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Abstract

We propose Sketched Online Newton (SON), an online second order learning
algorithm that enjoys substantially improved regret guarantees for ill-conditioned
data. SON is an enhanced version of the Online Newton Step, which, via sketching
techniques enjoys a running time linear in the dimension and sketch size. We
further develop sparse forms of the sketching methods (such as Oja’s rule), making
the computation linear in the sparsity of features. Together, the algorithm eliminates
all computational obstacles in previous second order online learning approaches.

1 Introduction

Online learning methods are highly successful at rapidly reducing the test error on large, high-
dimensional datasets. First order methods are particularly attractive in such problems as they typically
enjoy computational complexity linear in the input size. However, the convergence of these methods
crucially depends on the geometry of the data; for instance, running the same algorithm on a rotated
set of examples can return vastly inferior results. See Fig. 1 for an illustration.

Second order algorithms such as Online Newton Step [18] have the attractive property of being
invariant to linear transformations of the data, but typically require space and update time quadratic
in the number of dimensions. Furthermore, the dependence on dimension is not improved even
if the examples are sparse. These issues lead to the key question in our work: Can we develop
(approximately) second order online learning algorithms with efficient updates? We show that
the answer is “yes” by developing efficient sketched second order methods with regret guarantees.
Specifically, the three main contributions of this work are:

1. Invariant learning setting and optimal algorithms (Section 2). The typical online regret
minimization setting evaluates against a benchmark that is bounded in some fixed norm (such as the
`2-norm), implicitly putting the problem in a nice geometry. However, if all the features are scaled
down, it is desirable to compare with accordingly larger weights, which is precluded by an apriori
fixed norm bound. We study an invariant learning setting similar to the paper [33] which compares
the learner to a benchmark only constrained to generate bounded predictions on the sequence of
examples. We show that a variant of the Online Newton Step [18], while quadratic in computation,
stays regret-optimal with a nearly matching lower bound in this more general setting.

2. Improved efficiency via sketching (Section 3). To overcome the quadratic running time, we
next develop sketched variants of the Newton update, approximating the second order information
using a small number of carefully chosen directions, called a sketch. While the idea of data sketching
is widely studied [36], as far as we know our work is the first one to apply it to a general adversarial
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online learning setting and provide rigorous regret guarantees. Three different sketching methods are
considered: Random Projections [1, 19], Frequent Directions [12, 23], and Oja’s algorithm [28, 29],
all of which allow linear running time per round. For the first two methods, we prove regret bounds
similar to the full second order update whenever the sketch-size is large enough. Our analysis makes
it easy to plug in other sketching and online PCA methods (e.g. [11]).
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Figure 1: Error rate of SON using Oja’s sketch, and
ADAGRAD on a synthetic ill-conditioned problem.
m is the sketch size (m = 0 is Online Gradient,
m = d resembles Online Newton). SON is nearly
invariant to condition number for m = 10.

3. Sparse updates (Section 4). For practical
implementation, we further develop sparse ver-
sions of these updates with a running time linear
in the sparsity of the examples. The main chal-
lenge here is that even if examples are sparse,
the sketch matrix still quickly becomes dense.
These are the first known sparse implementa-
tions of the Frequent Directions1 and Oja’s algo-
rithm, and require new sparse eigen computation
routines that may be of independent interest.

Empirically, we evaluate our algorithm using
the sparse Oja sketch (called Oja-SON) against
first order methods such as diagonalized ADA-
GRAD [6, 25] on both ill-conditioned synthetic
and a suite of real-world datasets. As Fig. 1
shows for a synthetic problem, we observe sub-
stantial performance gains as data conditioning
worsens. On the real-world datasets, we find
improvements in some instances, while observing no substantial second-order signal in the others.

Related work Our online learning setting is closest to the one proposed in [33], which studies
scale-invariant algorithms, a special case of the invariance property considered here (see also [31,
Section 5]). Computational efficiency, a main concern in this work, is not a problem there since each
coordinate is scaled independently. Orabona and Pál [30] study unrelated notions of invariance. Gao
et al. [9] study a specific randomized sketching method for a special online learning setting.

The L-BFGS algorithm [24] has recently been studied in the stochastic setting2 [3, 26, 27, 34, 35], but
has strong assumptions with pessimistic rates in theory and reliance on the use of large mini-batches
empirically. Recent works [7, 15, 14, 32] employ sketching in stochastic optimization, but do not
provide sparse implementations or extend in an obvious manner to the online setting. The Frank-
Wolfe algorithm [8, 20] is also invariant to linear transformations, but with worse regret bounds [17]
without further assumptions and modifications [10].

Notation Vectors are represented by bold letters (e.g., x, w, . . . ) and matrices by capital letters
(e.g., M , A, . . . ). Mi,j denotes the (i, j) entry of matrix M . Id represents the d× d identity matrix,
0m×d represents the m× d matrix of zeroes, and diag{x} represents a diagonal matrix with x on
the diagonal. λi(A) denotes the i-th largest eigenvalue of A, ‖w‖A denotes

√
w>Aw, |A| is the

determinant of A, TR(A) is the trace of A, 〈A,B〉 denotes
∑
i,j Ai,jBi,j , and A � B means that

B −A is positive semidefinite. The sign function SGN(a) is 1 if a ≥ 0 and −1 otherwise.

2 Setup and an Optimal Algorithm

We consider the following setting. On each round t = 1, 2 . . . , T : (1) the adversary first presents an
example xt ∈ Rd, (2) the learner chooseswt ∈ Rd and predictsw>t xt, (3) the adversary reveals a
loss function ft(w) = `t(w

>xt) for some convex, differentiable `t : R→ R+, and (4) the learner
suffers loss ft(wt) for this round.

The learner’s regret to a comparatorw is defined asRT (w) =
∑T
t=1 ft(wt)−

∑T
t=1 ft(w). Typical

results study RT (w) against all w with a bounded norm in some geometry. For an invariant update,
1Recent work by [13] also studies sparse updates for a more complicated variant of Frequent Directions

which is randomized and incurs extra approximation error.
2Stochastic setting assumes that the examples are drawn i.i.d. from a distribution.
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we relax this requirement and only put bounds on the predictions w>xt. Specifically, for some
pre-chosen constant C we define Kt

def
=
{
w : |w>xt| ≤ C

}
. We seek to minimize regret to all

comparators that generate bounded predictions on every data point, that is:

RT = sup
w∈K

RT (w) where K def
=

T⋂
t=1

Kt =
{
w : ∀t = 1, 2, . . . T, |w>xt| ≤ C

}
.

Under this setup, if the data are transformed to Mxt for all t and some invertible matrix M ∈ Rd×d,
the optimal w∗ simply moves to (M−1)>w∗, which still has bounded predictions but might have
significantly larger norm. This relaxation is similar to the comparator set considered in [33].

We make two structural assumptions on the loss functions.

Assumption 1. (Scalar Lipschitz) The loss function `t satisfies |`′t(z)| ≤ L whenever |z| ≤ C.

Assumption 2. (Curvature) There exists σt ≥ 0 such that for all u,w ∈ K, ft(w) is lower bounded
by ft(u) +∇ft(u)>(w − u) + σt

2

(
∇ft(u)>(u−w)

)2
.

Note that when σt = 0, Assumption 2 merely imposes convexity. More generally, it is satisfied by
squared loss ft(w) = (w>xt − yt)2 with σt = 1

8C2 whenever |w>xt| and |yt| are bounded by C,
as well as for all exp-concave functions (see [18, Lemma 3]).

Enlarging the comparator set might result in worse regret. We next show matching upper and lower
bounds qualitatively similar to the standard setting, but with an extra unavoidable

√
d factor. 3

Theorem 1. For any online algorithm generatingwt ∈ Rd and all T ≥ d, there exists a sequence of
T examples xt ∈ Rd and loss functions `t satisfying Assumptions 1 and 2 (with σt = 0) such that the
regret RT is at least CL

√
dT/2.

We now give an algorithm that matches the lower bound up to logarithmic constants in the worst case
but enjoys much smaller regret when σt 6= 0. At round t+ 1 with some invertible matrix At specified
later and gradient gt = ∇ft(wt), the algorithm performs the following update before making the
prediction on the example xt+1:

ut+1 = wt −A−1
t gt, and wt+1 = argmin

w∈Kt+1

‖w − ut+1‖At
. (1)

The projection onto the set Kt+1 differs from typical norm-based projections as it only enforces
boundedness on xt+1 at round t+ 1. Moreover, this projection step can be performed in closed form.

Lemma 1. For any x 6= 0,u ∈ Rd and positive definite matrix A ∈ Rd×d, we have

argmin
w : |w>x|≤C

‖w − u‖A = u− τC(u>x)

x>A−1x
A−1x, where τC(y) = SGN(y) max{|y| − C, 0}.

If At is a diagonal matrix, updates similar to those of Ross et al. [33] are recovered. We study a
choice of At that is similar to the Online Newton Step (ONS) [18] (though with different projections):

At = αId +

t∑
s=1

(σs + ηs)gsg
>
s (2)

for some parameters α > 0 and ηt ≥ 0. The regret guarantee of this algorithm is shown below:

Theorem 2. Under Assumptions 1 and 2, suppose that σt ≥ σ ≥ 0 for all t, and ηt is non-increasing.
Then using the matrices (2) in the updates (1) yields for all w ∈ K,

RT (w) ≤ α

2
‖w‖22 + 2(CL)2

T∑
t=1

ηt +
d

2(σ + ηT )
ln

(
1 +

(σ + ηT )
∑T
t=1 ‖gt‖

2
2

dα

)
.

3In the standard setting where wt and xt are restricted such that ‖wt‖ ≤ D and ‖xt‖ ≤ X , the minimax
regret is O(DXL

√
T ). This is clearly a special case of our setting with C = DX .
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Algorithm 1 Sketched Online Newton (SON)
Input: Parameters C, α and m.

1: Initialize u1 = 0d×1.
2: Initialize sketch (S,H)← SketchInit(α,m).
3: for t = 1 to T do
4: Receive example xt.
5: Projection step: compute x̂ = Sxt, γ =

τC(u>t xt)

x>t xt−x̂>Hx̂
and setwt = ut − γ(xt − S>Hx̂).

6: Predict label yt = w>t xt and suffer loss `t(yt).
7: Compute gradient gt = `′t(yt)xt and the to-sketch vector ĝ =

√
σt + ηtgt.

8: (S,H)← SketchUpdate(ĝ).
9: Update weight: ut+1 = wt − 1

α (gt − S>HSgt).
10: end for

The dependence on ‖w‖22 implies that the method is not completely invariant to transformations of
the data. This is due to the part αId in At. However, this is not critical since α is fixed and small
while the other part of the bound grows to eventually become the dominating term. Moreover, we
can even set α = 0 and replace the inverse with the Moore-Penrose pseudoinverse to obtain a truly
invariant algorithm, as discussed in Appendix D. We use α > 0 in the remainder for simplicity.

The implication of this regret bound is the following: in the worst case where σ = 0, we set
ηt =

√
d/C2L2t and the bound simplifies to

RT (w) ≤ α

2
‖w‖22 +

CL

2

√
Td ln

(
1 +

∑T
t=1 ‖gt‖

2
2

αCL
√
Td

)
+ 4CL

√
Td ,

essentially only losing a logarithmic factor compared to the lower bound in Theorem 1. On the other
hand, if σt ≥ σ > 0 for all t, then we set ηt = 0 and the regret simplifies to

RT (w) ≤ α

2
‖w‖22 +

d

2σ
ln

(
1 +

σ
∑T
t=1 ‖gt‖

2
2

dα

)
, (3)

extending the O(d lnT ) results in [18] to the weaker Assumption 2 and a larger comparator set K.

3 Efficiency via Sketching

Our algorithm so far requires Ω(d2) time and space just as ONS. In this section we show how to
achieve regret guarantees nearly as good as the above bounds, while keeping computation within a
constant factor of first order methods.

Let Gt ∈ Rt×d be a matrix such that the t-th row is ĝ>t where we define ĝt =
√
σt + ηtgt to be

the to-sketch vector. Our previous choice of At (Eq. (2)) can be written as αId +G>t Gt. The idea
of sketching is to maintain an approximation of Gt, denoted by St ∈ Rm×d where m � d is a
small constant called the sketch size. If m is chosen so that S>t St approximates G>t Gt well, we can
redefine At as αId + S>t St for the algorithm.

To see why this admits an efficient algorithm, notice that by the Woodbury formula one has A−1
t =

1
α

(
Id − S>t (αIm + StS

>
t )−1St

)
. With the notation Ht = (αIm + StS

>
t )−1 ∈ Rm×m and γt =

τC(u>t+1xt+1)/(x>t+1xt+1 − x>t+1S
>
t HtStxt+1), update (1) becomes:

ut+1 = wt − 1
α

(
gt − S>t HtStgt

)
, and wt+1 = ut+1 − γt

(
xt+1 − S>t HtStxt+1

)
.

The operations involving Stgt or Stxt+1 require only O(md) time, while matrix vector products
with Ht require onlyO(m2). Altogether, these updates are at most m times more expensive than first
order algorithms as long as St and Ht can be maintained efficiently. We call this algorithm Sketched
Online Newton (SON) and summarize it in Algorithm 1.

We now discuss three sketching techniques to maintain the matrices St and Ht efficiently, each
requiring O(md) storage and time linear in d.
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Algorithm 2 FD-Sketch for FD-SON
Internal State: S and H .

SketchInit(α,m)
1: Set S = 0m×d and H = 1

αIm.
2: Return (S,H).

SketchUpdate(ĝ)
1: Insert ĝ into the last row of S.
2: Compute eigendecomposition: V >ΣV =

S>S and set S = (Σ− Σm,mIm)
1
2V .

3: Set H = diag
{

1
α+Σ1,1−Σm,m

, · · · , 1
α

}
.

4: Return (S,H).

Algorithm 3 Oja’s Sketch for Oja-SON
Internal State: t, Λ, V and H .

SketchInit(α,m)
1: Set t = 0,Λ = 0m×m, H = 1

αIm and V
to anym×dmatrix with orthonormal rows.

2: Return (0m×d, H).

SketchUpdate(ĝ)
1: Update t← t+ 1, Λ and V as Eqn. 4.
2: Set S = (tΛ)

1
2V .

3: Set H = diag
{

1
α+tΛ1,1

, · · · , 1
α+tΛm,m

}
.

4: Return (S,H).

Random Projection (RP). Random projections are classical methods for sketching [19, 1, 21].
Here we consider Gaussian Random Projection sketch: St = St−1 + rtĝ

>
t , where each entry of

rt ∈ Rm is an independent random Gaussian variable drawn from N (0, 1/
√
m). One can verify that

the update of H−1
t can be realized by two rank-one updates: H−1

t = H−1
t−1 + qtr

>
t + rtq

>
t where

qt = Stĝt −
‖ĝt‖

2
2

2 rt. Using Woodbury formula, this results in O(md) update of S and H (see
Algorithm 6 in Appendix E). We call this combination of SON with RP-sketch RP-SON. When α = 0
this algorithm is invariant to linear transformations for each fixed realization of the randomness.

Using the existing guarantees for RP-sketch, in Appendix E we show a similar regret bound as
Theorem 2 up to constants, provided m = Ω̃(r) where r is the rank of GT . Therefore RP-SON is
near invariant, and gives substantial computational gains when r � d with small regret overhead.

Frequent Directions (FD). When GT is near full-rank, however, RP-SON may not perform well.
To address this, we consider Frequent Directions (FD) sketch [12, 23], a deterministic sketching
method. FD maintains the invariant that the last row of St is always 0. On each round, the vector ĝ>t
is inserted into the last row of St−1, then the covariance of the resulting matrix is eigendecomposed
into V >t ΣtVt and St is set to (Σt − ρtIm)

1
2Vt where ρt is the smallest eigenvalue. Since the rows

of St are orthogonal to each other, Ht is a diagonal matrix and can be maintained efficiently (see
Algorithm 2). The sketch update works in O(md) time (see [12] and Appendix G.2) so the total
running time is O(md) per round. We call this combination FD-SON and prove the following regret
bound with notation Ωk =

∑d
i=k+1 λi(G

>
TGT ) for any k = 0, . . . ,m− 1.

Theorem 3. Under Assumptions 1 and 2, suppose that σt ≥ σ ≥ 0 for all t and ηt is non-increasing.
FD-SON ensures that for any w ∈ K and k = 0, . . . ,m− 1, we have

RT (w) ≤ α

2
‖w‖22 + 2(CL)2

T∑
t=1

ηt +
m

2(σ + ηT )
ln

(
1 +

TR(S>T ST )

mα

)
+

mΩk
2(m− k)(σ + ηT )α

.

Instead of the rank, the bound depends on the spectral decay Ωk, which essentially is the only extra
term compared to the bound in Theorem 2. Similarly to previous discussion, if σt ≥ σ, we get the
bound α

2 ‖w‖
2
2 + m

2σ ln
(

1 +
TR(S>T ST )

mα

)
+ mΩk

2(m−k)σα . With α tuned well, we pay logarithmic regret

for the top m eigenvectors, but a square root regret O(
√

Ωk) for remaining directions not controlled
by our sketch. This is expected for deterministic sketching which focuses on the dominant part of the
spectrum. When α is not tuned we still get sublinear regret as long as Ωk is sublinear.

Oja’s Algorithm. Oja’s algorithm [28, 29] is not usually considered as a sketching algorithm
but seems very natural here. This algorithm uses online gradient descent to find eigenvectors and
eigenvalues of data in a streaming fashion, with the to-sketch vector ĝt’s as the input. Specifically,
let Vt ∈ Rm×d denote the estimated eigenvectors and the diagonal matrix Λt ∈ Rm×m contain the
estimated eigenvalues at the end of round t. Oja’s algorithm updates as:

Λt = (Im − Γt)Λt−1 + Γt diag{Vt−1ĝt}
2
, Vt

orth←−− Vt−1 + ΓtVt−1ĝtĝ
>
t (4)
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where Γt ∈ Rm×m is a diagonal matrix with (possibly different) learning rates of order Θ(1/t)

on the diagonal, and the “ orth←−−” operator represents an orthonormalizing step.4 The sketch is then
St = (tΛt)

1
2Vt. The rows of St are orthogonal and thus Ht is an efficiently maintainable diagonal

matrix (see Algorithm 3). We call this combination Oja-SON.

The time complexity of Oja’s algorithm is O(m2d) per round due to the orthonormalizing step. To
improve the running time to O(md), one can only update the sketch every m rounds (similar to
the block power method [16, 22]). The regret guarantee of this algorithm is unclear since existing
analysis for Oja’s algorithm is only for the stochastic setting (see e.g. [2, 22]). However, Oja-SON
provides good performance experimentally.

4 Sparse Implementation

In many applications, examples (and hence gradients) are sparse in the sense that ‖xt‖0 ≤ s for all t
and some small constant s� d. Most online first order methods enjoy a per-example running time
depending on s instead of d in such settings. Achieving the same for second order methods is more
difficult since A−1

t gt (or sketched versions) are typically dense even if gt is sparse.

We show how to implement our algorithms in sparsity-dependent time, specifically, in O(m2 +
ms) for RP-SON and FD-SON and in O(m3 + ms) for Oja-SON. We emphasize that since the
sketch would still quickly become a dense matrix even if the examples are sparse, achieving purely
sparsity-dependent time is highly non-trivial (especially for FD-SON and Oja-SON), and may be of
independent interest. Due to space limit, below we only briefly mention how to do it for Oja-SON.
Similar discussion for the other two sketches can be found in Appendix G. Note that mathematically
these updates are equivalent to the non-sparse counterparts and regret guarantees are thus unchanged.

There are two ingredients to doing this for Oja-SON: (1) The eigenvectors Vt are represented as
Vt = FtZt, where Zt ∈ Rm×d is a sparsely updatable direction (Step 3 in Algorithm 5) and
Ft ∈ Rm×m is a matrix such that FtZt is orthonormal. (2) The weightswt are split as w̄t +Z>t−1bt,
where bt ∈ Rm maintains the weights on the subspace captured by Vt−1 (same as Zt−1), and w̄t

captures the weights on the complementary subspace which are again updated sparsely.

We describe the sparse updates for w̄t and bt below with the details for Ft and Zt deferred to
Appendix H. Since St = (tΛt)

1
2Vt = (tΛt)

1
2FtZt and wt = w̄t + Z>t−1bt, we know ut+1 is

wt −
(
Id − S>t HtSt

)gt

α = w̄t − gt

α − (Zt − Zt−1)>bt︸ ︷︷ ︸
def
= ūt+1

+Z>t (bt + 1
αF
>
t (tΛtHt)FtZtgt︸ ︷︷ ︸

def
= b′t+1

) . (5)

Since Zt − Zt−1 is sparse by construction and the matrix operations defining b′t+1 scale with m,
overall the update can be done in O(m2 +ms). Using the update forwt+1 in terms of ut+1, wt+1

is equal to

ut+1 − γt(Id − S>t HtSt)xt+1 = ūt+1 − γtxt+1︸ ︷︷ ︸
def
= w̄t+1

+Z>t (b′t+1 + γtF
>
t (tΛtHt)FtZtxt+1︸ ︷︷ ︸

def
= bt+1

) . (6)

Again, it is clear that all the computations scale with s and not d, so both w̄t+1 and bt+1 require only
O(m2 +ms) time to maintain. Furthermore, the prediction w>t xt = w̄>t xt + b>t Zt−1xt can also
be computed in O(ms) time. The O(m3) in the overall complexity comes from a Gram-Schmidt
step in maintaining Ft (details in Appendix H).

The pseudocode is presented in Algorithms 4 and 5 with some details deferred to Appendix H. This
is the first sparse implementation of online eigenvector computation to the best of our knowledge.

5 Experiments

Preliminary experiments revealed that out of our three sketching options, Oja’s sketch generally has
better performance (see Appendix I). For more thorough evaluation, we implemented the sparse

4For simplicity, we assume that Vt−1 + ΓtVt−1ĝtĝ
>
t is always of full rank so that the orthonormalizing step

does not reduce the dimension of Vt.
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Algorithm 4 Sparse Sketched Online Newton with Oja’s Algorithm
Input: Parameters C, α and m.

1: Initialize ū = 0d×1 and b = 0m×1.
2: (Λ, F, Z,H)← SketchInit(α,m) (Algorithm 5).
3: for t = 1 to T do
4: Receive example xt.
5: Projection step: compute x̂ = FZxt and γ = τC(ū>xt+b>Zxt)

x>t xt−(t−1)x̂>ΛHx̂
.

Obtain w̄ = ū− γxt and b← b+ γ(t− 1)F>ΛHx̂ (Equation 6).
6: Predict label yt = w̄>xt + b>Zxt and suffer loss `t(yt).
7: Compute gradient gt = `′t(yt)xt and the to-sketch vector ĝ =

√
σt + ηtgt.

8: (Λ, F , Z, H , δ)← SketchUpdate(ĝ) (Algorithm 5).
9: Update weight: ū = w̄ − 1

αgt − (δ>b)ĝ and b← b+ 1
α tF

>ΛHFZgt (Equation 5).
10: end for

Algorithm 5 Sparse Oja’s Sketch
Internal State: t, Λ, F , Z, H and K.

SketchInit(α,m)
1: Set t = 0,Λ = 0m×m, F = K = αH = Im and Z to any m× d matrix with orthonormal rows.
2: Return (Λ, F , Z, H).

SketchUpdate(ĝ)
1: Update t← t+1. Pick a diagonal stepsize matrix Γt to update Λ← (I−Γt)Λ+Γt diag{FZĝ}2.
2: Set δ = A−1ΓtFZĝ and update K ← K + δĝ>Z> + Zĝδ> + (ĝ>ĝ)δδ>.
3: Update Z ← Z + δĝ>.
4: (L,Q) ← Decompose(F,K) (Algorithm 13), so that LQZ = FZ and QZ is orthogonal. Set
F = Q.

5: Set H ← diag
{

1
α+tΛ1,1

, · · · , 1
α+tΛm,m

}
.

6: Return (Λ, F , Z, H , δ).

version of Oja-SON in Vowpal Wabbit.5 We compare it with ADAGRAD [6, 25] on both synthetic and
real-world datasets. Each algorithm takes a stepsize parameter: 1

α serves as a stepsize for Oja-SON
and a scaling constant on the gradient matrix for ADAGRAD. We try both methods with the parameter
set to 2j for j = −3,−2, . . . , 6 and report the best results. We keep the stepsize matrix in Oja-SON
fixed as Γt = 1

t Im throughout. All methods make one online pass over data minimizing square loss.

5.1 Synthetic Datasets

To investigate Oja-SON’s performance in the setting it is really designed for, we generated a range
of synthetic ill-conditioned datasets as follows. We picked a random Gaussian matrix Z ∼ RT×d
(T = 10,000 and d = 100) and a random orthonormal basis V ∈ Rd×d. We chose a specific spectrum
λ ∈ Rd where the first d− 10 coordinates are 1 and the rest increase linearly to some fixed condition
number parameter κ. We let X = Zdiag{λ}

1
2 V > be our example matrix, and created a binary

classification problem with labels y = sign(θ>x), where θ ∈ Rd is a random vector. We generated
20 such datasets with the same Z, V and labels y but different values of κ ∈ {10, 20, . . . , 200}. Note
that if the algorithm is truly invariant, it would have the same behavior on these 20 datasets.

Fig. 1 (in Section 1) shows the final progressive error (i.e. fraction of misclassified examples after one
pass over data) for ADAGRAD and Oja-SON (with sketch size m = 0, 5, 10) as the condition number
increases. As expected, the plot confirms the performance of first order methods such as ADAGRAD
degrades when the data is ill-conditioned. The plot also shows that as the sketch size increases,
Oja-SON becomes more accurate: when m = 0 (no sketch at all), Oja-SON is vanilla gradient
descent and is worse than ADAGRAD as expected; when m = 5, the accuracy greatly improves; and
finally when m = 10, the accuracy of Oja-SON is substantially better and hardly worsens with κ.

5An open source machine learning toolkit available at http://hunch.net/~vw
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Figure 2: Oja’s algorithm’s
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Figure 3: (a) Comparison of two sketch sizes on real data,
and (b) Comparison against ADAGRAD on real data.

To further explain the effectiveness of Oja’s algorithm in identifying top eigenvalues and eigenvec-
tors, the plot in Fig. 2 shows the largest relative difference between the true and estimated top 10
eigenvalues as Oja’s algorithm sees more data. This gap drops quickly after seeing just 500 examples.

5.2 Real-world Datasets

Next we evaluated Oja-SON on 23 benchmark datasets from the UCI and LIBSVM repository (see
Appendix I for description of these datasets). Note that some datasets are very high dimensional but
very sparse (e.g. for 20news, d ≈ 102, 000 and s ≈ 94), and consequently methods with running
time quadratic (such as ONS) or even linear in dimension rather than sparsity are prohibitive.

In Fig. 3(a), we show the effect of using sketched second order information, by comparing sketch
size m = 0 and m = 10 for Oja-SON (concrete error rates in Appendix I). We observe significant
improvements in 5 datasets (acoustic, census, heart, ionosphere, letter), demonstrating the advantage
of using second order information. However, we found that Oja-SON was outperformed by ADA-
GRAD on most datasets, mostly because the diagonal adaptation of ADAGRAD greatly reduces the
condition number on these datasets. Moreover, one disadvantage of SON is that for the directions not
in the sketch, it is essentially doing vanilla gradient descent. We expect better results using diagonal
adaptation as in ADAGRAD in off-sketch directions.

To incorporate this high level idea, we performed a simple modification to Oja-SON: upon seeing
example xt, we feed D−

1
2

t xt to our algorithm instead of xt, where Dt ∈ Rd×d is the diagonal part of
the matrix

∑t−1
τ=1 gτg

>
τ .6 The intuition is that this diagonal rescaling first homogenizes the scales of

all dimensions. Any remaining ill-conditioning is further addressed by the sketching to some degree,
while the complementary subspace is no worse-off than with ADAGRAD. We believe this flexibility
in picking the right vectors to sketch is an attractive aspect of our sketching-based approach.

With this modification, Oja-SON outperforms ADAGRAD on most of the datasets even for m = 0,
as shown in Fig. 3(b) (concrete error rates in Appendix I). The improvement on ADAGRAD at
m = 0 is surprising but not impossible as the updates are not identical–our update is scale invariant
like Ross et al. [33]. However, the diagonal adaptation already greatly reduces the condition number
on all datasets except splice (see Fig. 4 in Appendix I for detailed results on this dataset), so little
improvement is seen for sketch size m = 10 over m = 0. For several datasets, we verified the
accuracy of Oja’s method in computing the top-few eigenvalues (Appendix I), so the lack of difference
between sketch sizes is due to the lack of second order information after the diagonal correction.

The average running time of our algorithm when m = 10 is about 11 times slower than ADAGRAD,
matching expectations. Overall, SON can significantly outperform baselines on ill-conditioned data,
while maintaining a practical computational complexity.

Acknowledgements This work was done when Haipeng Luo and Nicolò Cesa-Bianchi were at
Microsoft Research, New York.

6D1 is defined as 0.1× Id to avoid division by zero.
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Supplementary material for
“Efficient Second Order Online Learning by Sketching”

A Proof of Theorem 1

Proof. Assuming T is a multiple of d without loss of generality, we pick xt from the basis vectors
{e1, . . . , ed} so that each ei appears T/d times (in an arbitrary order). Note that now K is just a
hypercube:

K =
{
w : |w>xt| ≤ C, ∀t

}
= {w : ‖w‖∞ ≤ C} .

Let ξ1, . . . , ξT be independent Rademacher random variables such that Pr(ξt = +1) = Pr(ξt =
−1) = 1

2 . For a scalar θ, we define loss function7 `t(θ) = (ξtL)θ, so that Assumptions 1 and 2 are
clearly satisfied with σt = 0. We show that, for any online algorithm,

E[RT ] = E

[
T∑
t=1

`t
(
w>t xt

)
− inf

w∈K

T∑
t=1

`t
(
w>xt

)]
≥ CL

√
dT

2

which implies the statement of the theorem.

First of all, note that E
[
`t
(
w>t xt

) ∣∣∣ ξ1, . . . , ξt−1

]
= 0 for any wt. Hence we have

E

[
T∑
t=1

`t
(
w>t xt

)
− inf

w∈K

T∑
t=1

`t
(
w>xt

)]
= E

[
sup
w∈K

T∑
t=1

−`t
(
w>xt

)]
= LE

[
sup
w∈K

w>
T∑
t=1

ξtxt

]
,

which, by the construction of xt, is

CLE

[∥∥∥∥∥
T∑
t=1

ξtxt

∥∥∥∥∥
1

]
= CLdE

∣∣∣∣∣∣
T/d∑
t=1

ξt

∣∣∣∣∣∣
 ≥ CLd√ T

2d
= CL

√
dT

2
,

where the final bound is due to the Khintchine inequality (see e.g. Lemma 8.2 in [4]). This concludes
the proof.

B Projection

We prove a more general version of Lemma 1 which does not require invertibility of the matrix A
here.
Lemma 2. For any x 6= 0,u ∈ Rd×1 and positive semidefinite matrix A ∈ Rd×d, we have

w∗ = argmin
w:|w>x|≤C

‖w − u‖A =


u− τC(u>x)

x>A†x
A†x if x ∈ range(A)

u− τC(u>x)
x>(I−A†A)x

(I −A†A)x if x /∈ range(A)

where τC(y) = SGN(y) max{|y| − C, 0} and A† is the Moore-Penrose pseudoinverse of A. (Note
that when A is rank deficient, this is one of the many possible solutions.)

Proof. First consider the case when x ∈ range(A). If |u>x| ≤ C, then it is trivial thatw∗ = u. We
thus assume u>x ≥ C below (the last case u>x ≤ −C is similar). The Lagrangian of the problem
is

L(w, λ1, λ2) =
1

2
(w − u)>A(w − u) + λ1(w>x− C) + λ2(w>x+ C)

where λ1 ≥ 0 and λ2 ≤ 0 are Lagrangian multipliers. Since w>x cannot be C and −C at the same
time, The complementary slackness condition implies that either λ1 = 0 or λ2 = 0. Suppose the latter
case is true, then setting the derivative with respect tow to 0, we getw∗ = u−λ1A

†x+(I−A†A)z

7By adding a suitable constant, these losses can always be made nonnegative while leaving the regret
unchanged.
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where z ∈ Rd×1 can be arbitrary. However, since A(I − A†A) = 0, this part does not affect the
objective value at all and we can simply pick z = 0 so that w∗ has a consistent form regardless of
whether A is full rank or not. Now plugging w∗ back, we have

L(w∗, λ1, 0) = −λ1
2

2
x>A†x+ λ1(u>x− C)

which is maximized when λ1 = u>x−C
x>A†x

≥ 0. Plugging this optimal λ1 into w∗ gives the stated
solution. On the other hand, if λ1 = 0 instead, we can proceed similarly and verify that it gives a
smaller dual value (0 in fact), proving the previous solution is indeed optimal.

We now move on to the case when x /∈ range(A). First of all the stated solution is well defined since
x>(I −A†A)x is nonzero in this case. Moreover, direct calculation shows that w∗ is in the valid
space: |w∗>x| = |u>x − τC(u>x)| ≤ C, and also it gives the minimal possible distance value
‖w∗ − u‖A = 0, proving the lemma.

C Proof of Theorem 2

We first prove a general regret bound that holds for any choice of At in update 1:

ut+1 = wt −A−1
t gt

wt+1 = argmin
w∈Kt+1

‖w − ut+1‖At
.

This bound will also be useful in proving regret guarantees for the sketched versions.
Proposition 1. For any sequence of positive definite matrices At and sequence of losses satisfying
Assumptions 1 and 2, the regret of updates (1) against any comparator w ∈ K satisfies

2RT (w) ≤ ‖w‖2A0
+

T∑
t=1

gTt A
−1
t gt︸ ︷︷ ︸

“Gradient Bound”RG

+

T∑
t=1

(wt −w)>(At −At−1 − σtgtg>t )(wt −w)︸ ︷︷ ︸
“Diameter Bound”RD

Proof. Since wt+1 is the projection of ut+1 onto Kt+1, by the property of projections (see for
example [17, Lemma 8]), the algorithm ensures

‖wt+1 −w‖2At
≤ ‖ut+1 −w‖2At

= ‖wt −w‖2At
+ g>t A

−1
t gt − 2g>t (wt −w)

for all w ∈ K ⊆ Kt+1. By the curvature property in Assumption 2, we then have that

2RT (w) ≤
T∑
t=1

2g>t (wt −w)− σt
(
g>t (wt −w)

)2
≤

T∑
t=1

g>t A
−1
t gt + ‖wt −w‖2At

− ‖wt+1 −w‖2At
− σt

(
g>t (wt −w)

)2
≤ ‖w‖2A0

+

T∑
t=1

g>t A
−1
t gt + (wt −w)>(At −At−1 − σtgtg>t )(wt −w),

which completes the proof.

Proof of Theorem 2. We apply Proposition 1 with the choice: A0 = αId and At = At−1 + (σt +

ηt)gtg
T
t , which gives ‖w‖2A0

= α ‖w‖22 and

RD =

T∑
t=1

ηt(wt −w)>gtg
>
t (wt −w) ≤ 4(CL)2

T∑
t=1

ηt ,

where the last equality uses the Lipschitz property in Assumption 1 and the boundedness ofw>t xt
and w>xt.
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For the term RG, define Ât = α
σ+ηT

Id +
∑t
s=1 gsg

>
s . Since σt ≥ σ and ηt is non-increasing, we

have Ât � 1
σ+ηT

At, and therefore:

RG ≤
1

σ + ηT

T∑
t=1

g>t Â
−1
t gt =

1

σ + ηT

T∑
t=1

〈
Ât − Ât−1, Â

−1
t

〉
≤ 1

σ + ηT

T∑
t=1

ln
|Ât|
|Ât−1|

=
1

σ + ηT
ln
|ÂT |
|Â0|

=
1

σ + ηT

d∑
i=1

ln

1 +
(σ + ηT )λi

(∑T
t=1 gtg

>
t

)
α


≤ d

σ + ηT
ln

1 +
(σ + ηT )

∑d
i=1 λi

(∑T
t=1 gtg

>
t

)
dα


=

d

σ + ηT
ln

(
1 +

(σ + ηT )
∑T
t=1 ‖gt‖

2
2

dα

)
where the second inequality is by the concavity of the function ln |X| (see [18, Lemma 12] for an
alternative proof), and the last one is by Jensen’s inequality. This concludes the proof.

D A Truly Invariant Algorithm

In this section we discuss how to make our adaptive online Newton algorithm truly invariant to
invertible linear transformations. To achieve this, we set α = 0 and replace A−1

t with the Moore-
Penrose pseudoinverse A†t :

8

ut+1 = wt −A†tgt,
wt+1 = argmin

w∈Kt+1

‖w − ut+1‖At
. (7)

When written in this form, it is not immediately clear that the algorithm has the invariant property.
However, one can rewrite the algorithm in a mirror descent form:

wt+1 = argmin
w∈Kt+1

∥∥∥w −wt +A†tgt

∥∥∥2

At

= argmin
w∈Kt+1

‖w −wt‖2At
+ 2(w −wt)

>AtA
†
tgt

= argmin
w∈Kt+1

‖w −wt‖2At
+ 2w>gt

where we use the fact that gt is in the range of At in the last step. Now suppose all the data xt are
transformed to Mxt for some unknown and invertible matrix M , then one can verify that all the
weights will be transformed to M−Twt accordingly, ensuring the prediction to remain the same.

Moreover, the regret bound of this algorithm can be bounded as below. First notice that even when At
is rank deficient, the projection step still ensures the following: ‖wt+1 −w‖2At

≤ ‖ut+1 −w‖2At
,

which is proven in [18, Lemma 8]. Therefore, the entire proof of Theorem 2 still holds after replacing
A−1
t with A†t , giving the regret bound:

1

2

T∑
t=1

g>t A
†
t gt + 2(CL)2ηt . (8)

The key now is to bound the term
∑T
t=1 g

>
t Â
†
t gt where we define Ât =

∑t
s=1 gsg

>
s . In order to

do this, we proceed similarly to the proof of [5, Theorem 4.2] to show that this term is of order
O(d2 lnT ) in the worst case.

8See Appendix B for the closed form of the projection step.
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Theorem 4. Let λ∗ be the minimum among the smallest nonzero eigenvalues of Ât (t = 1, . . . , T )

and r be the rank of ÂT . We have
T∑
t=1

g>t Â
†
t gt ≤ r +

(1 + r)r

2
ln

(
1 +

2
∑T
t=1 ‖gt‖

2
2

(1 + r)rλ∗

)
.

Proof. First by Cesa-Bianchi et al. [5, Lemma D.1], we have

g>t Â
†
t gt =

{
1 if gt /∈ range(Ât−1)

1− det+(Ât−1)

det+(Ât)
< 1 if gt ∈ range(Ât−1)

where det+(M) denotes the product of the nonzero eigenvalues of matrix M . We thus separate the
steps t such that gt ∈ range(Ât−1) from those where gt /∈ range(Ât−1). For each k = 1, . . . , r let
Tk be the first time step t in which the rank of At is k (so that T1 = 1). Also let Tr+1 = T + 1 for
convenience. With this notation, we have

T∑
t=1

g>t Â
†
t gt =

r∑
k=1

g>Tk
Â†Tk

gTk
+

Tk+1−1∑
t=Tk+1

g>t Â
†
t gt


=

r∑
k=1

1 +

Tk+1−1∑
t=Tk+1

(
1− det+(Ât−1)

det+(Ât)

)
= r +

r∑
k=1

Tk+1−1∑
t=Tk+1

(
1− det+(Ât−1)

det+(Ât)

)

≤ r +

r∑
k=1

Tk+1−1∑
t=Tk+1

ln
det+(Ât)

det+(Ât−1)

= r +

r∑
k=1

ln
det+(ÂTk+1−1)

det+(ÂTk
)

.

Fix any k and let λk,1, . . . , λk,k be the nonzero eigenvalues of ÂTk
and λk,1 + µk,1, . . . , λk,k + µk,k

be the nonzero eigenvalues of ÂTk+1−1. Then

ln
det+(ÂTk+1−1)

det+(ÂTk
)

= ln

k∏
i=1

λk,i + µk,i
λk,i

=

k∑
i=1

ln

(
1 +

µk,i
λk,i

)
.

Hence, we arrive at
T∑
t=1

g>t Â
+
t gt ≤ r +

r∑
k=1

k∑
i=1

ln

(
1 +

µk,i
λk,i

)
.

To further bound the latter quantity, we use λ∗ ≤ λk,i and Jensen’s inequality :

r∑
k=1

k∑
i=1

ln

(
1 +

µk,i
λk,i

)
≤

r∑
k=1

k∑
i=1

ln
(

1 +
µk,i
λ∗

)
≤ (1 + r)r

2
ln

(
1 +

2
∑r
k=1

∑k
i=1 µk,i

(1 + r)rλ∗

)
.

Finally noticing that

k∑
i=1

µk,i = TR(ÂTk+1−1)− TR(ÂTk
) =

Tk+1−1∑
t=Tk+1

TR(gtg
>
t ) =

Tk+1−1∑
t=Tk+1

‖gt‖
2
2

completes the proof.
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Algorithm 6 Random Projection Sketch for RP-SON
Internal State: S and H .

SketchInit(α,m)
1: Set S = 0m×d and H = 1

αIm.
2: Return (S,H).

SketchUpdate(ĝ)
1: Draw r ∼ N (0, 1√

m
) and update S ← S + rĝ>.

2: Compute q = Sĝ − ĝ>ĝ
2 r, update H ← H − Hqr>H

1+r>Hq
and H ← H − Hrq>H

1+q>Hr
.

3: Return (S,H).

Taken together, Eq. (8) and Theorem 4 lead to the following regret bounds (recall the definitions of
λ∗ and r from Theorem 4).

Corollary 1. If σt = 0 for all t and ηt is set to be 1
CL

√
d
t , then the regret of the algorithm defined

by Eq. (7) is at most

CL

2

√
T

d

(
r +

(1 + r)r

2
ln

(
1 +

2
∑T
t=1 ‖gt‖

2
2

(1 + r)rλ∗

))
+ 4CL

√
Td.

On the other hand, if σt ≥ σ > 0 for all t and ηt is set to be 0, then the regret is at most

1

2σ

(
r +

(1 + r)r

2
ln

(
1 +

2
∑T
t=1 ‖gt‖

2
2

(1 + r)rλ∗

))
.

E Regret Bound for RP-SON

The pseudocode of the RP sketch is presented in Algorithm 6. Recall the notation RG and RD in
Proposition 1 and let r be the rank of GT , we prove the following regret bound:

Theorem 5. Under Assumptions 1 and 2, if the sketch sizem = Ω
(
(r+ln(T/δ))ε−2

)
, then RP-SON

ensures
(1) E[RD] ≤ 4(CL)2

∑T
t=1 ηt, and

(2) RG ≤ 1
1−ε

∑T
t=1 g

>
t (αId +G>t Gt)

−1gt with probability at least 1− δ.

Proof. We apply the property of the random projection method (see for example [36, Theorem 2.3]):
as long as m = Ω

(
(r + ln(T/δ))ε−2

)
, with probability at least 1− δ,

(1− ε)G>t Gt � S>t St � (1 + ε)G>t Gt for all t = 1, . . . , T

which implies A−1
t � 1

1−ε (αId + G>t Gt)
−1 and thus RG ≤ 1

1−ε
∑T
t=1 g

>
t (αId + G>t Gt)

−1gt.
For RD, first fix all the randomness before drawing rt and let Et be the corresponding conditional
expectation, then we have

Et[At −At−1] = Et
[
S>t−1rtĝ

>
t + ĝtr

>
t St−1 + ‖rt‖22 ĝtĝ

>
t

]
= (σt + ηt)gtg

>
t .

Since wt,w and gt are fixed, we continue with

Et
[
(wt −w)>(At −At−1 − σtgtg>t )(wt −w)

]
= ηt(wt −w)>gtg

>
t (wt −w) ≤ 4(CL)2ηt .

Therefore, taking the overall expectation gives E[RD] ≤ 4(CL)2
∑T
t=1 ηt.

This theorem implies that the bound on RD is the same as the one without using sketch, and the term
RG is only constant larger.
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F Proof of Theorem 3

Proof. We again first apply Proposition 1 (recall the notation RG and RD stated in the proposition).
By the construction of the sketch, we have

At −At−1 = S>t St − S>t−1St−1 = ĝtĝ
>
t − ρtV >t Vt � ĝtĝ

>
t .

It follows immediately that RD is again at most 4(CL)2
∑T
t=1 ηt. For the term RG, we will apply the

following guarantee of Frequent Directions (see the proof of Theorem 1.1 of [12]):
∑T
t=1 ρt ≤

Ωk

m−k .

Specifically, since TR(VtA
−1
t V >t ) ≤ 1

αTR(VtV
>
t ) = m

α we have

RG =

T∑
t=1

1

σt + ηt

〈
A−1
t , At −At−1 + ρtV

>
t Vt

〉
≤ 1

σ + ηT

T∑
t=1

(〈
A−1
t , At −At−1 + ρtV

>
t Vt

〉)
=

1

σ + ηT

T∑
t=1

(〈
A−1
t , At −At−1

〉
+ ρtTR(VtA

−1
t V >t )

)
≤ 1

(σ + ηT )

T∑
t=1

〈
A−1
t , At −At−1

〉
+

mΩk
(m− k)(σ + ηT )α

.

Finally for the term
∑T
t=1

〈
A−1
t , At −At−1

〉
, we proceed similarly to the proof of Theorem 2:

T∑
t=1

〈
A−1
t , At −At−1

〉
≤

T∑
t=1

ln
|At|
|At−1|

= ln
|AT |
|A0|

=

d∑
i=1

ln

(
1 +

λi(S
>
T ST )

α

)

=

m∑
i=1

ln

(
1 +

λi(S
>
T ST )

α

)
≤ m ln

(
1 +

TR(S>T ST )

mα

)
where the first inequality is by the concavity of the function ln |X|, the second one is by Jensen’s
inequality, and the last equality is by the fact that S>T ST is of rank m and thus λi(S>T ST ) = 0 for
any i > m. This concludes the proof.

G Sparse updates for RP and FD sketches

G.1 Random Projection

We recall the updates of RP sketch. Since ĝt is sparse, St = St−1 + rĝ>t is easily updated in O(ms)
time. Ht can also be updated in O(m2 +ms) time clearly. However, since the sketch St is getting
denser and denser, direct update of the weight vector is a dense operation too. The solution is to
represent and store wt in the form of w̄t + S>t−1bt for some w̄t ∈ Rd and bt ∈ Rm. Note that now
computing the prediction w>t xt needs O(ms) time. Rewriting the update rules we have

ut+1 = wt −
1

α
gt +

1

α
S>t HtStgt = w̄t + S>t−1bt −

1

α
gt +

1

α
S>t HtStgt

= w̄t − ĝtr>t bt −
1

α
gt︸ ︷︷ ︸

def
= ūt+1

+S>t (bt +
1

α
HtStgt︸ ︷︷ ︸

def
= b′t+1

) .

Since gt and ĝt are sparse, computing ūt+1 and b′t+1 needs O(m2 + ms) time. Finally, for the
projection step, ct can clearly be computed in O(m2 +ms) time, and the update rule of w̄t+1 and
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Algorithm 7 Sparse Sketched Online Newton with Random Projection
Input: Parameters C, α and m.

1: Initialize ū = 0d×1, b = 0m×1 and (S,H)← SketchInit(α,m) (Algorithm 6).
2: for t = 1 to T do
3: Receive example xt.
4: Projection step: compute x̂ = Sxt, γ = τC(ū>xt+b>x̂)

x>t xt−x̂>Hx̂
, w̄ = ū− γxt and b← b+ cHx̂.

5: Predict label yt = w̄>xt + b>x̂ and suffer loss `t(yt).
6: Compute gradient gt = `′t(yt)xt and the to-sketch vector ĝ =

√
σt + ηtgt.

7: (S,H)← SketchUpdate(ĝ) (Algorithm 6).
8: Update ū = w̄ − (r>b)ĝ − 1

αgt and b← b+ 1
αHSgt.

9: end for

bt+1 is thus derived as follows:

wt+1 = ut+1 − γt(xt+1 − S>t HtStxt+1)

= ūt+1 + S>t b
′
t+1 − γt(xt+1 − S>t HtStxt+1)

= ūt+1 − γtxt+1︸ ︷︷ ︸
def
= w̄t+1

+S>t (b′t+1 + γtHtStxt+1︸ ︷︷ ︸
def
= bt+1

)

which again takes O(m2 + ms) time. Taken together, the total time complexity per round is
O(m2 +ms). The pseudocode for this version of the algorithm is presented in Algorithm 7.

G.2 Frequent Directions

The sparse version of our algorithm with the Frequent Directions option is much more involved. We
begin by taking a detour and introducing a fast and epoch-based variant of the Frequent Directions
algorithm proposed in [12]. The idea is the following: instead of doing an eigendecomposition
immediately after inserting a new ĝ every round, we double the size of the sketch (to 2m), keep up to
m recent ĝ’s, do the decomposition only at the end of every m rounds and finally keep the top m
eigenvectors with shrunk eigenvalues. The advantage of this variant is that it can be implemented
straightforwardly in O(md) time on average without doing a complicated rank-one SVD update,
while still ensuring the exact same guarantee with the only price of doubling the sketch size.

Algorithm 8 shows the details of this variant and how we maintain H . The sketch S is always
represented by two parts: the top part (DV ) comes from the last eigendecomposition, and the bottom
part (G) collects the recent to-sketch vector ĝ’s. Note that within each epoch, the update of H−1 is a
rank-two update and thus H can be updated similarly to the case of random projection (Lines 3 and 4
of Algorithm 8).

Although we can use any available algorithm that runs in O(m2d) time to do the eigendecomposition
(Line 7 in Algorithm 8), we explicitly write down the procedure of reducing this problem to eigende-
composing a small square matrix in Algorithm 9, which will be important for deriving the sparse
version of the algorithm. Lemma 3 proves that Algorithm 9 works correctly for finding the top m
eigenvector and eigenvalues.

Lemma 3. The outputs of Algorithm 9 are such that the i-th row of V ′ and the i-th entry of the
diagonal of Σ are the i-th eigenvector and eigenvalue of S>S respectively.

Proof. Let W> ∈ Rd×(d−m−r) be an orthonormal basis of the null space of
(
V
Q

)
. By Line 2, we

know that GW> = 0 and E = (V > Q> W>) forms an orthonormal basis of Rd. Therefore, we
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Algorithm 8 Frequent Direction Sketch (epoch version)
Internal State: τ,D, V,G and H .

SketchInit(α,m)
1: Set τ = 1, D = 0m×m, G = 0m×d, H = 1

αI2m and let V be any m× d matrix whose rows are
orthonormal.

2: Return (02m×d, H).

SketchUpdate(ĝ)
1: Insert ĝ into the τ -th row of G.
2: if τ < m then
3: Let e be the 2m× 1 basis vector whose (m+ τ)-th entry is 1 and q = Sĝ − ĝ>ĝ

2 e.

4: Update H ← H − Hqe>H
1+e>Hq

and H ← H − Heq>H
1+q>He

.
5: Update τ ← τ + 1.
6: else
7: (V,Σ)← ComputeEigenSystem

((
DV
G

))
(Algorithm 9).

8: Set D to be a diagonal matrix with Di,i =
√

Σi,i − Σm,m, ∀i ∈ [m].

9: Set H ← diag
{

1
α+D2

1,1
, · · · , 1

α+D2
m,m

, 1
α , . . . ,

1
α

}
.

10: Set G = 0m×d.
11: Set τ = 1.
12: end if
13: Return

((
DV
G

)
, H

)
.

Algorithm 9 ComputeEigenSystem(S)

Input: S =

(
DV
G

)
.

Output: V ′ ∈ Rm×d and diagonal matrix Σ ∈ Rm×m such that the i-th row of V ′ and the i-th entry
of the diagonal of Σ are the i-th eigenvector and eigenvalue of S>S respectively.

1: Compute M = GV >.
2: Decompose G−MV into the form LQ where L ∈ Rm×r, Q is a r × d matrix whose rows are

orthonormal and r is the rank of G−MV (e.g. by a Gram-Schmidt process).
3: Compute the top m eigenvectors (U ∈ Rm×(m+r)) and eigenvalues (Σ ∈ Rm×m) of the matrix(

D2 0m×r
0r×m 0r×r

)
+

(
M>

L>

)
( M L ).

4: Return (V ′,Σ) where V ′ = U

(
V
Q

)
.

have

S>S = V >D2V +G>G

= E

 D2 0 0
0 0 0
0 0 0

E> + EE>G>GEE>

= E

 D2 0 0
0 0 0
0 0 0

+

 V G>

QG>

WG>

 (GV > GQ> GW>)

E>

= (V > Q>)

((
D2 0
0 0

)
+

(
M>

L>

)
( M L )

)
︸ ︷︷ ︸

=C

(
V
Q

)
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where in the last step we use the fact GQ> = (MV + LQ)Q> = L. Now it is clear that the
eigenvalue of C will be the eigenvalue of S>S and the eigenvector of C will be the eigenvector of
S>S after left multiplied by matrix (V > Q>), completing the proof.

We are now ready to present the sparse version of SON with Frequent Direction sketch (Algorithm 10).
The key point is that we represent Vt as FtZt for some Ft ∈ Rm×m and Zt ∈ Rm×d, and the weight
vectorwt as w̄t +Z>t−1bt and ensure that the update of Zt and w̄t will always be sparse. To see this,

denote the sketch St by
(
DtFtZt
Gt

)
and let Ht,1 and Ht,2 be the top and bottom half of Ht. Now

the update rule of ut+1 can be rewritten as
ut+1 = wt −

(
Id − S>t HtSt

)gt

α

= w̄t + Z>t−1bt −
1

α
gt +

1

α
(Z>t F

>
t Dt, G

>
t )

(
Ht,1Stgt
Ht,2Stgt

)
= w̄t +

1

α
(G>t Ht,2Stgt − gt)− (Zt − Zt−1)>bt︸ ︷︷ ︸

ūt+1

+Z>t (bt +
1

α
F>t DtHt,1Stgt)︸ ︷︷ ︸

b′t+1

We will show that Zt − Zt−1 = ∆tGt for some ∆t ∈ Rm×m shortly, and thus the above update is
efficient due to the fact that the rows of Gt are collections of previous sparse vectors ĝ.

Similarly, the update of wt+1 can be written as
wt+1 = ut+1 − γt(xt+1 − S>t HtStxt+1)

= ūt+1 + Z>t b
′
t+1 − γtxt+1 + γt(Z

>
t F
>
t Dt, G

>
t )

(
Ht,1Stxt+1

Ht,2Stxt+1

)
= ūt+1 + γt(G

>
t Ht,2Stxt+1 − xt+1)︸ ︷︷ ︸

w̄t+1

+Z>t (b′t+1 + γtF
>
t DtHt,1Stxt+1)︸ ︷︷ ︸
bt+1

.

It is clear that γt can be computed efficiently, and thus the update of wt+1 is also efficient. These
updates correspond to Line 6 and 10 of Algorithm 10.

It remains to perform the sketch update efficiently. Algorithm 11 is the sparse version of Algorithm 8.
The challenging part is to compute eigenvectors and eigenvalues efficiently. Fortunately, in light
of Algorithm 9, using the new representation V = FZ one can directly translate the process to
Algorithm 12 and find that the eigenvectors can be expressed in the form N1Z +N2G. To see this,
first note that Line 1 of both algorithms compute the same matrix M = GV > = GZ>F>. Then
Line 2 decomposes the matrix

G−MV = G−MFZ = ( −MF Im )

(
Z
G

)
def
= PR

using Gram-Schmidt into the form LQR such that the rows of QR are orthonormal (that is, QR
corresponds toQ in Algorithm 9). While directly applying Gram-Schmidt to PR would takeO(m2d)
time, this step can in fact be efficiently implemented by performing Gram-Schmidt to P (instead of
PR) in a Banach space where inner product is defined as 〈a, b〉 = a>Kb with

K = RR> =

(
ZZ> ZG>

GZ> GG>

)
being the Gram matrix of R. Since we can efficiently maintain the Gram matrix of Z (see Line 10
of Algorithm 11) and GZ> and GG> can be computed sparsely, this decomposing step can be
done efficiently too. This modified Gram-Schmidt algorithm is presented in Algorithm 13 (which
will also be used in sparse Oja’s sketch), where Line 4 is the key difference compared to standard
Gram-Schmidt (see Lemma 4 below for a formal proof of correctness).

Line 3 of Algorithms 9 and 12 are exactly the same. Finally the eigenvectorsU
(
V
Q

)
in Algorithm 9

now becomes (with U1, U2, Q1, Q2, N1, N2 defined in Line 4 of Algorithm 12)

U

(
FZ
QR

)
= (U1, U2)

(
FZ
QR

)
= U1FZ + U2(Q1, Q2)

(
Z
G

)
= (U1FZ + U2Q1)Z + U2Q2G = N1Z +N2G.
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Algorithm 10 Sparse Sketched Online Newton with Frequent Directions
Input: Parameters C, α and m.

1: Initialize ū = 0d×1, b = 0m×1 and (D,F,Z,G,H)← SketchInit(α,m) (Algorithm 11).

2: Let S denote the matrix
(
DFZ
G

)
throughout the algorithm (without actually computing it).

3: Let H1 and H2 denote the upper and lower half of H , i.e. H =

(
H1

H2

)
.

4: for t = 1 to T do
5: Receive example xt.
6: Projection step: compute x̂ = Sxt and γ = τC(ū>xt+b>Zxt)

x>t xt−x̂>Hx̂
.

Obtain w̄ = ū+ γ(G>H2x̂− xt) and b← b+ γF>DH1x̂.
7: Predict label yt = w̄>xt + b>Zxt and suffer loss `t(yt).
8: Compute gradient gt = `′t(yt)xt and the to-sketch vector ĝ =

√
σt + ηtgt.

9: (D,F,Z,G,H,∆)← SketchUpdate(ĝ) (Algorithm 11).
10: Update ū = w̄ + 1

α (G>H2Sg − g)−G>∆>b and b← b+ 1
αF
>DH1Sg.

11: end for

Algorithm 11 Sparse Frequent Direction Sketch
Internal State: τ,D, F, Z,G,H and K.

SketchInit(α,m)
1: Set τ = 1, D = 0m×m, F = K = Im, H = 1

αI2m, G = 0m×d, and let Z be any m× d matrix
whose rows are orthonormal.

2: Return (D,F,Z,G,H).

SketchUpdate(ĝ)
1: Insert ĝ into the τ -th row of G.
2: if τ < m then
3: Let e be the 2m× 1 basic vector whose (m+ τ)-th entry is 1 and compute q = Sĝ − ĝ>ĝ

2 e.

4: Update H ← H − Hqe>H
1+e>Hq

and H ← H − Heq>H
1+q>He

.
5: Set ∆ = 0m×m.
6: Set τ ← τ + 1.
7: else
8: (N1, N2,Σ)← ComputeSparseEigenSystem

((
DFZ
G

)
,K

)
(Algorithm 12).

9: Compute ∆ = N−1
1 N2.

10: Update Gram matrix K ← K + ∆GZ> + ZG>∆> + ∆GG>∆>.
11: Update F = N1, Z ← Z + ∆G, and let D be such that Di,i =

√
Σi,i − Σm,m, ∀i ∈ [m].

12: Set H ← diag
{

1
α+D2

1,1
, · · · , 1

α+D2
m,m

, 1
α , . . . ,

1
α

}
.

13: Set G = 0m×d.
14: Set τ = 1.
15: end if
16: Return (D,F,Z,G,H,∆).

Therefore, having the eigenvectors in the form N1Z +N2G, we can simply update F as N1 and Z as
Z +N−1

1 N2G so that the invariant V = FZ still holds (see Line 11 of Algorithm 11). The update
of Z is sparse since G is sparse.

We finally summarize the results of this section in the following theorem.

Theorem 6. The average running time of Algorithm 10 is O
(
m2 +ms

)
per round, and the regret

bound is exactly the same as the one stated in Theorem 3.

Lemma 4. The output of Algorithm 13 ensures that LQR = PR and the rows of QR are orthonor-
mal.
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Algorithm 12 ComputeSparseEigenSystem(S,K)

Input: S =

(
DFZ
G

)
and Gram matrix K = ZZ>.

Output: N1, N2 ∈ Rm×m and diagonal matrix Σ ∈ Rm×m such that the i-th row of N1Z +N2G
and the i-th entry of the diagonal of Σ are the i-th eigenvector and eigenvalue of the matrix S>S.

1: Compute M = GZ>F>.

2: (L,Q)← Decompose
(

( −MF Im ) ,

(
K ZG>

GZ> GG>

))
(Algorithm 13).

3: Let r be the number of columns of L. Compute the top m eigenvectors (U ∈ Rm×(m+r)) and

eigenvalues (Σ ∈ Rm×m) of the matrix
(

D2 0m×r
0r×m 0r×r

)
+

(
M>

L>

)
( M L ).

4: Set N1 = U1F + U2Q1 and N2 = U2Q2 where U1 and U2 are the first m and last r columns of
U respectively, and Q1 and Q2 are the left and right half of Q respectively.

5: Return (N1, N2,Σ).

Proof. It suffices to prove that Algorithm 13 is exactly the same as using the standard Gram-Schmidt
to decompose the matrix PR into L and an orthonormal matrix which can be written as QR. First
note that when K = In, Algorithm 13 is simply the standard Gram-Schmidt algorithm applied to
P . We will thus go through Line 1-10 of Algorithm 13 with P replaced by PR and K by In and
show that it leads to the exact same calculations as running Algorithm 13 directly. For clarity, we add
“˜” to symbols to distinguish the two cases (so P̃ = PR and K̃ = In). We will inductively prove
the invariance Q̃ = QR and L̃ = L. The base case Q̃ = QR = 0 and L̃ = L = 0 is trivial. Now
assume it holds for iteration i− 1 and consider iteration i. We have

α̃ = Q̃K̃p̃ = QRR>p = QKp = α,

β̃ = p̃− Q̃>α̃ = R>p− (QR)>α = R>(p−Q>α) = R>β,

c̃ =

√
β̃
>
K̃β̃ =

√
(R>β)>(R>β) =

√
β>Kβ = c,

which clearly implies that after execution of Line 5-9, we again have Q̃ = QR and L̃ = L, finishing
the induction.

H Details for sparse Oja’s algorithm

We finally provide the missing details for the sparse version of the Oja’s algorithm. Since we already
discussed the updates for w̄t and bt in Section 4, we just need to describe how the updates for Ft and
Zt work. Recall that the dense Oja’s updates can be written in terms of F and Z as

Λt = (Im − Γt)Λt−1 + Γt diag{Ft−1Zt−1ĝt}
2

FtZt
orth←−− Ft−1Zt−1 + ΓtFt−1Zt−1ĝtĝ

>
t = Ft−1(Zt−1 + F−1

t−1ΓtFt−1Zt−1ĝtĝ
>
t ) .

(9)

Here, the update for the eigenvalues is straightforward. For the update of eigenvectors, first we let
Zt = Zt−1 + δtĝ

>
t where δt = F−1

t−1ΓtFt−1Zt−1ĝt (note that under the assumption of Footnote 4,
Ft is always invertible). Now it is clear that Zt − Zt−1 is a sparse rank-one matrix and the update
of ūt+1 is efficient. Finally it remains to update Ft so that FtZt is the same as orthonormalizing
Ft−1Zt, which can in fact be achieved by applying the Gram-Schmidt algorithm to Ft−1 in a Banach
space where inner product is defined as 〈a, b〉 = a>Ktb where Kt is the Gram matrix ZtZ>t (see
Algorithm 13). Since we can maintain Kt efficiently based on the update of Zt:

Kt = Kt−1 + δtĝ
>
t Z
>
t−1 + Zt−1ĝtδ

>
t + (ĝ>t ĝt)δtδ

>
t ,

the update of Ft can therefore be implemented in O(m3) time.
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Algorithm 13 Decompose(P, K)
Input: P ∈ Rm×n, K ∈ Rm×m such that K is the Gram matrix K = RR> for some matrix

R ∈ Rn×d where n ≥ m, d ≥ m,
Output: L ∈ Rm×r and Q ∈ Rr×n such that LQR = PR where r is the rank of PR and the rows

of QR are orthonormal.
1: Initialize L = 0m×m and Q = 0m×n.
2: for i = 1 to m do
3: Let p> be the i-th row of P .

4: Compute α = QKp,β = p−Q>α and c =

√
β>Kβ.

5: if c 6= 0 then
6: Insert 1

cβ
> to the i-th row of Q.

7: end if
8: Set the i-th entry of α to be c and insert α to the i-th row of L.
9: end for

10: Delete the all-zero columns of L and all-zero rows of Q.
11: Return (L,Q).
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Figure 4: Error rates for Oja-SON with different sketch sizes on splice dataset

I Experiment Details

This section reports some detailed experimental results omitted from Section 5.2. Table 1 includes
the description of benchmark datasets; Table 2 reports error rates on relatively small datasets to
show that Oja-SON generally has better performance; Table 3 reports concrete error rates for the
experiments described in Section 5.2; finally Table 4 shows that Oja’s algorithm estimates the
eigenvalues accurately.

As mentioned in Section 5.2, we see substantial improvement for the splice dataset when using Oja’s
sketch even after the diagonal adaptation. We verify that the condition number for this dataset before
and after the diagonal adaptation are very close (682 and 668 respectively), explaining why a large
improvement is seen using Oja’s sketch. Fig. 4 shows the decrease of error rates as Oja-SON with
different sketch sizes sees more examples. One can see that even with m = 1 Oja-SON already
performs very well. This also matches our expectation since there is a huge gap between the top and
second eigenvalues of this dataset (50.7 and 0.4 respectively).
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Table 1: Datasets used in experiments

Dataset #examples avg. sparsity #features
20news 18845 93.89 101631

a9a 48841 13.87 123
acoustic 78823 50.00 50

adult 48842 12.00 105
australian 690 11.19 14

breast-cancer 683 10.00 10
census 299284 32.01 401
cod-rna 271617 8.00 8
covtype 581011 11.88 54
diabetes 768 7.01 8
gisette 1000 4971.00 5000
heart 270 9.76 13

ijcnn1 91701 13.00 22
ionosphere 351 30.06 34

letter 20000 15.58 16
magic04 19020 9.99 10

mnist 11791 142.43 780
mushrooms 8124 21.00 112

rcv1 781265 75.72 43001
real-sim 72309 51.30 20958
splice 1000 60.00 60
w1a 2477 11.47 300
w8a 49749 11.65 300

Table 2: Error rates for Sketched Online Newton with different sketching algorithms

Dataset RP-SON FD-SON Oja-SON
australian 15.6 16.0 15.8

breast-cancer 4.8 5.3 3.7
diabetes 35.5 35.4 32.8

mushrooms 0.5 0.5 0.2
splice 22.9 22.6 22.9
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Table 3: Error rates for different algorithms (with best results bolded)

Dataset
Oja-SON

ADAGRADWithout Diagonal Adaptation With Diagonal Adaptation
m = 0 m = 10 m = 0 m = 10

20news 0.121338 0.121338 0.049590 0.049590 0.068020
a9a 0.204447 0.195203 0.155953 0.155953 0.156414

acoustic 0.305824 0.260241 0.257894 0.257894 0.259493
adult 0.199763 0.199803 0.150830 0.150830 0.181582

australian 0.366667 0.366667 0.162319 0.157971 0.289855
breast-cancer 0.374817 0.374817 0.036603 0.036603 0.358712

census 0.093610 0.062038 0.051479 0.051439 0.069629
cod-rna 0.175107 0.175107 0.049710 0.049643 0.081066
covtype 0.042304 0.042312 0.050827 0.050818 0.045507
diabetes 0.433594 0.433594 0.329427 0.328125 0.391927
gisette 0.208000 0.208000 0.152000 0.152000 0.154000
heart 0.477778 0.388889 0.244444 0.244444 0.362963

ijcnn1 0.046826 0.046826 0.034536 0.034645 0.036913
ionosphere 0.188034 0.148148 0.182336 0.182336 0.190883

letter 0.306650 0.232300 0.233250 0.230450 0.237350
magic04 0.000263 0.000263 0.000158 0.000158 0.000210

mnist 0.062336 0.062336 0.040031 0.039182 0.046561
mushrooms 0.003323 0.002339 0.002462 0.002462 0.001969

rcv1 0.055976 0.052694 0.052764 0.052766 0.050938
real-sim 0.045140 0.043577 0.029498 0.029498 0.031670
splice 0.343000 0.343000 0.294000 0.229000 0.301000
w1a 0.001615 0.001615 0.004845 0.004845 0.003633
w8a 0.000101 0.000101 0.000422 0.000422 0.000221

Table 4: Largest relative error between true and estimated top 10 eigenvalues using Oja’s rule.

Dataset Relative eigenvalue
difference

a9a 0.90
australian 0.85

breast-cancer 5.38
diabetes 5.13

heart 4.36
ijcnn1 0.57

magic04 11.48
mushrooms 0.91

splice 8.23
w8a 0.95
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