the graph reachability dataset, where
Tmax is set to 15 and 25 in the small graph and large graph
dataset, respectively, and BFS-Step= −1 denotes unreachable
cases. The value indicates the number of instances in each
case.

5 CONCLUSION
In this paper, we propose ReasoNets that dynamically decide whether
to continue or to terminate the inference process in machine com-
prehension tasks. With the use of the instance-dependent baseline
method, our proposed model achieves superior results in machine
comprehension datasets, including unstructured CNN and Daily
Mail datasets, the Stanford SQuAD dataset, and a proposed struc-
tured Graph Reachability dataset.

6 ACKNOWLEDGMENTS
We thank Ming-Wei Chang, Li Deng, Lihong Li, and Xiaodong Liu
for their thoughtful feedback and discussions.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. In ICLR.
[2] Léon Bottou. 2014. From machine learning to machine reasoning. Machine

Learning 94, 2 (2014), 133–149.
[3] Danqi Chen, Jason Bolton, and Christopher D Manning. 2016. A Thorough

Examination of the CNN / Daily Mail Reading Comprehension Task. In ACL.
[4] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading

Wikipedia to Answer Open-Domain Questions. CoRR abs/1704.00051 (2017).
[5] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu.

2016. Attention-over-Attention Neural Networks for Reading Comprehension.
CoRR abs/1607.04423 (2016).

[6] Bhuwan Dhingra, Hanxiao Liu, William W. Cohen, and Ruslan Salakhutdinov.
2016. Gated-Attention Readers for Text Comprehension. CoRR abs/1606.01549
(2016).

[7] Karm Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt,
Will Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching Machines to

Read and Comprehend. In NIPS. 1693–1701.
[8] Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. 2016. The Goldilocks

Principle: Reading Children’S Books With Explicit Memory Representations. In
ICLR.

[9] Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. 2016. Text
Understanding with the Attention Sum Reader Network. arXiv:1603.01547v1
[cs.CL] (2016). arXiv:1603.01547

[10] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998. Plan-
ning and acting in partially observable stochastic domains. Arti�cial Intelligence
101 (1998), 99–134.

[11] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic
Optimization. In ICLR.

[12] Sosuke Kobayashi, Ran Tian, Naoaki Okazaki, and Kentaro Inui. 2016. Dynamic
Entity Representation with Max-pooling Improves Machine Reading. In Pro-
ceedings of the North American Chapter of the Association for Computational
Linguistics and Human Language Technologies (NAACL-HLT).

[13] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. 2016. Ask Me
Anything: Dynamic Memory Networks for Natural Language Processing. In
ICML.

[14] Kenton Lee, Tom Kwiatkowski, Ankur P. Parikh, and Dipanjan Das. 2016. Learn-
ing Recurrent Span Representations for Extractive Question Answering. CoRR
abs/1611.01436 (2016).

[15] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. 2014. Recurrent models
of visual attention. In Advances in Neural Information Processing Systems. 2204–
2212.

[16] Rodrigo Nogueira and Kyunghyun Cho. 2016. WebNav: A New Large-Scale Task
for Natural Language based Sequential Decision Making. In Advances in Neural
Information Processing Systems.

[17] Je�rey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation.. In EMNLP.

[18] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100, 000+ Questions for Machine Comprehension of Text. In EMNLP.

[19] Matthew Richardson, Christopher JC Burges, and Erin Renshaw. 2013. MCTest:
A Challenge Dataset for the Open-Domain Machine Comprehension of Text.. In
EMNLP.

[20] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2016.
Bidirectional Attention Flow for Machine Comprehension. CoRR abs/1611.01603
(2016).

[21] Alessandro Sordoni, Phillip Bachman, and Yoshua Bengio. 2016. Iterative Alter-
nating Neural Attention for Machine Reading. CoRR abs/1606.02245 (2016).

[22] Sainbayar Sukhbaatar, Jason Weston, and Rob Fergus. 2015. End-to-end memory
networks. In Advances in Neural Information Processing Systems. 2440–2448.

[23] Richard Stuart Sutton. 1984. Temporal Credit Assignment in Reinforcement Learn-
ing. Ph.D. Dissertation.

[24] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.
Policy Gradient Methods for Reinforcement Learning with Function Approxima-
tion. In NIPS.

[25] Adam Trischler, Zheng Ye, Xingdi Yuan, and Kaheer Suleman. 2016. Natural
Language Comprehension with the EpiReader. In EMNLP.

[26] Shuohang Wang and Jing Jiang. 2016. Machine Comprehension Using Match-
LSTM and Answer Pointer. CoRR abs/1608.07905 (2016).

[27] Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. 2017. Gated
Self-Matching Networks for Reading Comprehension and Question Answering.
In ACL.

[28] Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Florian. 2016. Multi-Perspective
Context Matching for Machine Comprehension. CoRR abs/1612.04211 (2016).

[29] Dirk Weissenborn. 2016. Separating Answers from Queries for Neural Reading
Comprehension. CoRR abs/1607.03316 (2016).

[30] Dirk Weissenborn, Georg Wiese, and Laura Sei�e. 2017. FastQA: A Simple and
E�cient Neural Architecture for Question Answering. CoRR abs/1703.04816
(2017).

[31] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning 8, 3-4 (1992), 229–256.

[32] Caiming Xiong, Victor Zhong, and Richard Socher. 2016. Dynamic Coattention
Networks For Question Answering. CoRR abs/1611.01604 (2016).

[33] Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W. Cohen, and Ruslan
Salakhutdinov. 2016. Words or Characters? Fine-grained Gating for Reading
Comprehension. CoRR abs/1611.01724 (2016).

[34] Yang Yu, Wei Zhang, Kazi Hasan, Mo Yu, Bing Xiang, and Bowen Zhou. 2016.
End-to-End Reading Comprehension with Dynamic Answer Chunk Ranking.
CoRR abs/1610.09996 (2016).

[35] Matthew D. Zeiler. 2012. ADADELTA: An Adaptive Learning Rate Method. CoRR
abs/1212.5701 (2012).

[36] Junbei Zhang, Xiao-Dan Zhu, Qian Chen, Li-Rong Dai, Si Wei, and Hui Jiang.
2017. Exploring Question Understanding and Adaptation in Neural-Network-
Based Question Answering. CoRR abs/1703.04617 (2017).

http://arxiv.org/abs/1603.01547

	Abstract
	1 Introduction
	2 Related Work
	3 Reasoning Networks
	3.1 Training Details

	4 Experiments
	4.1 CNN and Daily Mail Datasets
	4.2 SQuAD Dataset
	4.3 Graph Reachability Task

	5 Conclusion
	6 Acknowledgments
	References

