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ABSTRACT 

Machine learning requires an effective combination of data, 
features, and algorithms. While many tools exist for working with 
machine learning data and algorithms, support for thinking of new 
features, or feature ideation, remains poor. In this paper, we 
investigate two general approaches to support feature ideation: 
visual summaries and sets of errors. We present FeatureInsight, an 
interactive visual analytics tool for building new dictionary features 
(semantically related groups of words) for text classification 
problems. FeatureInsight supports an error-driven feature ideation 
process and provides interactive visual summaries of sets of 
misclassified documents. We conducted a controlled experiment 
evaluating both visual summaries and sets of errors in 
FeatureInsight. Our results show that visual summaries 
significantly improve feature ideation, especially in combination 
with sets of errors. Users preferred visual summaries over viewing 
raw data, and only preferred examining sets when visual summaries 
were provided. We discuss extensions of both approaches to data 
types other than text, and point to areas for future research. 

Keywords: Features; machine learning; interactive machine 
learning; text classification; dictionaries; visualization. 

Index Terms: Human-centered computing~Visual analytics. 
Computing methodologies~Machine learning. 

1 INTRODUCTION 

Machine learning (ML) is increasingly relied upon for applications 
such as data analysis, intelligent systems, and large-scale 
computation. Tools and best practices exist to help practitioners 
with many aspects of creating ML systems, but so far there is little 
support for a crucial step in the process: thinking of new features. 

Features are observable quantities for describing data to an ML 
algorithm (e.g., web pages could be represented by the words, 
length, or page layout, while images could be represented by hue, 
saturation, or shapes in the image). Features must capture salient 
aspects of the data to help the machine learn the target concept (e.g., 
that a web page is a sports page or that an image contains a car). 
But features can hurt performance if they insufficiently describe the 
concept, capture irrelevant aspects of the data, or are redundant. 
Although there are many requirements for ML systems (e.g., high 
quality data, appropriate model choice, parameter tuning), both 
researchers [1], [2], [3], [4] and practitioners [5], [6] recognize 
feature engineering as crucial to the machine learning process. 

Features for ML systems can have various origins. In some cases, 
features appropriate for an ML problem can be obtained from 
related literature [7]. On problems where data is plentiful, features 

can sometimes be automatically generated [8], [9], [10] or selected 
from a candidate set [2], [4], [11], [12]. However, when training 
data is limited (e.g., for personalized tasks [13] or when domain 
expertise is required and prohibitively expensive to obtain [14]), 
automatically generated features can result in over-fitting [1]; in 
these scenarios, human involvement in feature engineering can 
improve performance [15], [16]. Even with the availability of 
existing features or automated techniques, practitioners spend 
extensive time thinking of and developing custom features to 
support their specific problems [1], [7]. Custom features are often 
developed in a trial-and-error manner [1], [7] because, aside from 
simply analyzing classifier errors, there are few recommendations 
available for how to think of good features, and tool support for 
feature ideation remains underexplored. 

In this paper, we develop a hybrid approach to feature ideation 
that falls between fully human-driven and fully automated feature 
engineering. We leverage the machine’s ability to efficiently 
analyze and visually summarize a large number of examples, while 
drawing on human knowledge and intuition to identify and build 
potentially useful features. We consider two techniques for feature 
ideation: (1) examining sets of errors, to improve feature 
generalizability; and (2) visual summaries of errors to reduce noise 
and cognitive load. These techniques are implemented in 
FeatureInsight, a tool for error-driven feature ideation in binary 
(two-class) classification problems with limited amounts of 
training data. We focus on text classification problems and word-
based features. FeatureInsight visually summarizes sets of 
misclassified text documents via ranked and annotated lists of 
promising seed words. 

Our main contributions are: 

• A design exploration and implementation of two approaches 
for supporting feature ideation: sets of errors and visual 

summaries, in the FeatureInsight system. 

• A controlled experiment evaluating the effects of both sets of 

errors and visual summaries. We find that visual summaries 
helped participants create better-performing classifiers and 
were preferred by users, while examining sets of errors had no 
benefits without visual summaries. 

• An exploratory analysis comparing features from 
FeatureInsight to automatic feature selection algorithms, 
illustrating strengths and weaknesses of both methods. 

2 BACKGROUND AND RELATED WORK 

In this section, we consider the challenge of creating new features 
and review research on user interaction with ML systems. We then 
examine related work in text classification. 

2.1 Feature Engineering in Machine Learning 

The importance of features to ML is well-established [1], [2], [5], 
[6]. Practitioners often begin by searching for existing features 
from related problems, using their own domain knowledge to think 
of relevant features, or trying to algorithmically generate features 
for the given dataset [1], [7]. However, even with an initial set of 
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candidate features, practitioners report spending a large amount of 
time iteratively experimenting with new features [1], [7]. 

Algorithms have been created to automatically build high-level 
features out of low-level elements for speech [10], real-time sensors 
[8], and general ML problems [9]. If a set of candidate features is 
available, feature selection algorithms can find a useful subset of 
those features for improving efficiency and generalization [4]. For 
text classification, the most commonly used family of feature 
selection techniques is metric-based ranking followed by selection 
of the k best features [2], [11], [12], but there is no single metric 
that is consistently optimal across data sets. In our paper, we 
perform an exploratory analysis comparing human-generated 
features to features selected using Information Gain and Chi-
Squared metrics, two commonly-used baselines. 

When algorithmic techniques are not effective (as in small-
dataset problems), custom features must be created manually; and, 
even when algorithmic feature selection are used, manual feature 
engineering is still common. However, there is little guidance about 
how this should be done. One strategy for thinking of new features 
is examination of classifier errors [5], [6]. Here, the practitioner 
considers misclassified data to identify information the classifier 
may be missing and explain the error. Features are added to capture 
the missing information and improve the classifier’s performance. 

Another approach is to compare and contrast examples. Patel et 

al. proposed comparing example data from a classifier’s “confused 
region” with a representative example from the opposite class to 
help users think of new discriminating features [17]. Stumpf et al. 
used a compare and contrast approach to help users give open-
ended feedback to an email classification system [18]. Cheng and 
Bernstein also used a compare and contrast approach to help crowd 
workers generate features [16]. We incorporate error examination 
and compare and contrast into the FeatureInsight system. 

Humans possess knowledge that can be useful to ML systems, 
but apart from users providing labels, researchers have only 
recently begun exploring richer forms of user input. While the 
literature includes examples of visual, interactive data classification 
[19], [20], few systems help users directly create features. Still, 
there is evidence of the potential for human-driven feature 
engineering; Stumpf et al. showed that free-form feedback on 
features could improve an ML system [13]. Others have explored 
enabling users to adjust feature weights [15], [21], interactively 
debugging features [22], and crowd-generating features [16]. In this 
paper, we investigate the potential of interactive feature ideation. 

2.2 Text Classification 

Text classification, our focus in this paper, has important practical 
applications (e.g., search ranking, information extraction, natural 
language processing) [23]. Although we use web pages here, our 
strategies should translate to many other types of text-based data. 

A common feature engineering approach for text is “bag-of-
words” or n-grams [24], [25]. This involves automatically 
generating a very large feature set where each feature corresponds 
to the presence or frequency of a specific word or n-word phrase in 
a document. While bag-of-words features are common, they 
produce large, sparse feature spaces, which typically require more 
training data to mitigate over-fitting [1]. Because bag-of-words 
features require no human input, they afford no opportunity to 
incorporate the users’ domain knowledge. In FeatureInsight, we 
leverage bag-of-words to generate candidate words, which are 
ranked and displayed to prompt ideas for new features. 

Users of FeatureInsight interactively build dictionary features, 
which are groups of semantically related words or n-grams. For 
example, for a bicycling web page classifier, a useful dictionary 
feature may be types of bicycles (including words such as “bicycle” 

or “tricycle”) or bicycling events (including “bike race” and “bike 
tour”). Manually-constructed dictionaries were part of early rule-
based text classification systems [26]. Recent work uses lexicons 
or gazetteers built from pre-existing dictionaries or seed words 
[27], [28], but manually-constructed dictionaries are still used [29]. 
Dictionary features are relatively easy for users to understand, 
capture the users’ domain knowledge, and reduce the number of 
features by capturing the semantic equivalence of their constituent 
words. Using fewer features typically means less training data is 
needed and generalization is improved. Text and dictionary 
features also enable our techniques for supporting feature ideation. 
For example, text is readily decomposed into small units (i.e., 
words) that can be displayed to the user for semantic grouping into 
meaningful features (i.e., dictionaries). In the Discussion, we 
consider extensions to other types of data and features. 

3 SUPPORTING FEATURE IDEATION 

FeatureInsight helps users think of new dictionary features for 
binary text classification by displaying interactive visual 
summaries of sets of errors. 

The system ingests a set of text documents, which must be 
labeled positive or negative for the target class (e.g., bicycling or 
not-bicycling). Once this training data is loaded, the FeatureInsight 
user interface shows a featuring area on the left, and controls for 
exploring the data on the right (Figure 1). As the user interacts with 
FeatureInsight, they can add new features in the featuring area 
(Figure 1, A) and modify or delete features. 

When a feature changes, FeatureInsight re-trains a logistic 

regression classifier. This involves checking if the document 
contains any of the words in the dictionary (feature), and 
calculating the word’s term frequency-inverse document frequency 
(tf-idf), a common technique from information retrieval [30]. For 
the datasets we tested, with a few hundred examples each, classifier 
training is fast and can be done interactively. To help users track 
progress, in the top-right corner FeatureInsight shows overall 
accuracy (percent of training data classified correctly) and change 
in accuracy since the last re-training. 

3.1 Feature Ideation by Comparing Errors 

The feature ideation workflow is based on two recommended 
approaches: examination of classifier errors [5, p. 226], [6], and 
comparison [13], [16], [17]. With every iteration of classifier 
training, FeatureInsight lets users examine documents currently 
being misclassifying. Binary classifiers can make two types of 
errors: false positives (documents misclassified as positive when 
actually negative) and false negatives (documents misclassified as 
negative when actually positive). False positive and negative errors 
may require different features to correct. Therefore, users can 
decide which errors to inspect, using controls at the top (Figure 1, 
B). To help prioritize which errors to work on, the system displays 
accuracies for the documents within each class. For example, if a 
classifier is predicting 90% of negative documents correctly but 
only 40% of positive documents correctly, the user might prioritize 
fixing errors in the positive class.  

FeatureInsight provides side-by-side comparison to highlight 
characteristics that may help discriminate between positive and 
negative documents. Misclassified documents of the focused class 
are shown beside documents of the opposite class (false positives 
are shown besides positives and false negatives are shown besides 
negatives). We refer to misclassified documents as errors and 
comparison documents for those errors as contrasts. When a user 
switches focus between false positives and false negatives, the 
corresponding errors are shown on the left, while contrasts are 
shown on the right. For example, when building a bicycling web 



page classifier, users could examine motorcycling documents 
misclassified as bicycling, compare them to actual bicycling 
documents, and try to think of new features to help the classifier 
distinguish between motorcycling and bicycling pages. 

3.2 Examining Sets of Errors with Visual Summaries 

Inspecting errors is a recommended way to think of new features 
[5], [6], but individual errors can yield feature ideas that do not 
generalize. For example, if our bicycling classifier mislabels a 
“motorcycle club” web page as positive, inspecting this error alone 
might prompt the user to create a feature from the club’s name. 
While this might correct one error, it would not eliminate confusion 
about motorcycle clubs in general. Instead, ML practitioners might 
inspect multiple errors to think of features, a practice we refer to as 
examining sets of errors. Commonalities across many errors may 
yield feature ideas that generalize beyond the errors considered. In 
FeatureInsight, the user examines many errors at once. 

While examining sets of errors might improve the 
generalizability of feature ideas, it also increases cognitive load, 
particularly with unstructured and noisy data like web pages. 
FeatureInsight uses visual summaries to help abstract away 
unnecessary detail and highlight important characteristics of 
documents. For text data, possible visual summaries range from 
complex techniques, as in visualizations of topic models [31], to 
simpler techniques like “word clouds” [32], [33]. FeatureInsight 
uses ranked and annotated lists of words (Figure 1, C and D) and 
semantically related words (Figure 1, E) to visually summarize 
documents. In the next section we describe how we generate these 
summaries and how users interact them to build dictionaries. 

3.3 Building Dictionaries from Suggested Words 

FeatureInsight visually summarizes sets of errors via ranked and 
annotated lists of words. One word list is used to summarize error 
documents (Figure 1, C) while another summarizes corresponding 
contrasts (Figure 1, D). Words are chosen and ranked based on their 
potential to improve classifier performance as follows: 

1. Obtain the frequency of all words occurring in any of the Error 
and Contrast documents, excluding stop-words and words 
with less than three characters. 

2. As candidate words for Errors, select 100 words which occur 
more often in the Errors than Contrasts. Also, as candidate 
words for Contrasts, select 100 words which occur more often 
in the Contrasts than Errors. 

3. For each of the 200 candidate words, evaluate the 
improvement in logarithmic loss (log-loss, a commonly-used 
performance metric) obtained if the word by itself were added 
as a new feature (in addition to any existing features). This 
helps prevent feature overlap because each word is considered 
in conjunction with the current set of features. 

4. Rank both lists of candidate words by log-loss improvement 
and select the top 20 from each list to display as key words. 

This procedure takes a fraction of a second on the datasets used 
below. Filtering by frequency difference (Step 2) reduces the words 
used in the more expensive log-loss computation. 

FeatureInsight shows green and red bars next to each word, 
indicating its frequency in the positive and negative documents, 
respectively. High frequency words (with larger bars) may 
generalize better, while words with large differences in bar length 

Figure 1. A screenshot of FeatureInsight being used to train a classifier for bicycling web pages: A) the featuring area; B) focus selection 

controls; C) key words for Errors; D) key words for Contrasts; E) words related to the selected word (brands). 



might better discriminate positives and negatives. An “Example” 
button beside each word can display a document with a high tf-idf 
value for that word. Users may also manually “hide” words they 
deem unimportant, revealing new words from the ranked lists. 

Users might be tempted to create single-word dictionaries, but 
higher-level features with multiple words are often more powerful. 
For example, instead of creating individual features for each 
bicycle part (e.g., tire, chain, pedal, gear, etc.), a “bicycle parts” 
dictionary would indicate that these words are related, and reduce 
the dimensionality of the feature space. Higher-level features can 
also be more interpretable. The word “chain” may occur in multiple 
contexts, e.g. jewelry or chemistry (as in a “chain reaction”). 
However, “chain” as part of a dictionary feature that includes the 
words “tire” and “brake” provides context that “chain” is meant to 
refer to a bicycle part. To encourage features combining several 
semantically-related words, FeatureInsight displays a set of 
“related words” (Figure 1, E). When a user clicks on a word from 
either the Errors or Contrasts lists, FeatureInsight finds the 25 most 
closely related words. “Relatedness” is judged based on the cosine 
similarity between the words’ document-vectors: a vector 
consisting of the word’s tf-idf values for each document. The 25 
words closest to the selected word are displayed in the interface.  

Words anywhere in FeatureInsight can be added to a feature by 
pressing the Control key and clicking on the word (e.g., from the 
key words, related words, or in example documents). If users think 
of other words while exploring FeatureInsight’s visual summaries, 
they may manually type their own words into features. When a 
word is already part of an existing dictionary, it is given a light-
orange background in the Error and Contrast lists and related words 
list, to minimize redundant features. 

4 EVALUATION 

We conducted a controlled experiment to examine FeatureInsight’s 
support for feature ideation using a 2 (individual vs. sets of errors) 
x 2 (raw data vs. visual summaries) within-subjects design. 

4.1 Treatments 

We built four versions of our tool to test examining individual vs. 
sets of errors, and raw data vs. visual summaries: Pair Inspection 
(individual errors + raw data), Set Inspection (sets of errors + raw 
data), Pair Visualization (individual errors + visual summaries), 
and Set Visualization (sets of errors + visual summaries). 
FeatureInsight, as described above, represents the Set Visualization 
version. The others are described below.  

As with FeatureInsight (Figure 1), the Pair Visualization 
interface (Figure 2, top) shows lists of words for Errors and 
Contrasts. However, here words are generated from a single error 
and contrast document rather than from multiple documents. We 
also removed the word frequency bars, which do not make sense 
for individual documents. Errors and contrasts are displayed singly; 
users page through documents with navigation buttons at the top 
(“Previous” and “Next”). When the user moves to a new error 
document, contrast documents are automatically resorted by 
decreasing cosine similarity to the error (in bag-of-words space) to 
increase the chances that comparing the two documents will prompt 
good feature ideas. Users can also view the full web page that the 
words came from by clicking the “Show Page” button. 

The Set Inspection interface (Figure 2, middle) shows sets of 
errors and contrasts as raw pages (without visual summaries), in 
scrollable, zoomable panels. The Pair Inspection version (Figure 2, 
bottom) only shows one error and one contrast web page. As with 
the Pair Visualization version, Pair Inspection provides navigation 
buttons. In both Inspection versions, users can add words to the 
feature’s word list by pressing the Control key and clicking a word 

in the document. The Pair Inspection version can be considered a 
baseline as it provides support comparable to existing tools. 

4.2 The Task and Datasets 

Our evaluation focused on the feature ideation process, so we 
provided participants with already-labeled datasets and then asked 
them to think of features to build a classifier for a target concept.  

Several factors impact the difficulty of feature ideation, 
including familiarity with the target concept, concept complexity 
(e.g., class separability), and data ambiguity. In an attempt to 
control for some of these factors, we used the following approach 
to create our 8 test datasets for this experiment: 

1. We created candidate sets from the Open Directory Project, a 
community-driven directory of human-categorized web pages 
(http://www.dmoz.org). We used second-level categories; the 
top level categories often contain dissimilar subtopics. 

2. For each of ~85 categories, we used uncertainty-based 
sampling to select pages within (positive) and outside 
(negative) the target concept. Uncertainty-sampling selects 

Figure 2: The main content areas for the Pair Visualization (top), Set 

Inspection (middle), and Pair Inspection (bottom) versions of the 

FeatureInsight. 



data where a classifier is most uncertain. Intuitively, this finds 
examples around the decision boundary of the target class, and 
helps to control for example ambiguity across datasets. We 
started with a random set of 50 pages, and then iteratively train 
a classifier (with bag-of-words features) and added pages via 
sampling until reaching 650 examples. 

3. For each candidate dataset, we trained a classifier on a random 
subset and estimated class separability via the logarithmic loss 
(log-loss) metric on the remaining test subset. We selected 
eight datasets of moderate separability (i.e., log-loss close to 
the median) to help control for concept complexity. 

4. Finally, we manually reviewed each dataset, verifying the 
labels and removing miscategorized pages. This sometimes 
tipped the class distribution towards positive or negative, so 
we rebalanced and resized the datasets to achieve 50% 
positives in each, by randomly discarding pages. 

Our datasets were: Equestrianism, Healthcare Business, Sports 
Shopping, Chemical Business, Museums, Electronics/Electrical, 
Food Business, and Newspapers. 

4.3 Procedure 

Each session started with an introduction to the general feature 
engineering task, the idea and importance of generalizability, and 
the study procedure. We informed participants that they would be 
given labeled data, and that their goal was to create features to train 
a classifier with a high accuracy. 

At the start of each condition, we gave participants a short 
tutorial for the next interface. We let them practice adding features 
with the Bicycling dataset until they were comfortable with the 
interface. We then gave two five-minute feature ideation tasks in 
succession. Each task involved a different dataset and target 
concept (listed above). We did not expect carryover effects between 
datasets, so we fixed the order of datasets and only counter-
balanced the four interface conditions, using a complete set of 
mutually-orthogonal Latin squares balanced for carryover effects 
[34]. We expected to observe differences between dataset topics, 
reflecting a combination of both topic effects and ordering effects 
like learning and fatigue. Our counterbalancing scheme controls for 
these effects and allows a fair comparison of the four treatments. 

After each condition, participants completed a questionnaire 
with Likert-type questions about the tool: enjoyment, satisfaction 
with features they created, and satisfaction with classification 
performance. At the end of the study, participants filled out a final 
questionnaire ranking the four tools. The study lasted about 90 
minutes, and participants received a $20 coupon.  

4.4 Participants and Apparatus 

We recruited 20 participants (12 male, 8 female) employed at a 
large software company, via an internal mailing list for employees 
interested in machine learning. We required participants to be 
fluent in English, not red-green colorblind, and familiar with basic 
machine learning concepts, e.g. features, true positives, and false 
positives.  Participants included software engineers, researchers, 
and data scientists. Participants completed the study in pairs, using 
on a 3.47 GHz Windows 8 desktop machines with 16GB RAM and 
a 24-inch monitor at 1920x1200 resolution. 

5 RESULTS 

For each task, we evaluated the features participants created on a 
randomly held-out test set of about 100 documents from the target 
dataset, based on the area under the precision-recall curve (AUC). 
AUC gives an estimate of performance that is robust to class 
imbalance and independent of classification threshold [35]. Unlike 
log-loss, AUC reflects actual classifier errors. We analyzed the test-

set AUC results with a mixed-effects model analysis of variance. 
Mixed-effects models can be used for factorial designs with within-
subjects factors [36], and they treat the experimental subject as a 
random effect with levels drawn randomly from a population. Our 
model included fixed effects for UsingSet (Set vs. No Set) and 
UsingVis (Vis vs. No Vis), as well as the dataset Topic (1-8), and 
the interactions among these. Participant was modeled as a random 
effect. Note that because the order of dataset topics was fixed, the 
Topic variable reflects topic as well as order effects such as learning 
and fatigue. For many measures, Topic had a significant effect 
(cited where applicable below). 

Because exploratory analysis showed Topic had an effect in our 
study, we used the same mixed-effects analysis for our Likert-type 
questionnaire data as we used for the AUC, above. Although 
Likert-type responses are best interpreted as ordinal and analyzed 
using non-parametric statistics, commonly-used non-parametric 
approaches for within-subjects designs cannot also statistically 
control for the effect of dataset topics.  

5.1 Feature performance 

Participants generated features with an average test-set AUC of 
0.76 (±0.024) using the Visualization tools, and 0.70 (±0.036) when 
using the Inspection tools. This difference was significant, F(1, 
65.5) = 10.7, p < 0.01. Dataset Topic had a significant effect on test-
set AUC, F(7, 35.9) = 55.7, p < 0.01. There was no significant 
difference between Sets vs. Pairs, and no significant interactions. 
The mean test-set AUC for each tool is shown in Table 1. 

5.2 Preference 

After using the Visualization interfaces (vs. Inspection), users were 
significantly more satisfied with their classification performance, 
more satisfied with the features they created, and reported greater 
enjoyment: respectively, F(1, 61.7) = 8.4 p < 0.01; F(1,59) = 8.2, p 
< 0.01; and F(1, 53.8) = 8.2, p < 0.01. For these three measures, 
there was no significant effect of working with Sets vs. Pairs. For 
satisfaction with features, dataset Topic had a significant effect (p 
= 0.049). For classifier performance, satisfaction with features, and 
enjoyment, there was also a significant interaction between the 
Topic and Visualization: respectively, F(3, 30.6) = 3.2, p = 0.035; 
F(3,31.7) = 7.0, p < 0.01; F(3, 34.9) = 3.9, p = 0.017. 

The Visualization interfaces were significantly preferred over 
the Inspection interfaces in the post-study ranking question, F(1, 
63) = 4.9, p = 0.031. Here, the dataset topic also had a significant 
effect, F(3, 30.8) = 3.0, p = 0.045. Of the 20 participants, 12 ranked 
Set Visualization best. Median preference ranks are in Table 1. 

5.3 User-Created Dictionaries 

We also analyzed the feature sets themselves. Table 1 shows the 
median number of dictionaries created and the mean number of 
words per dictionary for each tool.  Users of the Set Visualization 
tool created more dictionaries than with the other tools, but this 
difference was not significant. The mean number of words per 
dictionary was not normally distributed, with a skew towards low 

Table 1: Test set AUC (under the precision-recall curve) mean and 

standard deviation, median preference rank, median number of 

dictionaries, and mean words per dictionary for each treatment. 

 AUC Pref. Num Dicts. Words/Dict. 

Set Vis 0.78 (0.10) 1 5 6.6 

Pair Vis 0.75 (0.12) 2 4 5.7 

Set Insp 0.71 (0.12) 3 4 5.5 

Pair Insp 0.68 (0.20) 2.5 4 5.5 

 



values, so we applied a natural log transformation. A mixed-effects 
model analysis found that log-transformed average dictionary size 
was significantly larger with the Visualization tools vs. the 
Inspection tools, F(1, 111) = 10.2, p < 0.01.  

6 DISCUSSION AND FUTURE WORK 

Below, we discuss implications for supporting user-driven feature 
ideation. We supplement our discussion with participants’ open-
ended responses from the study. We also present a preliminary 
follow up evaluation to give some insights into the performance of 
human-generated compared to common automated feature 
engineering techniques, and discuss areas for future research.   

6.1 Visual Summaries Support Feature Ideation 

Our study showed that examining visual summaries was 
significantly preferred and led to better-performing classifiers than 
examining raw data. Participant responses suggest this may be due 
to difficulty visually parsing and extracting useful features from 
raw pages: “Looking at whole page with images, words as part of 
image vs. text was slowing me down.” (P11). P13 also reported: 
“Fonts, colors, and images created visual stress.” 

Contrary to expectations, working with sets of errors offered no 
significant benefits on its own. Instead, examining sets of errors 
was only useful in combination with visual summaries. Users of the 
Set Inspection tool explained that their ability to make sense of the 
raw web pages was reduced even further when multiple pages were 
presented at once: “The no-hint/info-overload issue was even worse 

with many pages at once.” (P12). One participant said that the Set 
Inspection tool provided “too much information ‘blasted’ at me.” 
(P6). Even with multiple errors shown, one participant said that he 
got fixated on individual errors: “I found myself picking values for 

many different features from one source.” (P3). Simply making 
more misclassified documents available at once may not lead to 
more effective feature ideation.  

Both visual summary tools provided to better classifier 
performance and preference ratings, but the addition of sets of 
errors in the Set Visualization tool gave a small improvement over 
Pair Visualization: “I also felt like [the Set Visualization] tool got 

the best accuracy the fastest.” (P1). Summarizing sets of errors 
improved the quality of ranked word lists, and may explain why 
dictionaries created with visual summaries contained significantly 
more words: “The tool reminded me of terms, such as HIPAA and 

EHR, which had a positive impact on accuracy.” (P19). Several 
participants also noted that the Pair Visualization tool had noisier 
words: “The words shown on each single page do not signal much 

for the specified topics.” (P8). P19 commented “More specialized 

words were discovered in the tool but it is not easy to see impact 

based on one page at a time.”  
A few participants still preferred to see raw snapshots of web 

pages instead of visual summaries. They explained that words in 
isolation lost important context, only available in the original web 
pages. Of the visual summary tools, P1 said that “Words lose the 

meaning without web pages. […] I felt like I was just guessing 

throughout this part.” P14 disliked the “lack of context (web pages) 

to enable trust in words displayed.” Context is an important design 
consideration for supporting feature ideation. Both visual summary 
tools included buttons to view sample web pages, but future work 
should consider in-place contextual cues (e.g., showing a few 
preceding and following words for every word suggested). 

6.2 Limitations of Compare and Contrast 

FeatureInsight is based on comparing and contrasting misclassified 
pages with examples from the opposite class, a technique used in 
previous research [13], [17]. However, several participants 

commented that the contrasting examples on the right were not very 
helpful: “[It is] hard to come up with meaningful groups/features 

from the right hand side.” (P18). It was not clear to participants 
how the contrasts were selected. P41 commented “It appears that 
the non-similar page is generated randomly”. Future work should 
explore showing contrasting examples within some predetermined 
distance from the error being inspected. In the visual summary 
conditions, a loss of context may also have hindered effective 
comparison. Further investigation is necessary to determine the 
benefits and limits of compare and contrast for feature ideation. 

6.3 Debugging and Understanding Features 

We designed FeatureInsight to leverage human intuition and 
domain knowledge with assistance from computational estimates 
of candidate feature impact. However, some participants stated that 
they did not have a good understanding of feature quality: “If an 
indication can be made in the UI about which features contribute 
more impact towards accuracy, we can learn to come up with more 

like them.” (P2). Automatically estimating feature quality is an 
interesting open challenge, because features cannot always be 
considered in isolation [1]; often, features combine with other 
features in complex ways to affect performance. 

In addition to helping users evaluate the quality of features, 
feature ideation tools could provide guidance on why some features 
are better than others. When building dictionaries it is not clear how 
broad or specific the concept for the feature should be: is it better 
to create a feature for bike chains, or for all bike parts? For bike 

repair-shops or simply bike repair? These are subtle distinctions, 
but they can have a profound impact on feature performance. 

6.4 Comparison to Automatic Feature Selection 

We ran an exploratory follow-up analysis comparing human-
generated features to three different automatic feature selection 
algorithms to examine the tradeoffs between the two approaches. 
Note that this analysis reuses features created by participants in our 
user study, who were under time limits (five minutes). Therefore, 
while comparing these features to automated techniques may 
provide insights, it is not necessarily a fair test of the potential 
competitiveness of human-generated features in general. 

With automated techniques, the number of features to create 
must be specified manually or set through cross validation. In 
general, the number of features, k, can have an effect on the 
performance of a feature set, so we automatically generated feature 
sets for a range of k-values. The three automated techniques we 
compared our human-generated features to are as follows: 

1. Naïve. Simulating a user interacting with FeatureInsight. The 
simulated user’s naïve strategy has two steps. First, the highest-
ranked word off the Errors list is selected, and this word and the 
m most closely-related words as assessed by FeatureInsight are 
added to a new dictionary. Second, the simulated user creates 
another feature, this time from the Contrasts list. This process 
is repeated until k features are created. We generated features 
in this manner for k from 1 to 20 and m set to 1, 5, and 10. 

2. Information Gain. Each word in the documents is ranked 
according to its information gain (the decrease in entropy when 
it is added as a feature) [12]. Then, the k highest-scoring 
features are selected. We evaluated k set to 5, 10, 15, …, 45. 

3. Chi-Squared. Words are ranked according to their X2 statistic, 
measuring independence between the word and the document 
class. We used the scikit-learn implementation [37]. The top k 
features were then selected with k set to 5, 10, 15, …, 45. 

Using the three techniques above, we generated features for each 
of the eight training sets in user study. As for our user study, logistic 



regression classifiers were trained and evaluated on the test data 
(roughly 100 examples each). We compared these feature sets to 
those from the Set Visualization condition of the user study. 

Figure 3 illustrates that human-generated features performed 
similarly to automatic features, in most cases. A mixed-effects 
model analysis found overall significant differences between the 
different feature selection techniques, F(3, 632) = 8.5, p < 0.01; 
human-generated features had higher AUC than the Naïve 
technique, p < 0.01, but no significant difference vs. Information 

Gain and Chi-Squared. We analyzed a range of feature set sizes for 
the automated techniques, and found that the performance appeared 
to plateau around k = 10 for most datasets. Because we lack 
sufficient data about human-generated features (users generated a 
median of five features during the 5-minute tasks), it is unclear 
whether and where the performance of human-generated features 
also plateaus, or whether performance may continue to improve as 
time passes. Further investigation is needed to study performance 
differences between human-generated and automatic feature 
creation over larger feature sets. 

Interestingly, as with user-generated features, the dataset topic 
had a significant effect on the performance of automated 
techniques, F(7,600)=8.8, p < 0.001. Moreover, user-driven feature 
engineering appears to outperform automated feature generation in 
some datasets and vice versa. For example user-driven features 
outperformed automatic techniques on the Newspapers dataset by 
8-10%; even the participant with the lowest AUC reached 0.90, 
while the best automatic technique (Naïve Simulation) achieved an 
AUC of only 0.84. In contrast, automatic feature selection 
outperformed human generated features on the Museums dataset, 
although this difference was not significant. Further research is 

necessary to understand whether user-driven feature engineering is 
more useful for some types of data than others.  

So far, feature engineering techniques have been evaluated by 
their impact on classifier performance. However, feature 
interpretability also plays a role in practical machine learning 
applications. As discussed earlier, people spend time iteratively 
improving the performance of their models, even when starting out 
with an initial set of features (automatically generated or 
otherwise). Effective iteration requires hypothesizing about the 
cause of errors and resolving problems. While previous work has 
shown that users face difficulty in understanding the rationale and 
impact behind automatically generated features [18], [21], human-
curated features have the potential to be more interpretable. For 
example, the context provided by semantically grouping and 
naming features may help users understand the intended meaning 
of features, which in term may help them debug model 
performance. Future research should investigate interpretability by, 
for example, asking practitioners to explain or debug human 
generated features compared to automatically generated ones. 

6.5 Beyond Dictionaries and Text Classification 

In this paper, we focused on text classification using dictionary 
features. The main purpose of FeatureInsight was to support feature 
ideation, a part of the feature engineering process which we 
distinguish from feature implementation. Dictionaries are a specific 
way of implementing feature ideas. However, once the user has 
thought of a new feature idea, other implementations of that idea 
could be developed, including using regular expressions, rules, or 
more complex functions. In addition, although FeatureInsight treats 
words as low-level building blocks that are ranked as seeds for new 
features, other text features (e.g. capitalization, part of speech, term 
length, etc.) could be included. For example, in partially structured 
documents with extracted fields (such as emails), calculated 
features that compare fields to values could be ranked for different 
fields, values, and thresholds, and displayed to the user. 

We can also consider how the two general approaches of visual 

summaries and sets of errors might extend to other types of rich, 
unstructured data, such as audio, speech, and images. Existing 
research with these types of data has already produced a large 
library of meaningful features (e.g., nose and eyebrow detectors, 
question speech detectors) that can be extracted and used as 
building blocks for higher-level features. These features are good 
analogues to the words we have used in FeatureInsight, because 
they carry human-interpretable meaning relative to the classifier’s 
target concept. The challenge for future research becomes how to 
visually represent these low-level elements to users in a meaningful 
way that supports grouping into higher-level semantic features. 

7 CONCLUSION  

Machine learning depends on good features, but thinking of new 
features is difficult. We have explored how visually summarizing 
sets of errors can provide support for feature ideation by designing, 
building, and evaluating FeatureInsight, a tool that helps machine 
learning practitioners interactively define dictionary features for 
text classification problems. In a controlled experiment evaluating 
the effects of both visual summaries and sets of errors, we found 
that users preferred visual summaries, which led to significantly 
better classifier performance, while working with sets of errors was 
only beneficial when combined with visual summaries. These are 
promising approaches for future tools to support feature ideation 
both for text classification and beyond. 

This paper contributes to the growing area of usable machine 
learning, wherein human participation in classifier development 
may produce not only improved machine learning performance, but 

0.5 0.6 0.7 0.8 0.9 1

Sports Shopping

Food Business

Electronics/Electrical

Chemical Business

Healthcare Business

Equestrianism

Museums

Newspapers

Mean AUC

Human (Set Vis.) Naïve Sim.

Info. Gain Chi-Squared

Figure 3: Mean test-set AUC for human-created features and 

automatic features, separated by dataset topic. Baseline AUC is 0.5.

Error bars show std. dev. 



also new user interactions and experiences. As machine learning is 
increasingly a mainstay of modern industrial data science and 
software development, the potential benefits offered by human-
driven interactive machine learning are significant. Visual analytics 
is one arena in which these ideas are already being discussed. The 
expansion of this research area represents an opportunity to apply 
our community’s unique perspective, at the intersection of 
visualization, machine learning, and human-computer interaction, 
to help make machine learning usable by more people. 
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