
FeatureInsight: Visual Support for
Error-Driven Feature Ideation in Text Classification

Michael Brooks*, Saleema Amershi†, Bongshin Lee†, Steven M. Drucker†, Ashish Kapoor†, Patrice Simard†

*University of Washington, †Microsoft Research

ABSTRACT

Machine learning requires an effective combination of data,
features, and algorithms. While many tools exist for working with
machine learning data and algorithms, support for thinking of new
features, or feature ideation, remains poor. In this paper, we
investigate two general approaches to support feature ideation:
visual summaries and sets of errors. We present FeatureInsight, an
interactive visual analytics tool for building new dictionary features
(semantically related groups of words) for text classification
problems. FeatureInsight supports an error-driven feature ideation
process and provides interactive visual summaries of sets of
misclassified documents. We conducted a controlled experiment
evaluating both visual summaries and sets of errors in
FeatureInsight. Our results show that visual summaries
significantly improve feature ideation, especially in combination
with sets of errors. Users preferred visual summaries over viewing
raw data, and only preferred examining sets when visual summaries
were provided. We discuss extensions of both approaches to data
types other than text, and point to areas for future research.

Keywords: Features; machine learning; interactive machine
learning; text classification; dictionaries; visualization.

Index Terms: Human-centered computing~Visual analytics.
Computing methodologies~Machine learning.

1 INTRODUCTION

Machine learning (ML) is increasingly relied upon for applications
such as data analysis, intelligent systems, and large-scale
computation. Tools and best practices exist to help practitioners
with many aspects of creating ML systems, but so far there is little
support for a crucial step in the process: thinking of new features.

Features are observable quantities for describing data to an ML
algorithm (e.g., web pages could be represented by the words,
length, or page layout, while images could be represented by hue,
saturation, or shapes in the image). Features must capture salient
aspects of the data to help the machine learn the target concept (e.g.,
that a web page is a sports page or that an image contains a car).
But features can hurt performance if they insufficiently describe the
concept, capture irrelevant aspects of the data, or are redundant.
Although there are many requirements for ML systems (e.g., high
quality data, appropriate model choice, parameter tuning), both
researchers [1], [2], [3], [4] and practitioners [5], [6] recognize
feature engineering as crucial to the machine learning process.

Features for ML systems can have various origins. In some cases,
features appropriate for an ML problem can be obtained from
related literature [7]. On problems where data is plentiful, features

can sometimes be automatically generated [8], [9], [10] or selected
from a candidate set [2], [4], [11], [12]. However, when training
data is limited (e.g., for personalized tasks [13] or when domain
expertise is required and prohibitively expensive to obtain [14]),
automatically generated features can result in over-fitting [1]; in
these scenarios, human involvement in feature engineering can
improve performance [15], [16]. Even with the availability of
existing features or automated techniques, practitioners spend
extensive time thinking of and developing custom features to
support their specific problems [1], [7]. Custom features are often
developed in a trial-and-error manner [1], [7] because, aside from
simply analyzing classifier errors, there are few recommendations
available for how to think of good features, and tool support for
feature ideation remains underexplored.

In this paper, we develop a hybrid approach to feature ideation
that falls between fully human-driven and fully automated feature
engineering. We leverage the machine’s ability to efficiently
analyze and visually summarize a large number of examples, while
drawing on human knowledge and intuition to identify and build
potentially useful features. We consider two techniques for feature
ideation: (1) examining sets of errors, to improve feature
generalizability; and (2) visual summaries of errors to reduce noise
and cognitive load. These techniques are implemented in
FeatureInsight, a tool for error-driven feature ideation in binary
(two-class) classification problems with limited amounts of
training data. We focus on text classification problems and word-
based features. FeatureInsight visually summarizes sets of
misclassified text documents via ranked and annotated lists of
promising seed words.

Our main contributions are:

• A design exploration and implementation of two approaches
for supporting feature ideation: sets of errors and visual

summaries, in the FeatureInsight system.

• A controlled experiment evaluating the effects of both sets of

errors and visual summaries. We find that visual summaries
helped participants create better-performing classifiers and
were preferred by users, while examining sets of errors had no
benefits without visual summaries.

• An exploratory analysis comparing features from
FeatureInsight to automatic feature selection algorithms,
illustrating strengths and weaknesses of both methods.

2 BACKGROUND AND RELATED WORK

In this section, we consider the challenge of creating new features
and review research on user interaction with ML systems. We then
examine related work in text classification.

2.1 Feature Engineering in Machine Learning

The importance of features to ML is well-established [1], [2], [5],
[6]. Practitioners often begin by searching for existing features
from related problems, using their own domain knowledge to think
of relevant features, or trying to algorithmically generate features
for the given dataset [1], [7]. However, even with an initial set of

 * mjbrooks@uw.edu, †{samershi, bongshin, sdrucker,

akapoor, patrice}@microsoft.com

candidate features, practitioners report spending a large amount of
time iteratively experimenting with new features [1], [7].

Algorithms have been created to automatically build high-level
features out of low-level elements for speech [10], real-time sensors
[8], and general ML problems [9]. If a set of candidate features is
available, feature selection algorithms can find a useful subset of
those features for improving efficiency and generalization [4]. For
text classification, the most commonly used family of feature
selection techniques is metric-based ranking followed by selection
of the k best features [2], [11], [12], but there is no single metric
that is consistently optimal across data sets. In our paper, we
perform an exploratory analysis comparing human-generated
features to features selected using Information Gain and Chi-
Squared metrics, two commonly-used baselines.

When algorithmic techniques are not effective (as in small-
dataset problems), custom features must be created manually; and,
even when algorithmic feature selection are used, manual feature
engineering is still common. However, there is little guidance about
how this should be done. One strategy for thinking of new features
is examination of classifier errors [5], [6]. Here, the practitioner
considers misclassified data to identify information the classifier
may be missing and explain the error. Features are added to capture
the missing information and improve the classifier’s performance.

Another approach is to compare and contrast examples. Patel et

al. proposed comparing example data from a classifier’s “confused
region” with a representative example from the opposite class to
help users think of new discriminating features [17]. Stumpf et al.
used a compare and contrast approach to help users give open-
ended feedback to an email classification system [18]. Cheng and
Bernstein also used a compare and contrast approach to help crowd
workers generate features [16]. We incorporate error examination
and compare and contrast into the FeatureInsight system.

Humans possess knowledge that can be useful to ML systems,
but apart from users providing labels, researchers have only
recently begun exploring richer forms of user input. While the
literature includes examples of visual, interactive data classification
[19], [20], few systems help users directly create features. Still,
there is evidence of the potential for human-driven feature
engineering; Stumpf et al. showed that free-form feedback on
features could improve an ML system [13]. Others have explored
enabling users to adjust feature weights [15], [21], interactively
debugging features [22], and crowd-generating features [16]. In this
paper, we investigate the potential of interactive feature ideation.

2.2 Text Classification

Text classification, our focus in this paper, has important practical
applications (e.g., search ranking, information extraction, natural
language processing) [23]. Although we use web pages here, our
strategies should translate to many other types of text-based data.

A common feature engineering approach for text is “bag-of-
words” or n-grams [24], [25]. This involves automatically
generating a very large feature set where each feature corresponds
to the presence or frequency of a specific word or n-word phrase in
a document. While bag-of-words features are common, they
produce large, sparse feature spaces, which typically require more
training data to mitigate over-fitting [1]. Because bag-of-words
features require no human input, they afford no opportunity to
incorporate the users’ domain knowledge. In FeatureInsight, we
leverage bag-of-words to generate candidate words, which are
ranked and displayed to prompt ideas for new features.

Users of FeatureInsight interactively build dictionary features,
which are groups of semantically related words or n-grams. For
example, for a bicycling web page classifier, a useful dictionary
feature may be types of bicycles (including words such as “bicycle”

or “tricycle”) or bicycling events (including “bike race” and “bike
tour”). Manually-constructed dictionaries were part of early rule-
based text classification systems [26]. Recent work uses lexicons
or gazetteers built from pre-existing dictionaries or seed words
[27], [28], but manually-constructed dictionaries are still used [29].
Dictionary features are relatively easy for users to understand,
capture the users’ domain knowledge, and reduce the number of
features by capturing the semantic equivalence of their constituent
words. Using fewer features typically means less training data is
needed and generalization is improved. Text and dictionary
features also enable our techniques for supporting feature ideation.
For example, text is readily decomposed into small units (i.e.,
words) that can be displayed to the user for semantic grouping into
meaningful features (i.e., dictionaries). In the Discussion, we
consider extensions to other types of data and features.

3 SUPPORTING FEATURE IDEATION

FeatureInsight helps users think of new dictionary features for
binary text classification by displaying interactive visual
summaries of sets of errors.

The system ingests a set of text documents, which must be
labeled positive or negative for the target class (e.g., bicycling or
not-bicycling). Once this training data is loaded, the FeatureInsight
user interface shows a featuring area on the left, and controls for
exploring the data on the right (Figure 1). As the user interacts with
FeatureInsight, they can add new features in the featuring area
(Figure 1, A) and modify or delete features.

When a feature changes, FeatureInsight re-trains a logistic

regression classifier. This involves checking if the document
contains any of the words in the dictionary (feature), and
calculating the word’s term frequency-inverse document frequency
(tf-idf), a common technique from information retrieval [30]. For
the datasets we tested, with a few hundred examples each, classifier
training is fast and can be done interactively. To help users track
progress, in the top-right corner FeatureInsight shows overall
accuracy (percent of training data classified correctly) and change
in accuracy since the last re-training.

3.1 Feature Ideation by Comparing Errors

The feature ideation workflow is based on two recommended
approaches: examination of classifier errors [5, p. 226], [6], and
comparison [13], [16], [17]. With every iteration of classifier
training, FeatureInsight lets users examine documents currently
being misclassifying. Binary classifiers can make two types of
errors: false positives (documents misclassified as positive when
actually negative) and false negatives (documents misclassified as
negative when actually positive). False positive and negative errors
may require different features to correct. Therefore, users can
decide which errors to inspect, using controls at the top (Figure 1,
B). To help prioritize which errors to work on, the system displays
accuracies for the documents within each class. For example, if a
classifier is predicting 90% of negative documents correctly but
only 40% of positive documents correctly, the user might prioritize
fixing errors in the positive class.

FeatureInsight provides side-by-side comparison to highlight
characteristics that may help discriminate between positive and
negative documents. Misclassified documents of the focused class
are shown beside documents of the opposite class (false positives
are shown besides positives and false negatives are shown besides
negatives). We refer to misclassified documents as errors and
comparison documents for those errors as contrasts. When a user
switches focus between false positives and false negatives, the
corresponding errors are shown on the left, while contrasts are
shown on the right. For example, when building a bicycling web

page classifier, users could examine motorcycling documents
misclassified as bicycling, compare them to actual bicycling
documents, and try to think of new features to help the classifier
distinguish between motorcycling and bicycling pages.

3.2 Examining Sets of Errors with Visual Summaries

Inspecting errors is a recommended way to think of new features
[5], [6], but individual errors can yield feature ideas that do not
generalize. For example, if our bicycling classifier mislabels a
“motorcycle club” web page as positive, inspecting this error alone
might prompt the user to create a feature from the club’s name.
While this might correct one error, it would not eliminate confusion
about motorcycle clubs in general. Instead, ML practitioners might
inspect multiple errors to think of features, a practice we refer to as
examining sets of errors. Commonalities across many errors may
yield feature ideas that generalize beyond the errors considered. In
FeatureInsight, the user examines many errors at once.

While examining sets of errors might improve the
generalizability of feature ideas, it also increases cognitive load,
particularly with unstructured and noisy data like web pages.
FeatureInsight uses visual summaries to help abstract away
unnecessary detail and highlight important characteristics of
documents. For text data, possible visual summaries range from
complex techniques, as in visualizations of topic models [31], to
simpler techniques like “word clouds” [32], [33]. FeatureInsight
uses ranked and annotated lists of words (Figure 1, C and D) and
semantically related words (Figure 1, E) to visually summarize
documents. In the next section we describe how we generate these
summaries and how users interact them to build dictionaries.

3.3 Building Dictionaries from Suggested Words

FeatureInsight visually summarizes sets of errors via ranked and
annotated lists of words. One word list is used to summarize error
documents (Figure 1, C) while another summarizes corresponding
contrasts (Figure 1, D). Words are chosen and ranked based on their
potential to improve classifier performance as follows:

1. Obtain the frequency of all words occurring in any of the Error
and Contrast documents, excluding stop-words and words
with less than three characters.

2. As candidate words for Errors, select 100 words which occur
more often in the Errors than Contrasts. Also, as candidate
words for Contrasts, select 100 words which occur more often
in the Contrasts than Errors.

3. For each of the 200 candidate words, evaluate the
improvement in logarithmic loss (log-loss, a commonly-used
performance metric) obtained if the word by itself were added
as a new feature (in addition to any existing features). This
helps prevent feature overlap because each word is considered
in conjunction with the current set of features.

4. Rank both lists of candidate words by log-loss improvement
and select the top 20 from each list to display as key words.

This procedure takes a fraction of a second on the datasets used
below. Filtering by frequency difference (Step 2) reduces the words
used in the more expensive log-loss computation.

FeatureInsight shows green and red bars next to each word,
indicating its frequency in the positive and negative documents,
respectively. High frequency words (with larger bars) may
generalize better, while words with large differences in bar length

Figure 1. A screenshot of FeatureInsight being used to train a classifier for bicycling web pages: A) the featuring area; B) focus selection

controls; C) key words for Errors; D) key words for Contrasts; E) words related to the selected word (brands).

might better discriminate positives and negatives. An “Example”
button beside each word can display a document with a high tf-idf
value for that word. Users may also manually “hide” words they
deem unimportant, revealing new words from the ranked lists.

Users might be tempted to create single-word dictionaries, but
higher-level features with multiple words are often more powerful.
For example, instead of creating individual features for each
bicycle part (e.g., tire, chain, pedal, gear, etc.), a “bicycle parts”
dictionary would indicate that these words are related, and reduce
the dimensionality of the feature space. Higher-level features can
also be more interpretable. The word “chain” may occur in multiple
contexts, e.g. jewelry or chemistry (as in a “chain reaction”).
However, “chain” as part of a dictionary feature that includes the
words “tire” and “brake” provides context that “chain” is meant to
refer to a bicycle part. To encourage features combining several
semantically-related words, FeatureInsight displays a set of
“related words” (Figure 1, E). When a user clicks on a word from
either the Errors or Contrasts lists, FeatureInsight finds the 25 most
closely related words. “Relatedness” is judged based on the cosine
similarity between the words’ document-vectors: a vector
consisting of the word’s tf-idf values for each document. The 25
words closest to the selected word are displayed in the interface.

Words anywhere in FeatureInsight can be added to a feature by
pressing the Control key and clicking on the word (e.g., from the
key words, related words, or in example documents). If users think
of other words while exploring FeatureInsight’s visual summaries,
they may manually type their own words into features. When a
word is already part of an existing dictionary, it is given a light-
orange background in the Error and Contrast lists and related words
list, to minimize redundant features.

4 EVALUATION

We conducted a controlled experiment to examine FeatureInsight’s
support for feature ideation using a 2 (individual vs. sets of errors)
x 2 (raw data vs. visual summaries) within-subjects design.

4.1 Treatments

We built four versions of our tool to test examining individual vs.
sets of errors, and raw data vs. visual summaries: Pair Inspection
(individual errors + raw data), Set Inspection (sets of errors + raw
data), Pair Visualization (individual errors + visual summaries),
and Set Visualization (sets of errors + visual summaries).
FeatureInsight, as described above, represents the Set Visualization
version. The others are described below.

As with FeatureInsight (Figure 1), the Pair Visualization
interface (Figure 2, top) shows lists of words for Errors and
Contrasts. However, here words are generated from a single error
and contrast document rather than from multiple documents. We
also removed the word frequency bars, which do not make sense
for individual documents. Errors and contrasts are displayed singly;
users page through documents with navigation buttons at the top
(“Previous” and “Next”). When the user moves to a new error
document, contrast documents are automatically resorted by
decreasing cosine similarity to the error (in bag-of-words space) to
increase the chances that comparing the two documents will prompt
good feature ideas. Users can also view the full web page that the
words came from by clicking the “Show Page” button.

The Set Inspection interface (Figure 2, middle) shows sets of
errors and contrasts as raw pages (without visual summaries), in
scrollable, zoomable panels. The Pair Inspection version (Figure 2,
bottom) only shows one error and one contrast web page. As with
the Pair Visualization version, Pair Inspection provides navigation
buttons. In both Inspection versions, users can add words to the
feature’s word list by pressing the Control key and clicking a word

in the document. The Pair Inspection version can be considered a
baseline as it provides support comparable to existing tools.

4.2 The Task and Datasets

Our evaluation focused on the feature ideation process, so we
provided participants with already-labeled datasets and then asked
them to think of features to build a classifier for a target concept.

Several factors impact the difficulty of feature ideation,
including familiarity with the target concept, concept complexity
(e.g., class separability), and data ambiguity. In an attempt to
control for some of these factors, we used the following approach
to create our 8 test datasets for this experiment:

1. We created candidate sets from the Open Directory Project, a
community-driven directory of human-categorized web pages
(http://www.dmoz.org). We used second-level categories; the
top level categories often contain dissimilar subtopics.

2. For each of ~85 categories, we used uncertainty-based
sampling to select pages within (positive) and outside
(negative) the target concept. Uncertainty-sampling selects

Figure 2: The main content areas for the Pair Visualization (top), Set

Inspection (middle), and Pair Inspection (bottom) versions of the

FeatureInsight.

data where a classifier is most uncertain. Intuitively, this finds
examples around the decision boundary of the target class, and
helps to control for example ambiguity across datasets. We
started with a random set of 50 pages, and then iteratively train
a classifier (with bag-of-words features) and added pages via
sampling until reaching 650 examples.

3. For each candidate dataset, we trained a classifier on a random
subset and estimated class separability via the logarithmic loss
(log-loss) metric on the remaining test subset. We selected
eight datasets of moderate separability (i.e., log-loss close to
the median) to help control for concept complexity.

4. Finally, we manually reviewed each dataset, verifying the
labels and removing miscategorized pages. This sometimes
tipped the class distribution towards positive or negative, so
we rebalanced and resized the datasets to achieve 50%
positives in each, by randomly discarding pages.

Our datasets were: Equestrianism, Healthcare Business, Sports
Shopping, Chemical Business, Museums, Electronics/Electrical,
Food Business, and Newspapers.

4.3 Procedure

Each session started with an introduction to the general feature
engineering task, the idea and importance of generalizability, and
the study procedure. We informed participants that they would be
given labeled data, and that their goal was to create features to train
a classifier with a high accuracy.

At the start of each condition, we gave participants a short
tutorial for the next interface. We let them practice adding features
with the Bicycling dataset until they were comfortable with the
interface. We then gave two five-minute feature ideation tasks in
succession. Each task involved a different dataset and target
concept (listed above). We did not expect carryover effects between
datasets, so we fixed the order of datasets and only counter-
balanced the four interface conditions, using a complete set of
mutually-orthogonal Latin squares balanced for carryover effects
[34]. We expected to observe differences between dataset topics,
reflecting a combination of both topic effects and ordering effects
like learning and fatigue. Our counterbalancing scheme controls for
these effects and allows a fair comparison of the four treatments.

After each condition, participants completed a questionnaire
with Likert-type questions about the tool: enjoyment, satisfaction
with features they created, and satisfaction with classification
performance. At the end of the study, participants filled out a final
questionnaire ranking the four tools. The study lasted about 90
minutes, and participants received a $20 coupon.

4.4 Participants and Apparatus

We recruited 20 participants (12 male, 8 female) employed at a
large software company, via an internal mailing list for employees
interested in machine learning. We required participants to be
fluent in English, not red-green colorblind, and familiar with basic
machine learning concepts, e.g. features, true positives, and false
positives. Participants included software engineers, researchers,
and data scientists. Participants completed the study in pairs, using
on a 3.47 GHz Windows 8 desktop machines with 16GB RAM and
a 24-inch monitor at 1920x1200 resolution.

5 RESULTS

For each task, we evaluated the features participants created on a
randomly held-out test set of about 100 documents from the target
dataset, based on the area under the precision-recall curve (AUC).
AUC gives an estimate of performance that is robust to class
imbalance and independent of classification threshold [35]. Unlike
log-loss, AUC reflects actual classifier errors. We analyzed the test-

set AUC results with a mixed-effects model analysis of variance.
Mixed-effects models can be used for factorial designs with within-
subjects factors [36], and they treat the experimental subject as a
random effect with levels drawn randomly from a population. Our
model included fixed effects for UsingSet (Set vs. No Set) and
UsingVis (Vis vs. No Vis), as well as the dataset Topic (1-8), and
the interactions among these. Participant was modeled as a random
effect. Note that because the order of dataset topics was fixed, the
Topic variable reflects topic as well as order effects such as learning
and fatigue. For many measures, Topic had a significant effect
(cited where applicable below).

Because exploratory analysis showed Topic had an effect in our
study, we used the same mixed-effects analysis for our Likert-type
questionnaire data as we used for the AUC, above. Although
Likert-type responses are best interpreted as ordinal and analyzed
using non-parametric statistics, commonly-used non-parametric
approaches for within-subjects designs cannot also statistically
control for the effect of dataset topics.

5.1 Feature performance

Participants generated features with an average test-set AUC of
0.76 (±0.024) using the Visualization tools, and 0.70 (±0.036) when
using the Inspection tools. This difference was significant, F(1,
65.5) = 10.7, p < 0.01. Dataset Topic had a significant effect on test-
set AUC, F(7, 35.9) = 55.7, p < 0.01. There was no significant
difference between Sets vs. Pairs, and no significant interactions.
The mean test-set AUC for each tool is shown in Table 1.

5.2 Preference

After using the Visualization interfaces (vs. Inspection), users were
significantly more satisfied with their classification performance,
more satisfied with the features they created, and reported greater
enjoyment: respectively, F(1, 61.7) = 8.4 p < 0.01; F(1,59) = 8.2, p
< 0.01; and F(1, 53.8) = 8.2, p < 0.01. For these three measures,
there was no significant effect of working with Sets vs. Pairs. For
satisfaction with features, dataset Topic had a significant effect (p
= 0.049). For classifier performance, satisfaction with features, and
enjoyment, there was also a significant interaction between the
Topic and Visualization: respectively, F(3, 30.6) = 3.2, p = 0.035;
F(3,31.7) = 7.0, p < 0.01; F(3, 34.9) = 3.9, p = 0.017.

The Visualization interfaces were significantly preferred over
the Inspection interfaces in the post-study ranking question, F(1,
63) = 4.9, p = 0.031. Here, the dataset topic also had a significant
effect, F(3, 30.8) = 3.0, p = 0.045. Of the 20 participants, 12 ranked
Set Visualization best. Median preference ranks are in Table 1.

5.3 User-Created Dictionaries

We also analyzed the feature sets themselves. Table 1 shows the
median number of dictionaries created and the mean number of
words per dictionary for each tool. Users of the Set Visualization
tool created more dictionaries than with the other tools, but this
difference was not significant. The mean number of words per
dictionary was not normally distributed, with a skew towards low

Table 1: Test set AUC (under the precision-recall curve) mean and

standard deviation, median preference rank, median number of

dictionaries, and mean words per dictionary for each treatment.

 AUC Pref. Num Dicts. Words/Dict.

Set Vis 0.78 (0.10) 1 5 6.6

Pair Vis 0.75 (0.12) 2 4 5.7

Set Insp 0.71 (0.12) 3 4 5.5

Pair Insp 0.68 (0.20) 2.5 4 5.5

values, so we applied a natural log transformation. A mixed-effects
model analysis found that log-transformed average dictionary size
was significantly larger with the Visualization tools vs. the
Inspection tools, F(1, 111) = 10.2, p < 0.01.

6 DISCUSSION AND FUTURE WORK

Below, we discuss implications for supporting user-driven feature
ideation. We supplement our discussion with participants’ open-
ended responses from the study. We also present a preliminary
follow up evaluation to give some insights into the performance of
human-generated compared to common automated feature
engineering techniques, and discuss areas for future research.

6.1 Visual Summaries Support Feature Ideation

Our study showed that examining visual summaries was
significantly preferred and led to better-performing classifiers than
examining raw data. Participant responses suggest this may be due
to difficulty visually parsing and extracting useful features from
raw pages: “Looking at whole page with images, words as part of
image vs. text was slowing me down.” (P11). P13 also reported:
“Fonts, colors, and images created visual stress.”

Contrary to expectations, working with sets of errors offered no
significant benefits on its own. Instead, examining sets of errors
was only useful in combination with visual summaries. Users of the
Set Inspection tool explained that their ability to make sense of the
raw web pages was reduced even further when multiple pages were
presented at once: “The no-hint/info-overload issue was even worse

with many pages at once.” (P12). One participant said that the Set
Inspection tool provided “too much information ‘blasted’ at me.”
(P6). Even with multiple errors shown, one participant said that he
got fixated on individual errors: “I found myself picking values for

many different features from one source.” (P3). Simply making
more misclassified documents available at once may not lead to
more effective feature ideation.

Both visual summary tools provided to better classifier
performance and preference ratings, but the addition of sets of
errors in the Set Visualization tool gave a small improvement over
Pair Visualization: “I also felt like [the Set Visualization] tool got

the best accuracy the fastest.” (P1). Summarizing sets of errors
improved the quality of ranked word lists, and may explain why
dictionaries created with visual summaries contained significantly
more words: “The tool reminded me of terms, such as HIPAA and

EHR, which had a positive impact on accuracy.” (P19). Several
participants also noted that the Pair Visualization tool had noisier
words: “The words shown on each single page do not signal much

for the specified topics.” (P8). P19 commented “More specialized

words were discovered in the tool but it is not easy to see impact

based on one page at a time.”
A few participants still preferred to see raw snapshots of web

pages instead of visual summaries. They explained that words in
isolation lost important context, only available in the original web
pages. Of the visual summary tools, P1 said that “Words lose the

meaning without web pages. […] I felt like I was just guessing

throughout this part.” P14 disliked the “lack of context (web pages)

to enable trust in words displayed.” Context is an important design
consideration for supporting feature ideation. Both visual summary
tools included buttons to view sample web pages, but future work
should consider in-place contextual cues (e.g., showing a few
preceding and following words for every word suggested).

6.2 Limitations of Compare and Contrast

FeatureInsight is based on comparing and contrasting misclassified
pages with examples from the opposite class, a technique used in
previous research [13], [17]. However, several participants

commented that the contrasting examples on the right were not very
helpful: “[It is] hard to come up with meaningful groups/features

from the right hand side.” (P18). It was not clear to participants
how the contrasts were selected. P41 commented “It appears that
the non-similar page is generated randomly”. Future work should
explore showing contrasting examples within some predetermined
distance from the error being inspected. In the visual summary
conditions, a loss of context may also have hindered effective
comparison. Further investigation is necessary to determine the
benefits and limits of compare and contrast for feature ideation.

6.3 Debugging and Understanding Features

We designed FeatureInsight to leverage human intuition and
domain knowledge with assistance from computational estimates
of candidate feature impact. However, some participants stated that
they did not have a good understanding of feature quality: “If an
indication can be made in the UI about which features contribute
more impact towards accuracy, we can learn to come up with more

like them.” (P2). Automatically estimating feature quality is an
interesting open challenge, because features cannot always be
considered in isolation [1]; often, features combine with other
features in complex ways to affect performance.

In addition to helping users evaluate the quality of features,
feature ideation tools could provide guidance on why some features
are better than others. When building dictionaries it is not clear how
broad or specific the concept for the feature should be: is it better
to create a feature for bike chains, or for all bike parts? For bike

repair-shops or simply bike repair? These are subtle distinctions,
but they can have a profound impact on feature performance.

6.4 Comparison to Automatic Feature Selection

We ran an exploratory follow-up analysis comparing human-
generated features to three different automatic feature selection
algorithms to examine the tradeoffs between the two approaches.
Note that this analysis reuses features created by participants in our
user study, who were under time limits (five minutes). Therefore,
while comparing these features to automated techniques may
provide insights, it is not necessarily a fair test of the potential
competitiveness of human-generated features in general.

With automated techniques, the number of features to create
must be specified manually or set through cross validation. In
general, the number of features, k, can have an effect on the
performance of a feature set, so we automatically generated feature
sets for a range of k-values. The three automated techniques we
compared our human-generated features to are as follows:

1. Naïve. Simulating a user interacting with FeatureInsight. The
simulated user’s naïve strategy has two steps. First, the highest-
ranked word off the Errors list is selected, and this word and the
m most closely-related words as assessed by FeatureInsight are
added to a new dictionary. Second, the simulated user creates
another feature, this time from the Contrasts list. This process
is repeated until k features are created. We generated features
in this manner for k from 1 to 20 and m set to 1, 5, and 10.

2. Information Gain. Each word in the documents is ranked
according to its information gain (the decrease in entropy when
it is added as a feature) [12]. Then, the k highest-scoring
features are selected. We evaluated k set to 5, 10, 15, …, 45.

3. Chi-Squared. Words are ranked according to their X2 statistic,
measuring independence between the word and the document
class. We used the scikit-learn implementation [37]. The top k
features were then selected with k set to 5, 10, 15, …, 45.

Using the three techniques above, we generated features for each
of the eight training sets in user study. As for our user study, logistic

regression classifiers were trained and evaluated on the test data
(roughly 100 examples each). We compared these feature sets to
those from the Set Visualization condition of the user study.

Figure 3 illustrates that human-generated features performed
similarly to automatic features, in most cases. A mixed-effects
model analysis found overall significant differences between the
different feature selection techniques, F(3, 632) = 8.5, p < 0.01;
human-generated features had higher AUC than the Naïve
technique, p < 0.01, but no significant difference vs. Information

Gain and Chi-Squared. We analyzed a range of feature set sizes for
the automated techniques, and found that the performance appeared
to plateau around k = 10 for most datasets. Because we lack
sufficient data about human-generated features (users generated a
median of five features during the 5-minute tasks), it is unclear
whether and where the performance of human-generated features
also plateaus, or whether performance may continue to improve as
time passes. Further investigation is needed to study performance
differences between human-generated and automatic feature
creation over larger feature sets.

Interestingly, as with user-generated features, the dataset topic
had a significant effect on the performance of automated
techniques, F(7,600)=8.8, p < 0.001. Moreover, user-driven feature
engineering appears to outperform automated feature generation in
some datasets and vice versa. For example user-driven features
outperformed automatic techniques on the Newspapers dataset by
8-10%; even the participant with the lowest AUC reached 0.90,
while the best automatic technique (Naïve Simulation) achieved an
AUC of only 0.84. In contrast, automatic feature selection
outperformed human generated features on the Museums dataset,
although this difference was not significant. Further research is

necessary to understand whether user-driven feature engineering is
more useful for some types of data than others.

So far, feature engineering techniques have been evaluated by
their impact on classifier performance. However, feature
interpretability also plays a role in practical machine learning
applications. As discussed earlier, people spend time iteratively
improving the performance of their models, even when starting out
with an initial set of features (automatically generated or
otherwise). Effective iteration requires hypothesizing about the
cause of errors and resolving problems. While previous work has
shown that users face difficulty in understanding the rationale and
impact behind automatically generated features [18], [21], human-
curated features have the potential to be more interpretable. For
example, the context provided by semantically grouping and
naming features may help users understand the intended meaning
of features, which in term may help them debug model
performance. Future research should investigate interpretability by,
for example, asking practitioners to explain or debug human
generated features compared to automatically generated ones.

6.5 Beyond Dictionaries and Text Classification

In this paper, we focused on text classification using dictionary
features. The main purpose of FeatureInsight was to support feature
ideation, a part of the feature engineering process which we
distinguish from feature implementation. Dictionaries are a specific
way of implementing feature ideas. However, once the user has
thought of a new feature idea, other implementations of that idea
could be developed, including using regular expressions, rules, or
more complex functions. In addition, although FeatureInsight treats
words as low-level building blocks that are ranked as seeds for new
features, other text features (e.g. capitalization, part of speech, term
length, etc.) could be included. For example, in partially structured
documents with extracted fields (such as emails), calculated
features that compare fields to values could be ranked for different
fields, values, and thresholds, and displayed to the user.

We can also consider how the two general approaches of visual

summaries and sets of errors might extend to other types of rich,
unstructured data, such as audio, speech, and images. Existing
research with these types of data has already produced a large
library of meaningful features (e.g., nose and eyebrow detectors,
question speech detectors) that can be extracted and used as
building blocks for higher-level features. These features are good
analogues to the words we have used in FeatureInsight, because
they carry human-interpretable meaning relative to the classifier’s
target concept. The challenge for future research becomes how to
visually represent these low-level elements to users in a meaningful
way that supports grouping into higher-level semantic features.

7 CONCLUSION

Machine learning depends on good features, but thinking of new
features is difficult. We have explored how visually summarizing
sets of errors can provide support for feature ideation by designing,
building, and evaluating FeatureInsight, a tool that helps machine
learning practitioners interactively define dictionary features for
text classification problems. In a controlled experiment evaluating
the effects of both visual summaries and sets of errors, we found
that users preferred visual summaries, which led to significantly
better classifier performance, while working with sets of errors was
only beneficial when combined with visual summaries. These are
promising approaches for future tools to support feature ideation
both for text classification and beyond.

This paper contributes to the growing area of usable machine
learning, wherein human participation in classifier development
may produce not only improved machine learning performance, but

0.5 0.6 0.7 0.8 0.9 1

Sports Shopping

Food Business

Electronics/Electrical

Chemical Business

Healthcare Business

Equestrianism

Museums

Newspapers

Mean AUC

Human (Set Vis.) Naïve Sim.

Info. Gain Chi-Squared

Figure 3: Mean test-set AUC for human-created features and

automatic features, separated by dataset topic. Baseline AUC is 0.5.

Error bars show std. dev.

also new user interactions and experiences. As machine learning is
increasingly a mainstay of modern industrial data science and
software development, the potential benefits offered by human-
driven interactive machine learning are significant. Visual analytics
is one arena in which these ideas are already being discussed. The
expansion of this research area represents an opportunity to apply
our community’s unique perspective, at the intersection of
visualization, machine learning, and human-computer interaction,
to help make machine learning usable by more people.

ACKNOWLEDGMENTS

We thank the Machine Teaching Group at Microsoft Research for
supporting this research, and our reviewers for their insightful
feedback in improving the paper.

REFERENCES

[1] P. Domingos, “A few useful things to know about machine learning,”

Commun. ACM, vol. 55, no. 10, pp. 78–87, 2012.

[2] Y. Yang and J. Pedersen, “A comparative study on feature selection

in text categorization,” presented at the Proceedings of ICML-97, 14th

International Conference on Machine Learning, 1997, pp. 412–420.

[3] M. Anderson, D. Antenucci, V. Bittorf, M. Burgess, M. J. Cafarella,

A. Kumar, F. Niu, Y. Park, C. Ré, and C. Zhang, “Brainwash: A Data

System for Feature Engineering.,” in Proc. CIDR 2013, 2013.

[4] A. L. Blum and P. Langley, “Selection of relevant features and

examples in machine learning,” Artif. Intell., vol. 97, no. 1, pp. 245–

271, 1997.

[5] S. Bird, E. Klein, and E. Loper, Natural Language Processing with

Python. O’Reilly Media, Inc., 2009.

[6] E. Mayfield and C. P. Rosé, “LightSIDE: Text Mining and Machine

Learning User’s Manual.” 2012.

[7] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison, “Investigating

Statistical Machine Learning As a Tool for Software Development,”

in Proc. CHI 2008, New York, NY, USA, 2008.

[8] J. Fogarty and S. E. Hudson, “Toolkit Support for Developing and

Deploying Sensor-based Statistical Models of Human Situations,” in

Proc. CHI 2007, New York, NY, USA, 2007.

[9] S. Markovitch and D. Rosenstein, “Feature Generation Using General

Constructor Functions,” Mach. Learn., vol. 49, no. 1, pp. 59–98, Oct.

2002.

[10] B. Schuller, S. Reiter, and G. Rigoll, “Evolutionary Feature

Generation in Speech Emotion Recognition,” in Proc. 2006 Intl. Conf.

on Multimedia and Expo, 2006.

[11] Y. Aphinyanaphongs, L. D. Fu, Z. Li, E. R. Peskin, E. Efstathiadis, C.

F. Aliferis, and A. Statnikov, “A comprehensive empirical

comparison of modern supervised classification and feature selection

methods for text categorization,” J. Assoc. Inf. Sci. Technol., vol. 65,

no. 10, pp. 1964–1987, 2014.

[12] G. Forman, “An Extensive Empirical Study of Feature Selection

Metrics for Text Classification,” J Mach Learn Res, vol. 3, pp. 1289–

1305, Mar. 2003.

[13] S. Stumpf, V. Rajaram, L. Li, W.-K. Wong, M. Burnett, T. Dietterich,

E. Sullivan, and J. Herlocker, “Interacting meaningfully with machine

learning systems: Three experiments,” IJHCI, vol. 67, no. 8, pp. 639–

662, Aug. 2009.

[14] C. Rosé, Y.-C. Wang, Y. Cui, J. Arguello, K. Stegmann, A.

Weinberger, and F. Fischer, “Analyzing collaborative learning

processes automatically: Exploiting the advances of computational

linguistics in computer-supported collaborative learning,” Comput.-

Support. Collab. Learn., vol. 3, no. 3, pp. 237–271, Jan. 2008.

[15] H. Raghavan, O. Madani, and R. Jones, “InterActive Feature

Selection,” in Proc. IJCAI 2005, 2005, vol. 5.

[16] J. Cheng and M. S. Bernstein, “Flock: Hybrid Crowd-Machine

Learning Classifiers,” 2015, pp. 600–611.

[17] K. Patel, S. M. Drucker, J. Fogarty, A. Kapoor, and D. S. Tan, “Using

multiple models to understand data,” in Proc. IJCAI 2011, 2011.

[18] S. Stumpf, V. Rajaram, L. Li, M. Burnett, T. Dietterich, E. Sullivan,

R. Drummond, and J. Herlocker, “Toward harnessing user feedback

for machine learning,” in Proc. IUI 2007, 2007.

[19] J. G. S. Paiva, W. R. Schwartz, H. Pedrini, and R. Minghim, “An

Approach to Supporting Incremental Visual Data Classification,”

IEEE Trans. Vis. Comput. Graph., vol. 21, no. 1, pp. 4–17, Jan. 2015.

[20] J. Choo, H. Lee, J. Kihm, and H. Park, “iVisClassifier: An interactive

visual analytics system for classification based on supervised

dimension reduction,” in 2010 IEEE Symposium on Visual Analytics

Science and Technology (VAST), 2010, pp. 27–34.

[21] T. Kulesza, W.-K. Wong, S. Stumpf, S. Perona, R. White, M. M.

Burnett, I. Oberst, and A. J. Ko, “Fixing the Program My Computer

Learned: Barriers for End Users, Challenges for the Machine,” in

Proc. IUI 2009, New York, NY, USA, 2009.

[22] F. Heimerl, C. Jochim, S. Koch, and T. Ertl, “FeatureForge: A Novel

Tool for Visually Supported Feature Engineering and Corpus

Revision,” in Proceedings of COLING 2012: Posters, Mumbai, India,

2012, pp. 461–470.

[23] F. Sebastiani, “Machine Learning in Automated Text Categorization,”

ACM Comput. Surv., vol. 34, no. 1, Mar. 2002.

[24] T. Joachims, “Text categorization with support vector machines:

Learning with many relevant features,” in Proc. ECML 1998, 1998.

[25] S. Scott and S. Matwin, “Feature engineering for text classification,”

in Proc. ICML 1999, 1999, vol. 99, pp. 379–388.

[26] P. J. Stone and E. B. Hunt, “A Computer Approach to Content

Analysis: Studies Using the General Inquirer System,” in Proc. 1963

Joint Computer Conference, New York, NY, USA, 1963.

[27] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and

P. Kuksa, “Natural Language Processing (Almost) from Scratch,”

JMLR, vol. 12, pp. 2493–2537, Nov. 2011.

[28] A. Smith and M. Osborne, “Using Gazetteers in Discriminative

Information Extraction,” in Proc. Conf. on Comp. Natural Language

Learning 2006, Stroudsburg, PA, USA, 2006.

[29] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede,

“Lexicon-Based Methods for Sentiment Analysis,” Comput. Linguist.,

vol. 37, no. 2, pp. 267–307, Apr. 2011.

[30] G. Salton and C. Buckley, “Term-weighting approaches in automatic

text retrieval,” Inf. Process. Manag., vol. 24, no. 5, pp. 513–523, 1988.

[31] J. Chuang, C. D. Manning, and J. Heer, “Termite: Visualization

Techniques for Assessing Textual Topic Models,” in Proc. AVI 2012,

New York, NY, USA, 2012.

[32] F. B. Viégas and M. Wattenberg, “TIMELINES: Tag Clouds and the

Case for Vernacular Visualization,” interactions, vol. 15, no. 4, pp.

49–52, Jul. 2008.

[33] G. Coppersmith and E. Kelly, “Dynamic Wordclouds and Vennclouds

for Exploratory Data Analysis,” in Proc. 2014 ACL Workshop on

Interactive Language Learning, Visualization, and Interfaces, 2014.

[34] E. Williams, “Experimental Designs Balanced for the Estimation of

Residual Effects of Treatments,” Aust. J. Chem., vol. 2, no. 2, pp. 149–

168, Jan. 1949.

[35] J. Davis and M. Goadrich, “The relationship between Precision-Recall

and ROC curves,” in Proc. ICML 2006, 2006.

[36] R. D. Wolfinger, R. D. Tobias, and J. Sall, “Mixed models: a future

direction,” in SAS Users Group Conf., 1991, pp. 1380–1388.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.

Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.

Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.

Duchesnay, “Scikit-learn: Machine Learning in Python,” J. Mach.

Learn. Res., vol. 12, pp. 2825–2830, 2011.

