This is the full version of an extended abstract published in ACM CCS 201. Posted as Report
2013/516 on 19 August 2013; revised 8 September 2014.

Algebraic MACs and Keyed-Verification Anonymous Credentials

Melissa Chase Sarah Meiklejohn* Greg Zaverucha
Microsoft Research UC San Diego Microsoft Research
melissac@microsoft.com smeiklej@cs.ucsd.edu gregz@microsoft.com
Abstract

We consider the problem of constructing anonymous credentials for use in a setting where the
issuer of credentials is also the verifier, or more generally where the issuer and verifier have a
shared key. In this setting we can use message authentication codes (MACs) instead of public key
signatures as the basis for the credential system.

To this end, we construct two algebraic MACs in prime-order groups, along with efficient proto-
cols for issuing credentials, asserting possession of a credential, and proving statements about hidden
attributes (e.g., the age of the credential owner). We prove the security of the first scheme in the
generic group model, and prove the security of the second scheme—using a dual-system-based
approach —under decisional Diffie-Hellman (DDH). Our MACs may be of independent interest, as
they are the only uf-cmva-secure MACs with efficient proofs of knowledge.

Finally, we compare the efficiency of our new systems to two existing constructions of anonymous
credentials: U-Prove and Idemix. We show that the performance of the new schemes is competitive
with U-Prove (which does not have multi-show unlinkability), and many times faster than Idemix.

1 Introduction

An anonymous credentials system [13] [8, [I0] allows for a landscape in which users can be known in
different contexts by different pseudonyms. For example, a user Alice might be known to Bob under
one pseudonym nym, and to Carol under a different pseudonym nym’. Her behavior under these two
pseudonyms should be unlinkable, meaning no one can discern that the two pseudonyms belong to the
same user, yet she should be able to prove possession of a credential issued to one given pseudonym to
any other user, without revealing the pseudonym (e.g., if Carol issued a credential to nym’, Alice should
nevertheless be able to prove to Bob—using a different pseudonym nym — that she is in possession of
the credential). Beyond proving basic possession of a credential, Alice may want to furthermore prove
that it certifies certain attributes about her (e.g., her age).

Many of the potential applications of anonymous credentials involve authentication. For example,
a transit authority might issue monthly passes and then check for possession of such a pass when the
user boards a bus; similarly, a university might issue keycards to access certain buildings, and then
require a user to swipe his card upon entering one of these buildings. For each of these situations, the
authority needs to know only that an authorized user is gaining entry, yet current implementations of
such access systems allow the authority to learn the patterns of each individual participant (e.g., who
is entering which building and when). Anonymous credentials present a solution that simultaneously
preserves the integrity of the system through an unforgeability guarantee that a user cannot prove
possession of credentials he wasn’t issued (e.g., cannot gain access to a building without having been

*This work was done in part while Sarah Meiklejohn was an intern at Microsoft Research and in part while she was a
graduate student at UC San Diego, funded by CNS-1237264 and support from the UCSD Center for Networked Systems
(CNS).

melissac@microsoft.com
smeiklej@cs.ucsd.edu
gregz@microsoft.com

granted access) but also preserves the anonymity of the individual participants. If the anonymity is
preserved throughout multiple presentations of the credential (e.g., each time a user boards the bus),
it is said to satisfy multi-show unlinkability.

Traditionally, the models for anonymous credentials have assumed that a user must be prepared
to prove possession of his credentials to many other participants in the system; as such, all existing
constructions are built on top of public-key primitives such as digital signatures. In both of the above
examples, however, the issuer and verifier are in fact the same entity; e.g., the transit authority both
sells (i.e., issues) monthly passes and verifies them when users enter the system. In these scenarios,
and more generally in any setting in which the party controlling access to a resource also manages the
accounts of authorized parties, constructions can take advantage of this symmetry to use symmetric-
key primitives —which are typically significantly more efficient than their public-key counterparts —
to construct a keyed-verification credential.

If we define keyed-verification credentials as allowing the issuer and verifier to share access to
some secret key, then symmetric-key primitives can be further adopted beyond the setting in which
the issuer and verifier are the exact same entity. As long as a user does not need to authenticate
himself to any other user in the system, the issuer can share a separate secret key with each verifier,
and then issue credentials specific to each of these verifiers. In a purely non-interactive setting this
might require the issuer to provide credentials for each verifier all at once (which might become fairly
unattractive beyond a small number of verifiers), but in a more online setting the user might request
credentials from the issuer as needed. (Interestingly, the blind issuance allows the user to do this in
an anonymous fashion, as they can request a credential on the same attributes without revealing them
to the issuer.)

More generally, it is also possible to translate a publicly verifiable credential into a more efficient
keyed-verification credential with the same attributes and functionality. Another use case is thus as
follows: when a user wishes to interact with a new verifier, he first enrolls with the verifier by presenting
a publicly verifiable credential; the verifier checks this credential, then issues a new credential that
only he can verify. Importantly, this protocol does not require that the user reveal the attributes in
the publicly verifiable credential, or allow the issuer and verifier together to link the credential used
during enrollment with a run of the issuance protocol. When the user returns, the efficient keyed-
verification credential is used, and it is impossible to link this use with previous presentations of the
credential or with the user’s initial enrollment. Translating credentials in this manner provides the
appealing trade-off that public verifiability is still possible when necessary, but credential use becomes
more efficient with repeat verifiers.

Our contributions. In this paper, we introduce keyed-verification credentials, which formalize the
intuition outlined above. By using message authentication codes (MACs) in place of more tradi-
tional public-key signatures, we show that we can achieve performance improvements over existing
constructions of anonymous credentials.

In order to integrate nicely with primitives such as zero-knowledge proofs (which are typically
needed to construct anonymous credentials), we require an algebraic MAC, meaning a MAC con-
structed using group operations rather than block ciphers or hash functions. In Section |3] we present
two such MACs, both constructed in prime-order groups. The first, MACggm, is a generalization of
a MAC presented by Dodis et al. [I7]. While Dodis et al. show that this MAC provides only a very
weak notion of security under the DDH assumption, we generalize the scheme to allow for blocks of
messages, and then prove it satisfies the standard notion (uf-cmva security) of MAC unforgeability,
albeit in the generic group model. The second, MACppy, is a new construction which we propose, and
which we prove to be uf-cmva secure under the DDH assumption.

Both MACs are of potential independent interest, as they avoid techniques such as collision-

resistant hash functions and bit-wise decompositions, which have often been relied upon to construct
efficient MACs. MACggm is quite efficient; MACppy only slightly less efficient and is based on a
mild assumption. Interestingly, the proof of security for MACppy follows the dual-system approach
introduced by Waters [32], which makes it (to the best of our knowledge) the first application of this
technique outside of the pairing-based setting.

Next, in Section |4l we present keyed-verification credentials. We first present a formal security
model, and then present two constructions, one based on each of our MACs. For each construction,
we describe how to efficiently issue and prove possession of credentials. Our constructions consider
credentials certifying many attributes at once to reflect situations with a complex access policy (e.g., in
the transit setting, a monthly pass could encode an expiration date, the area of usage, etc.); allow for
blind issuance of credentials, in which one or more of the attributes may remain hidden from the issuer
(e.g., a senior citizen might need to provide their date of birth or other sensitive information in order
to receive a discount transit pass, or one might want to transfer attributes from a publicly verifiable
credential as described above); and allow for presentation of credentials with attributes satisfying a
given statement.

Finally, in Section [5] we provide a detailed efficiency comparison of our new keyed-verification
credentials to U-Prove [7, 25] and Idemix [9, 22], the two most efficient anonymous credential schemes
to date. Our comparison indicates that, depending on the parameters of the presentation, our new
constructions both have the same or slightly higher cost when compared to U-Prove, and are always
many times faster than Idemix (by our estimates, anywhere between 4 and 16 times faster).

Related work. The state of the art in MACs based on number-theoretic assumptions are the
schemes by Dodis et al. [I7]. (Their paper also contains a survey of prior work.) Of the nine MACs
presented in [17], all either (1) satisfy a weaker security notion than uf-cmva, or (2) use hash func-
tions or bitwise decomposition of the message, thus preventing an efficient proof of knowledge. Since
our keyed-verification credential constructions require both of these properties, we cannot use these
existing MACs directly. Section [3] describes the differences in more detail.

Anonymous credentials were introduced by Chaum [13] as a way to provide individuals more
control over the disclosure of personal data. U-Prove [25] is a credential system constructed from
a blind version of Schnorr signatures [7]. It is defined in a prime-order group, and is thus very
computationally efficient. A U-Prove credential is constructed as a number of tokens, where each token
may be used once unlinkably, so the size of U-Prove credentials is linear in the number of unlinkable
uses. A recent paper of Baldimtsi and Lysyanskaya [2] presents a construction with efficiency similar
to U-Prove (and similarly with no multi-show unlinkability), but with a security proof assuming the
DDH assumption in the random oracle model. (U-Prove does not have a formal proof of security.)

Idemix [22] is based on the Camenisch-Lysyanskaya [10] signature scheme (CL signatures). In
terms of performance, Idemix and U-Prove credentials have an opposite trade-off: Idemix creden-
tials have constant size, but are considerably more expensive to present. The computational cost is
increased because the underlying signature scheme is constructed in a group where the strong RSA
problem (SRSA) is hard. While there are no guidelines for choosing parameters for the strong RSA
problem, they must be at least as large as RSA parameters, e.g., 3072 bits for 128-bit securityE] With
multiple attributes, and advanced presentation proof predicates, this cost quickly becomes too high
for lightweight provers such as smartcards [5].

There are also versions of the CL signature scheme defined in bilinear groups [IJ, [10], and Belenkiy
et al. [3] construct anonymous credentials that support delegation. However, the algorithms in this
setting are considerably more expensive, and the computational costs of creating a presentation proof

'Note the optimizations that apply to the RSA signing operation are available only to the issuer in Idemix, not the
user or verifiers, as in that case the group order is unknown and exponents must be large to satisfy privacy requirements.

and verifying it are still significantly greater than in U-Prove. The standardization of cryptographic
schemes based on SRSA and bilinear groups also lags further behind prime-order groups, presenting
another hurdle to deployment.

Given the trade-offs of each system, our design goal is a credential system with the strengths of
U-Prove (efficient presentation and standard parameters), and those of Idemix (constant credential
size and multi-show unlinkability).

2 Preliminaries

Notation. We use the notation x €p X or « & X to mean z is chosen uniformly at random from
the set X. The notation {x;}7, >] @, and [[] @; are shorthand for {x;}?,, D" z;, and [[;", 2
respectively. This shorthand is used only when the set, sum or product has a single index. The
notation & is used to denote the vector (zo,...,x,) or (z1,...,x,), where n and the choice of 0,1 will
be clear from the context.

We use games in the definition of MAC security and in proofs. A game G has a MAIN procedure
whose output is the output of the game. Pr[G] denotes the probability that this output is 1.

Zero-Knowledge Proofs. The protocols that comprise our credential system make use of zero-
knowledge (ZK) proofs to prove knowledge of, and relations between, discrete logarithms. We abstract
these protocols with a notation introduced by Camenisch and Stadler [I1]. Proofs are expressed with
the notation

PK{(z,vy,...) : statements about z,vy, ...}

where (z,y,...) are secrets (discrete logarithms) which satisfy statements. The prover is asserting
knowledge of (z,y,...), and all other values in the protocol are public.

There are many choices to implement these protocols, especially since the types of statements
required by our protocols are relatively simple (knowledge of a representation and proof of logarithm
equality). In particular, all the statements we prove can be captured by efficient sigma protocols.

For our application, we need a proof system that is zero knowledge and satisfies a weak form of
online extraction [I9]. We propose two approaches to instantiate the proof system. The first is to
use the Damgard protocol [16], which converts any sigma protocol into a three-round interactive zero-
knowledge proof of knowledge secure under concurrent composition. This protocol requires trusted
parameters, but this restriction can be omitted in the random oracle model. The second option is
to make the assumption that Fiat-Shamir based proofs [I8] in the random oracle model satisfy the
required extraction property. For more discussion, see Appendix

Parameter Generation. Some of the parameters of our constructions include a group element h,
chosen such that log, h is unknown, where g is a generator of the group. In practice, this can be done
by deterministically deriving h from arbitrary public information using a cryptographic hash function.
All protocol participants may then verify that h was derived correctly by repeating the derivation
process. One such derivation procedure is specified in [25]. Formally, we model this as a trusted setup
algorithm which generates g, h where log, h is unknown to all parties.

Cryptographic Assumptions. The decisional Diffie-Hellman problem (DDH) is the following: Let
G be a cyclic group of prime order p with generator g and let a, b, c €g IF); given (A = g%, B = g’ 0) €
G3, determine whether C' = ¢® or C' = ¢°. The DDH assumption is that this problem is intractable
for all polynomial time adversaries when p is exponential.

For some of our constructions we will also give security results in the generic group model (GGM).
Intractability results in this model essentially mean that problems are intractable provided the adver-
sary only performs a series of group operations. The GGM was first used by Shoup to prove lower
bounds on DDH and related problems [0 2§].

Concrete examples of groups that are thought to satisfy these assumptions are certain elliptic curve
groups over I, such as those standardized by NIST in [24].

3 MACGCs in Prime-Order Groups

In this section we present two MACs constructed using a cyclic group of prime order. Both schemes
use the same system parameters, created with the following algorithm.

Setup(1¥). Choose a group G with order p, where p is a k-bit prime. Let g and h be generators of G
such that log, h is unknown. The system parameters are params := (G, p, g, h).

In addition to the Setup algorithm, MACs have a key generation function KeyGen, a MAC function
MAC that produces an authentication tag on a message, and a verify function Verify that verifies a tag
is valid with respect to a key and message. While we do not include it as an explicit parameter, the
MAC and Verify functions are assumed to have params. This could easily be captured by including it
in the secret key; we omit it to simplify the descriptions. The message space of both schemes is Fy,
where n > 0 is a parameter.

We say that (Setup, KeyGen, MAC, Verify) is a secure MAC if it is existentially unforgeable under
chosen message attack, given a verification oracle (defined as uf-cmva in [I7]). We augment the
definition slightly to guarantee security even when the signer publishes some parameters iparams
associated with his secret key. In our application to anonymous credentials, ¢params are the issuer
parameters and we use them to implement an efficient presentation protocol.

Definition 1 (uf-cmva security). For a MAC (Setup, KeyGen, MAC, Verify), define Advumf;zrf“(k) =
Pr[G4 (k)], where G4 (k) is defined as follows:

uf-cmua uf-cmua

MAIN G4 (k)

uf-cmua

Q + 0; params & Setup(1%); (iparams, sk) & KeyGen(params)

(m, o) & AMac,Veriry (params, iparams)

return (m ¢ Q) A (Verify(sk,m,o) = 1)

Procedure MACg(m)

Q< QuU{m}
return MAC(sk, m)

Procedure VERIFY g (m, o)
return Verify(sk,m)

Then the MAC is uf-cmva secure if for all PPT adversaries A, there exists a negligible function v(-)
such that Adv" ™ (k) < v(k).

mac,A

A stronger security notion for MACs is sometimes used, where A may win by outputting (m, o),
even if m € @, provided o was not output by the MAC oracle for m. The schemes we present were
expressly designed not to provide this type of security, to allow tags to be re-randomized (or blinded)
and thus allow for more efficient zero-knowledge proofs of possession of a MAC.

3.1 MACgem

Our first MAC is a generalization of a scheme due to Dodis et al. [I7]. The original MAC works in a
cyclic group G of prime order p, and the secret key is a pair (zg,z1) € IFIQ,. To compute the MAC of
a message m € Iy, choose u €r G, and compute (u, u*17%0) as the tag. To verify a tag (u,u’) for a
message m, check whether ¢™#1 720 = /.

We extend the scheme to support n attributes, where the secret key becomes (zg,z1,...,Zn)
and tags are computed as (u,u®t™+-FInmnt0) Note that my,...,m, are n messages, each in F),
rather than the binary decomposition of a single message m. We refer to this scheme as MACggm
(the single message and binary message schemes were respectively called MACpprr and MACwhwpRF
in [17]). KeyGen has an optional step that is required only when MACggwm is used for keyed-verification
credentials.

In what follows (including for MACppy), we use m = (m1,...,my) to mean a list of n messages
in Fp, and use Hy(m) := xo + ¢ xim;.

KeyGen(params): Choose a secret key sk := & € Fg“. Optionally, compute (X; := h™', ..., X, :=
h*), and publish the issuer parameters, denoted iparams := (X1, ..., X,).

MAC(sk,): Choose u €r G\ {1} and compute the tag o = (u,u’), where v’ := u =),

Verify(sk, m, 0): Parse o = (u,u') € G?. Accept if u # 1 and v’ = u=("),

Dodis et al. [I7] prove that under the DDH assumption, MACggwm is suf-cma secure when n = 1. In
this definition, security is called selective unforgeability, because the attacker must select the message
he will use in a forgery before seeing any tags, and is not allowed verification queries. For our credential
system, however, we require uf-cmva security. (Selective unforgeability gives only limited protection
against misbehaving adversaries, and verification queries are inherent in anonymous credentials as the
adversary is always able to present credentials and observe the verifier’s reaction.)

We stress that Dodis et al. give no evidence that MACggm is not in fact uf-cmva secure. Rather,
it appears that their proof technique does not extend to also prove security under the stronger defini-
tion. A simple (but inefficient) reduction exists between uf-cma and suf-cma. A uf-cma adversary is
transformed into an suf-cma adversary by an algorithm which guesses the message to be forged by the
uf-cma adversary. The success probability of the new adversary is ¢/|M| where M is the message space
of the scheme, and e is the success probability of the uf-cma adversary. If the size of M is constrained,
the loss in security may be acceptable (i.e., it may be acceptable to use an suf-cma-secure scheme).
This may be of use in our application, in the very limited setting where credentials contain a small
number of attributes from a small set, known to the issuer, and where during presentation the user is
required to prove that all the attributes in his credential are within this set.

To ensure security in the more realistic case of unconstrained messages (attributes), and when
verification queries are allowed (as in a credential system), we prove that MACggm is uf-cmva secure
in the generic group model. Additionally, we include iparams in our analysis. A proof of the following
theorem is given in Appendix

Theorem 2. In the generic group model, a uf-cmva adversary attacking the MACgom scheme, suc-
ceeding with non-negligible probability, performs)(\/p) group operations.

3.2 MACppn

In this section, we describe another MAC construction, called MACppy. Recall that params are
created by Setup(1¥) and are assumed to be available to all algorithms, that 7 = (mq,...,my,) is a

list of n messages in [Fj,, and that the optional step in KeyGen is required only when MACppy is used
for keyed-verification credentials.

KeyGen(params): Pick z,x0,v0 .-, Tn, Yn & F,. Output sk := (Z, ¢, z). Optionally, compute X; :=
h*i and Y; := h¥ for each i € {1,...n}, and publish iparams := ()Z,

MAC(sk,m): Pick r il F, and set oy := g, 0, = g e (™) oy = g™y and o, := ¢*". Output
(O‘w,O’x,Uy,O’Z).

Verify(sk,m,0): Parse 0 = (04, 04,0y,0,) € G1. Check that o, # 1, 0, = agz(ﬁ), oy = aﬁfy(’ﬁ), and

Z . Accept if these checks pass and reject otherwise.

o, =0;,

Theorem 3. If the DDH assumption holds in G, then MACppy is uf-cmva secure.

A proof of this theorem is given in Appendix Our proof takes inspiration both from the
dual system technique introduced by Waters [32], and from the twin Diffie-Hellman techniques of
Cash, Kiltz, and Shoup[12]. Roughly, we use the twin DH approach to argue that we can switch to a
verification procedure which does not require the full discrete logarithms #, 7/, z. As in [12] this allows
us to reduce to DDH even in the presence of this verification oracle. Then we use the dual system
approach to gradually add noise into the MACs, while still ensuring that our reduction can verify that
the adversary’s forgery is correctly formed. Finally we arrive at a game where part of the secret key
is statistically hidden, so we can guarantee that the adversary can produce a correctly formed forgery
only with negligible probability.

4 Keyed-Verification Credentials

In this section we first describe the set of algorithms that form a keyed-verification credential scheme.
We then informally describe the desired security and privacy properties (formal definitions are in
Appendix , present constructions of keyed-verification credentials based on MACggm and MACppy,
and prove our MACppy-based construction secure. The proof of security for our MACggm-based
construction is a trivial simplification of the MACppp-based proof, so we omit it.

A keyed-verification credential system consists of the following algorithms:

Setup(lk) defines the system parameters params. We will assume that params is available to all
algorithms, and that all parties have assurance it was created correctly.

CredKeygen(params) is run by the issuer on input params to generate a secret key sk and (public)
issuer parameters iparams.

Blindlssue(sk, S) <+ BlindObtain(iparams, (mq,...,my)) is a potentially interactive protocol where a
user can obtain a credential on attributes (mq,...,m,) from an issuer who is only given some
subset S of those attributes.

Show(iparams, cred, (m1,...,my), @) <> ShowVerify(sk, ¢) is an interactive protocol between a user
and a verifier. Show is run by a user to generate a proof of possession of a credential cred
certifying some set of attributes (mq,..., my) satisfying a set of statements ¢ under the key
corresponding to iparams, and ShowVerify is run by the verifier in possession of sk to verify that
the user has a credential for attributes satisfying the statements ¢.

While we defined our presentation protocol in terms of a single credential, we could generalize our
definitions and constructions to allow the user to prove relationships between attributes across multiple
credentials that he owns. We chose the above variant because it allows for fairly simple definitions,
yet still allows us to consider properties of a credential scheme as it would be used.

Note that the standard approach of requiring that the Show protocol be a proof of knowledge of a
credential cannot be directly applied here because the verifier must know the issuer secret key in order
to verify the credential. This is somewhat similar to a designated verifier proof [23], but it has the
additional complication that the statement (validity of the credential) depends on the verifier’s secret
key.

4.1 Security properties

A keyed-verification credential system should have the following security properties (defined formally
in Appendix . Informally, correctness requires that every credential generated by Issue for attribute
set {m1,...,my} can be used to generate a proof for any statement satisfied by that attribute set.
Unforgeability requires that an adversary cannot produce an accepting proof for a statement ¢ that is
not satisfied by any of the attribute sets for which it has received credentials. Anonymity requires that
the proofs produced by Show reveal nothing more than the statement being proved. Blind issuance
requires that Blindlssue, BlindObtain define a secure two-party protocol for generating credentials on the
user’s attributes. Finally, key-parameter consistency requires that the probability that an adversary
can find two secret keys that correspond to the same set of issuer parameters is negligible; this
guarantees that the issuer cannot use different secret keys with different users and thus compromise
their anonymity.

4.2 Keyed-verification credentials from MACggy

We now give a construction of a keyed-verification credential system from MACgem = (Setupggems
KeyGengem, MACggm, Verifygonm)- We define the following setup algorithms for the credential system.

Setup(1¥): Output (G,p, g, h) & Setupgem (1F).

CredKeygen(params): Parse params as (G, p, g, h). Compute the MAC keys as ()2, X) & KeyGenggm (params).

Next, commit to the secret xy by picking g & F, and forming commitment C, = g*° h¥o. Out-
put iparams = (Cy,, X) and sk = (¥, Zo)

Issuance. To issue a credential with the n attributes (ma,...,m;) € F} all of which are known to
the issuer, the issuer computes (u,u’) <+ MACggm(sk, (m1,...,my,)) and returns (u,’) and 7 to the
user, where

n
7= PK{(z0,21,...,Zn, 7o) : ' = u™ H(uml)xl A Cpy = g*0h0

=1

A X;=h%Vie{l,...,n}}

The proof 7 proves that (u,u’) is a valid MAC with respect to the system and issuer parameters. If
this proof verifies, the user accepts and outputs (u,w’). Otherwise it rejects with output L.

To alternatively keep some subset H C {1,...,n} of the attributes hidden from the issuer, we can
proceed as follows: The user generates an ElGamal keypair (d,~ := ¢g%), then creates an encryption of
g™ for each hidden attribute m; as E; = (¢, ¢g"™~"™) for all i € H, using r; €r F),. The user sends

these ciphertexts to the issuer, along with a proof of knowledge of {r;,m;};cy. The issuer chooses
b €r Fp. It then computes u = ¢, and uses the homomorphic properties of ElGamal to generate an
encryption E, of u’ = g*® []}(g™)"i, and to randomize this encryption to obtain E!, (by multiplying
with an encryption of 0 using randomness ' €g F)). It sends u, E!, to the user and gives a proof that
these values have been generated correctly with respect to (Cy,, {X;}T) (i.e. a proof of knowledge of
the appropriate {x;}{, Zo, b, and randomizing factor r’). If the proof does not verify, the user outputs
L. Otherwise, the user decrypts E!, to get «’, and outputs (u,u’).

Credential translation. In addition to proving that the ciphertexts E; are well formed, the user
can include proofs about the attributes the ciphertexts encrypt. For example, the user may prove that
some of the attributes m; are the same as in another credential, such as one that is more expensive
to use (e.g., an Idemix credential), or one that cannot be presented multiple times unlinkably (e.g., a
U-Prove credential).

Credential presentation. Here we present a construction for Show and ShowVerify. The details of
(one possible way of) instantiating the proof of knowledge are given in Appendix

We focus on how to show that the credential certifies attributes matching those in a given set
of commitments. Once commitments have been established, the user can prove a large variety of
statements about the committed values, using e.g. the techniques in [7]. If some of the attributes
are being revealed to the verifier, the protocol can be simplified in a straightforward way, with the
user sending m; in place of C),, and the verifier computing u*™ directly. The proof of knowledge
involving Cy,, is also omitted. This reduces the computational costs for the user.

Roughly, the protocol proceeds as follows: The prover forms Pedersen commitments to the MAC
and the messages, and proves that these were computed correctly. Using the homomorphic property
of the commitments, the verifier is able to recompute the MAC and compare it to the committed
value. However, because of the randomness in the commitments, there will be some additional terms
in the MAC the verifier computes; the user will use X from iparams to compute exactly those values
necessary to cancel these terms, and again prove that these values are correctly computed.

More formally we have the following algorithms:

Show(params, iparams, ¢, cred, {m;}"): The prover chooses r,z1,...,2, €r F, and parses cred
(u,u'). It then computes {Cy,, := u™h*} | and Cy := u'¢g" and sends o = (u, {Cp, }7, Cu)
and a proof of knowledge 7, which it computes as

m=PK{(m,2, —r) : ¢(m1,...,mp) =1 A Cp, =u™h* Viec{l,...,n} ANV = g_rHXizi}.
i=1

ShowVerify(params, iparams, ¢, {z;}}', z,0,m): The verifier parses 0 = (u, {Cp,}7, Cy), computes V

as . N
V = :umo Hiil sz ’
Cy
and verifies the proof 7 using V. If the proof is valid, it outputs (Cy,,, ..., Chn,), and otherwise
it outputs L.

Security. To see that the MACggm protocol works when n = 1 and both parties are honest, note
that the verifier computes
lezluxo um1x1 hl‘l 21 ul‘O

_ _ _ Tr121 ,—T __ z1 -
V= Cy o ymiz1tTo gr =h 9 _Xl g

9

which matches the statement in the proof w. The security of the credential scheme is obtained as a
special case of the MACppy-based construction (as this is a strictly simpler construction).

4.3 Keyed-verification credentials from MACppy

We now give a construction of a keyed-verification credential system from MACppny = (Setupppn,
KeyGenppy, MACpph, Verifyppy). We define the following setup algorithms for the credential system.

Setup(1%): Output (G,p, g, h) & Setupppp (1¥).

<y
IS X

CredKeygen(params): Compute ((X,Y), (Z,7,2)) & KeyGenppy(params). Pick z, g, Z €r F), and
form commitments C, := g“h®, Cyo = g% h¥, and C, := ¢*h*. Output iparams = (X', }7, Cros
Cyo,C>) and sk = (7,9, 2, 2,7,).

Issuance. To issue a credential with the attributes (mj, ..., m;,) € Fy all of which are known to the

. . $
issuer, the issuer chooses 0 = (04, 04,0y, 0) < MACppH(sk, (m1,...,my)), and returns o to the user
with a proof 7, where

n n
m:=PK{(Z,9,2,2,9,2) : 0, = 0% H(mei)xi N oy =0 H(ag‘i)yi N 0, =0y°
1 1
A Cry = g°h* ACyy = gh¥ A C, = g°h*
AXi=h% A Y;=hYvie{l,... n}}

The proof 7 proves that the credential is a valid MAC with respect to the system and issuer parameters.
If this proof verifies, the user outputs o; otherwise it outputs L.

If some of the attributes must be hidden, we can first proceed as we did with MACggm, to the point
where the user sends the ciphertexts F; and proofs of knowledge of {r;, m; };c3 to the issuer. The issuer
now chooses b €r F,,, computes o, = P, o, = oZ, and uses the homomorphic properties of ElGamal
to generate an encryption E, of o, = g*™ []}(g™)"" and an encryption E,of oy = g™ TT7 (g™i)bvi. Tt
then randomizes these to obtain E/, and Ezl/ (by multiplying with an encryption of 0 using randomness
2,7y €r Fp respectively). It sends (0w, 0., B, E}) to the user and gives a proof that these values
have been generated correctly with respect to ()_f Y, Cao, Cyy, Cz) (i-e., a proof of knowledge of the
appropriate (Z,¥, 2, Z,9, Z,b,7,ry)). If the proof does not verify, the user outputs L. Otherwise, the
user decrypts E! and E?’J to get o, and o, respectively, and outputs o = (o, 04, 0y, 02).

As with the MACggm scheme, credential translation is also possible with the MACppH scheme.

Credential presentation. Here we present a construction for Show and ShowVerify. Again, we focus
on how to show that the credential certifies attributes matching those in a given set of commitments.

Show(params, iparams, ¢, cred, {m;}}"): The prover chooses r, 7,7y, 21, ..., 2, €r Fp and parses cred =
(0w, Oz, 0y,02). It first randomizes the credential by computing oy, = oy, 0, = 03, 0y = 0, and
0, = 0y, and then computes

n n

{Cmy =0y h* Yy, Cop i= 029", Cop i=0yg"™, Vpi=g ' HX.Zi and Vj, := g~ " HYIZZ

7)
i=1 i=1

10

It then sends o = (0w, 0, Cy,, Co,, Vi, Vi, {C,; }i) along with a proof of knowledge 7, which it
computes as

m=PK{m, 2, —ry,—ry) : o(m1,...,myp) =1 N Cp, =o'k Vie{l,... ,n}

n

n
NVe=g o [[X7 A V=g][]V}
i=1 =1

ShowVerify(params, iparams, ¢, {x;, y;}1', z, 0, m): The verifier parses 0 = (0w, 0y, 02, Vi, Vy, {Cm; }1 Co,
Cy,,) and verifies that
= 40-5’0 H?:l Cﬁ{i ow H?:l C7ynii
Co, Co,

It then verifies the proof w. If the proof is valid and if o, = o7 it accepts and outputs
(Ciys -+, Ch,,), and otherwise it rejects and outputs L.

Vaz and Vy =

Security. We give a formal proof of the following theorem in Appendix [C]

Theorem 4. If DDH holds and the proof system is a zero-knowledge proof of knowledge satisfying the
property described in Appendz’x@ the above algorithms (CredKeygen, Issue, CredVerify, Show, ShowVerify,
Blindlssue, BlindObtain) make up a secure keyed-verification credential system.

Intuitively, credential unforgeability follows from the unforgeability of the MAC (which is based on
DDH) and extractability of the proofs; credential anonymity follows from the zero knowledge property
of the proofs; blind issuance follows from zero knowledge and extractability of the proofs and the IND-
CPA security of the encryption scheme (which, for ElGamal, follows from DDH); and key-parameter
consistency follows from the binding property of the commitment scheme (which, for Pedersen com-
mitments, follows from the discrete log assumption, which is implied by DDH). In Appendix @] we
discuss several possible instantiations of the zero-knowledge proof of knowledge.

5 Efficiency

In this section we compare the efficiency of our new schemes to U-Prove and Idemix. We focus on
the computational cost of creating a presentation proof, as this operation typically must be done
by the largest range of devices. We consider the MACggm- and MACppn-based schemes, where the
proof system is implemented with Fiat-Shamir (full details of MACggm are given in Appendix [E} and
MACppH is very similar). Using the proof system from [16] will have essentially the same computational
cost. Complete descriptions of Idemix and U-Prove are available in [22] and [25] respectively. As the
recent scheme of Baldimtsi and Lysyanskaya [2], is strictly less efficient than U-Prove, we omit it from
our comparison. For the bilinear CL signature schemes [I} [10], detailed specifications and paramter
choies are not available; we made a rough estimate assuming the scheme was implemented with a
256-bit elliptic curve group, and that a pairing requires 1ms on our benchmark hardware. We ignored
the cost of arithemtic in the target group (i.e., Gp the range of the pairing).

Credential Size. Table [I| shows the size of a credential in all four schemes, both asymptotically,
and for a concrete choice of parameters. The parameter s is the number of times the credential may be
shown unlinkably (which is relevant for U-Prove). The size only counts the cryptographic components
of the credential, the metadata and attribute values are assumed to be the same for all systems. The
overhead of MACggm is the lowest, followed by MACppy, which is the size of a single U-Prove token.
The size of SRSA group elements makes Idemix credentials larger than MACggm and MACppy, and
Idemix credentials are smaller than U-Prove credentials once s > 5.

11

Credential size for s shows, n attributes

Asymptotic Concrete (in bits)
U-Prove O(s) 10245
Idemix O(1) 5369
Bilinear CL O(n) 512n 4+ 768
MACgem O(1) 512
MACppH o(1) 1024

Table 1: Comparison of credential sizes of U-Prove, Idemix, MACggm and MACppy. The number of times the
credential may be shown is denoted s. U-Prove, bilinear CL, MACggm and MACppy use a 256-bit elliptic curve
group. Idemix uses a 2048-bit modulus.

Computation Cost for Presentation. We estimate the cost of creating a presentation proof and
compare the four schemes. Our estimate is formed by counting the number of multi-exponentiations
required to create a presentation proof. We use the notation f-exp to denote computing the product
of ¢ powers. To realistically estimate the performance of Idemix, the bitlengths of the exponents
must also be considered, so we use the notation f-exp(by,...,bs) to denote the product of ¢ powers
when the bitlengths of the exponents are by, ...,bs. These bitlengths are calculated from the Idemix
specification [22]. For U-Prove, MACggm and MACppy the bitlength of the exponent is always the
length of the group order (256-bits in our comparison).

Table [2| gives the number of multi-exponentiations in terms of three parameters: n is the number
of attributes in a credential, r is the number of revealed attributes in a presentation proof, and c is the
number of committed attributes. (As discussed in section we focus on the part of the protocol which
proves that certified attributes match those in a set of commitments; the rest of the presentation
is essentially the same in all of the schemes we consider. We differentiate between revealed and
committed attributes because one can simplify the protocols in the case where attributes will be
directly revealed.) For each committed attribute m, a separate Pedersen commitment is output. As
a further comparison, Table 2 includes the time required to compute these multi-exponentiations for
a given choice of parameters (n,c,r). Our multi-exponentiation implementation in G' uses the NIST
256-bit elliptic curve, and for Idemix uses the parameters in [22]. The benchmarks were computed on
an Intel Xeon CPU (E31230, quad core, 3.2 GHz) on an HP 7210 workstation running Windows 7
(64-bit). The times are in milliseconds, and are the average of 100 runs.

The times given in Table [2| show that the new schemes are competitive with U-Prove, especially
when most of the attributes are committed, and that they are much faster than Idemix. In particular,
in the first benchmark (when (n,c,r) = (10,2,2)), MACgem is 6.28 times faster than Idemix, and
MACppH is 4.7 times faster than Idemix. Compared to U-Prove, MACggm and MACppy are 3.4 and
4.5 times slower, much less than the 21.2 times slowdown for Idemix.

In the second benchmark, when (n,c,r) = (10, 10,0), the performance of U-Prove, MACggm and
MACppH are very similar. MACggm and MACppn are only 1.04 and 1.5 times slower than U-Prove.
Idemix is 18.2, 16.3 and 12.5 times slower than U-Prove, MACggm and MACppy, respectively.

There is a large difference between the two benchmarks for U-Prove, Idemix and bilinear CL, but
only a small difference for MACggm and MACppy. This is because the presentation protocols for the
new schemes create commitments for all unrevealed attributes, so any change in the ¢ parameter will
not affect their performance. In the first set of benchmarks, with two fewer unrevealed attributes,
MACgem and MACppy are slightly faster, because they save computing two commitments and proving
knowledge of the openings. Designing a presentation protocol for MACggm which uses a multicommit-

12

Time (in ms) when (n,c,r) =

Number of exponentiations (10,2,2) (10,10, 0)
U-Prove 1 (n =7+ 1)-exp, 2¢ 2-exp 3.38 12.43
MACgem 3 1-exp, 1 (n —r+ 1)-exp 11.42 13.93
2(n —r) 2-exp
MACppy 6 1-exp, 2 (n —r + 1)-exp 15.31 18.10
2(n —r+1) 2-exp
Idemix 1 1-exp(2048) 71.72 226.79

¢ 2-exp(256, 2046)
¢ 2-exp(H92, 2385)
1 (n — r + 2)-exp(456,3060,592,. . . ,592)
Bilinear CL. 3 + n pairings 20.98 28.32
(3+n) l-exp, 2¢ 2-exp

Table 2: Comparison of estimated presentation proof generation cost. U-Prove, bilinear CL, MACggm and
MACppy use 256-bit elliptic curve parameters, and Idemix uses a 2048-bit modulus.

ment to all unrevealed attributes (as U-Prove and Idemix do) is an interesting open problem — this
would close the performance gap when compared to U-Prove.

Discussion. These performance estimates show that the new schemes do provide a considerable
performance advantage when compared to Idemix, and a small decrease compared to U-Prove. The
other protocols, namely issuance and verification, have similar relative performance (for the user and
issuer). In the case of issuance, our new schemes are expected to have slightly higher computational
cost than issuing a single U-Prove token, but with one less round of interaction (when implemented with
Fiat-Shamir proofs). When issuing multiple tokens, MACggm and MACppy have the best performance.
In all protocols, the cost of verification is within a small factor of the cost of proof generation.

We note some limitations of our comparison. First, the comparison is limited to applications
where the issuer and verifier share a key; otherwise MACggm and MACppy are not applicable. The
parameter set used for Idemix is not believed to provide 128-bit security, so this favors Idemix in the
comparison. For RSA, a 3072-bit modulus is required for 128-bit security, and for strong RSA we
are unaware of any published guidance on choosing the modulus size. (Idemix would need at least
a 3072-bit modulus for 128-bit security.) Another limitation is our choices of (n,¢,r), which will be
different across applications. Once an application is fixed, optimizations may be possible, such as
creating a single commitment to multiple attributes, or re-using the same commitment in multiple
presentations (e.g., when the commitment is used as a pseudonym).

References

[1] M. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA. Proceedings of SCN 2006, LNCS 4116 (2006), 111-125.

[2] F.Baldimtsi and A. Lysyanskaya. Anonymous Credentials Light. Proceedings of ACM CCS 2013, ACM Press, (2013).
To appear.

[3] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya and H. Shacham. Randomizable proofs and
delegatable anonymous credentials. Proceedings of CRYPTO 2009, LNCS 5677, (2009), 108-125.

[4] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. Proceedings of CRYPTO 1992, LNCS 740 (1993),
390-420

13

[5] P. Bichsel, J. Camenisch, T. Grof}, and V. Shoup. Anonymous Credentials on a Standard Java Card. Proceedings
ACM CCS 2009, ACM Press, (2009) 600-610.

[6] D. Boneh. The Decision Diffie-Hellman Problem. Proceedings of ANTS-I1II, LNCS 1423 (1998), 48-63.
[7] S. Brands. Rethinking Public Key Infrastructures and Digital Certificates. The MIT Press, August 2000.

[8] J. Camenisch and A. Lysyanskaya. An Efficient System for Non-Transferable Anonymous Credentials with Optional
Anonymity Revocation. Proceedings of EUROCRYPT 2001, LNCS 2045 (2001), 93-118.

[9] J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols. Proceedings of SCN 2003, LNCS
2576 (2003), 268—289.

[10] J. Camenisch and A. Lysyanskaya. Signature Schemes and Anonymous Credentials from Bilinear Maps. Proceedings
of CRYPTO 2004, LNCS 3152 (2004), 56-72.

[11] J. Camenisch and M. Stadler. Proof Systems for General Statements About Discrete Logarithms. Technical Report
TR 260 (1997), Institute for Theoretical Computer Science, ETH Zurich.

[12] D. Cash, E. Kiltz, and V. Shoup. The Twin Diffie-Hellman Problem and Applications Proceedings of Eurocrypt
2008, LNCS 4965 (2008), 127-145.

[13] D. Chaum. Security without Identification: Transaction Systems to Make Big Brother Obsolete. Communications
of the ACM 28(10) (1985), 1030-1044.

[14] J. Chen, H. Lim, S. Ling, H. Wang, and H. Wee. Shorter IBE and Signatures via Asymmetric Pairings. Proceedings
of Pairing 2012, LNCS 7708,(2012), 122-140.

[15] R. Cramer, R. Gennaro, and B. Schoenmakers. A Secure and Optimally Efficient Multi-Authority Election Scheme.
Proceedings of EUROCRYPT’97, LNCS 1233, (1997), 103-118.

[16] 1. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. Proceedings of EUROCRYPT
2000, LNCS 1807 (2000), 418430.

[17] Y. Dodis, E. Kiltz, K. Pietrzak, D. Wichs. Message Authentication, Revisited. Proceedings of EUROCRYPT’12,
LNCS 7237 (2012), 355-374.

[18] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Problems.
Proceedings of CRYPTO 1986, LNCS 263 (1987), 186-194.

[19] M. Fischlin. Communication-Efficient Non-Interactive Proofs of Knowledge with Online Extractors. Proceedings of
CRYPTO 2005, LNCS 3621 (2005), 152-168.

[20] M. Gerbush, A. Lewko, A. O’Neill, and B. Waters Dual Form Signatures: An Approach for Proving Security from
Static Assumptions. Proceedings of ASIACRYPT 2012, LNCS 7658 (2012), 25-42.

[21] O. Goldreich. The Foundations of Cryptography - Volume 2 Basic Applications. Cambridge University Press, New
York, 2004.

[22] IBM. Specification of the Identity Mixer Cryptographic Library (Revised version 2.3.0). IBM Research Report RZ
3730, April 2010.

[23] M. Jakobsson, K.Sako, and R. Impagliazzo. Designated Verifier Proofs and Their Applications. Proceedings of
EUROCRYPTY96, LNCS 1070 (1996) 143-154.

[24] NIST. FIPS 186-3: Digital Signature Standard (DSS), Federal Information Processing Standards Publication (2009).

[25] C. Paquin and G. Zaverucha. U-Prove Cryptographic Specification V1.1 (Revision 2). April 2013. Available online:
www.microsoft.com/uprove,

[26] C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology 4 (1991), 161-174.

[27] C. Schnorr. Security of Blind Discrete Log Signatures Against Interactive Attacks. ICICS 2001, LNCS 2229 (2001),
1-12.

[28] V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. Proceedings of EUROCRYPT’97, LNCS
1233 (1997), 256-266.

[29] Y. Tsiounis and M. Yung On the security of ElGamal based encryption. Proceedings of PKC 1998, LNCS 1431
(1998), 117-134.

[30] N. Smart. The Exact Security of ECIES in the Generic Group Model. Proceedings of Cryptography and Coding,
IMA Int. Conf., LNCS 2260 (2001), 73-84.

[31] R. Steinfeld, J. Pieprzyk and H. Wang. How to strengthen any weakly unforgeable signature into a strongly
unforgeable signature. Proceedings of CT-RSA 2007, LNCS 4377 (2007), 357-371.

[32] B. Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. Proceedings
of CRYPTO 2009, LNCS 5677 (2009), 619-636.

14

www.microsoft.com/uprove

A MAC Security

A.1 Security of MACgem

In this section we give the proof of Theorem [2, that MACggm is uf-cmva secure in the generic group
model. The proof is for the message space [F),, however it may easily be generalized to the message space
;. To simplify notation, we will define the secret key as sk = (y,x,7), and the issuer parameters as
iparams = (Cy, h*), so that a tag for message m is of the form (u,u¥"*™). Since the system parameter
Cy hides y perfectly and unconditionally, we omit it from this analysis.

Proof. Let g be a fixed generator of a generic group G, and let G be written multiplicatively. We
then represent elements a € G as log,a € F;,. We encode elements of G' as random strings in a set
S € {0,1}* with the function ¢ : F, — S (i.e., ((log, a) gives the encoding of a € G as an element of
S). The choice of S is not important, provided |S| > g.

Let A denote a uf-cmva attacker. A refers to elements of G only using their representation as
elements of S. The attacker refers to elements in the message space directly.

We describe an algorithm B, which interacts with A, implementing oracles for group operations,
as well as MAC and verification queries. B chooses the secret values (z,y,h) €r F 2. The inputs B
gives A are the system parameters: g, H = g, and X = H® = ¢"®, encoded as ¢(1),((h), and ¢(zh).

B maintains a list L of polynomials in F,[Z,7, h,Z1,... . Zq.], where ¢ is the number of tag queries
made by A. The indeterminates (Z,%, h, 71, . . . , Zg,) correspond to the secrets (z,y, k) and the random
values z; used to create tags. Each polynomial in L corresponds to a group element at each step of A’s
computation. The list contains pairs (F}, (;) € Fp[Z, Y, h, 21, ..., 2] x S. A second list) maintains
the set of queried messages. Both lists are initially empty.

B counts the number of group oracle queries by qg, and the number of tag queries with ¢;, both
initialized to zero. The number of verification queries are not counted (but is assumed to be polynomial
in the security parameter). The total number of group operations is ¢ = qg + 2¢, since each tag query
requires two group operations to answer.

Group operation. A provides input ((;, ¢, =) where £ corresponds to multiply/divide, and 4, j <
qg- Then B sets F,, = F; £ F;. If F,, = F; for { < qq, B sets (4, = (¢, otherwise B sets (4, €r S
distinct from (o, ..., (4—1. B adds (Fy,, (4;) to L and outputs (4, to A. Finally, B increments gg.

MAC operation. On the i-th query, A provides input m; € F,. B sets Fy, = %z and (4, €g S.
Then B computes Fy,+1 = Zi(miZ+7Y) = Zimi+7z;y. If Fy,+1 = Fy for £ < q¢, then B sets (4, +1 = (o,
otherwise B sets (g,+1 €r S (distinct from (o, ..., (). The output to A is ({4, (qe+1). Finally B
adds two to qg, one to q¢, m; is added to Q, and (Fyg,(4s), (Fyoi1s Coeyr) are added to L.

Note that we do not assume each MAC query is distinct: A may request multiple tags for the same
m. A may also implement the re-randomize algorithm by repeated calls to the group operation oracle.

Verify query. The input from A is (m,(, (") € F, x S x S. If either of ¢, ¢’ are not in L, return
“invalid”. Then ¢ = ¢; and ¢’ = (; for some 7,5 < qg. If

F-(@m +7) = F

then return “valid”, and otherwise return “invalid”. Note that this operation does not change any of
B’s state, it only lets A query L.

At any time during the game, the polynomials in L are of degree (in T, ¥, Z;) at most two: G-
queries compute F; & I, which does not increase degree, the initial polynomials have degree one, and
MAC queries add a polynomial of degree 1 and one of degree 2 to L.

15

After ¢ queries (¢ = gg + 2q¢), A outputs (m, (, (") for some m ¢ @, and (¢, (") = ({;, ¢;) for some
1,7 < q. If A succeeds,

F; - (mT +79) = F;, or equivalently, F; - (mZT+7) — F; =0. (1)

Given the operations available to A, we have that

qt qt
Fj=a(@h) +> bZi+ Y cm(mT+7),

i=1 =1

where Z; indeterminates representing the random values chosen in each MAC query, and a, b; and ¢;
are integers. Note that the only way we can have F; = F; - (mz +7) for such an Fj is if F; = f; =0 or
if m = my for some my € my, ..., my,. In either case this will not be a valid forgery. (In the first case
the forgery will be rejected by Verify, in the second case this is not a new message.) Therefore, the
polynomial in is a non-zero polynomial of degree 2 (in 7,7, h,%;), and the adversary will succeed

in his forgery only if the evaluation of this polynomial on the randomly chosen (x,y, 21,. .., 24,) is 0.
(Event (1).)

If, for a particular choice of (z,y, h, z1,...,24) € IF;’)H“, we have Fj(x,y, h, 21,...,24) = Fj(z,y, h,
Z1,...,%q), but Fj # Fj, the simulation is invalid because B presented two elements to A as distinct,

but they were in fact equal. This condition is described as:
Fi(xz,y,h,z1,...,2¢) — Fj(z,y,h,21,...,24,) =0. (2)

Clearly, this second condition can only hold for an unfortunate random choice of (x,y, h, 21, ..., 24,),
and cannot be influenced by A. The success probability of A is bounded by the probability of events

and .
For fixed i, j < ¢q the Schwartz-Zippel lemma tells us that the probability that each of or
holds is 2/p, since the degree of the polynomial in each case is at most 2. Therefore the probability

over all pairs (i,7) is
q\ 4
2) p

Therefore A’s success probability after ¢ queries is at most

=)

2
<A
p
To have a constant € > 0 requires €(,/p) operations in G. O
A.2 Security of MACDDH
Proof. Let A be a PT adversary playing game fo_cmva(k) that makes ¢,, MAC queries and ¢, VERIFY

queries, where ¢, = ¢ (k) and ¢, = g, (k) for polynomials ¢,,,(-) and g, (-). We provide a PT adversary
B and negligible functions vy(-) and v(+) such that

AdviEA (1) < quv(k) + g AdVEE (k) 4+ v (k)

mac, A

16

MAIN |G (k)| / Gi'(k) / Gi(k)

(m*, o) % AMAC’VERIFY((p,G g, h), iparams)

b ((0,0%)* = (0,0L) TN A (00, o,) HV0T) — (680,) H=0R)) A (0, # 1),
b ((0x = 0™ ") Aoy = 00" ™) A (0 = 07) A (0 # 1))
6 return ((m* ¢ Q) A D)

1 (p,G,g,h) <— Setup(lk); Q< 0; z0,y0, -, T, Yn, 2 ﬁ Fp, s, t,v0,...,0p ﬁ F,

2 sk+ ((p,G,g,h),s,t,U,2,9,2), | sk + ((p,G, g,h),f,gj’,z)‘

3 X —gthvl Yi=9"X,° | X;=h"Y; =h¥ [foriel,... n;iparams < (X,Y),
4

5)

Procedure MACy(m) /) Gcnna(E) /

Q « QU {m}
By e [T 0, o]
oy (_ngy(fn’), oy ngy(fn')O.;s 0, — gzr, o, (gzh—t)r

9 return (0w, 04,0y,02)

Procedure MACg (m) / Gi(k) /|G (k)

I g, ()

Procedure VERIFY 4 (m,0))|/ Gg (k) / G{(k)

10 |return ((0p = oi* ™) A (0, = aij“ﬁ)) Ao, =02) A (0w £ 1)) |,
return ((0,0%)* = (0,0%) 7)Y A (7, # 1)

O'y(*g

Figure 1: Games for the proof of Theorem [3] The boxed game uses the boxed code and the other games do not.

for all k£ € N, from which the theorem follows. To do this, we build B, vy(-), and v(-) such that for all
k € N we have

[Guf cmva(k)] - PI‘[Gg(lﬂ)] < quo(k) (3)
Pr[Gy (k)] — Pr[G{ (k)] < gnAdvE" (k) (4)
Pr(G{ (k)] < v(k) (5)

We then have
Advumf_a(éljga(k) Pr[Guf cmva(k)]
= (Pr[Gl cova (F)] — Pr[Gg (K)]) + (Pr[G' (k)] — Pr[G! (k)]) + Pr[G{ (k)]
< quo(k) + gmAdvE" (k) + v (k).

Equation

17

To first prove Equation [3|, we consider a modified version of G4

ftemva(k) as an intermediate game:

Let 8 = log,(h). Rather than pick & and ¢ randomly, pick zf,y;, v; & F, and s,t & F, and set
x =, /B +v; and y; 1= y;/B — sx; for all i, 0 < ¢ < n; furthermore, rather than pick z Ll F,, pick
2 & F, and set z := 2’/3 —t. Construct iparams as X; = h* = gx'/ih“i and Y; = h¥ = gini_s. In the

MAC oracle, use r := /3 for 1’ & I, rather than r & F,. These values are distributed identically to
the values used in G#. (k) so the distribution in this modified game is identical. Furthermore, we
have

oy=g =g""=n"

o ngz(m) — gT"/B(Hz/(ﬁ)/ﬁ'*‘Hv(ﬁ)) — (gHzl(m)hHU(m))T,
O'?/J _ ngy(T?L) _ gr’ﬁ(Hy/(ﬁ”L)/B—st(ﬁ’l)) _ gr'Hy/(ﬁ)O_;s

J; _ grz _ gr’ﬁ(z’/ﬁ—t) _ (gz’h—t>r”

so the MAC responses in the modified game are also identical to those in G§ (k).

To address the changes in verification, we proceed through a series of hybrids: define Hf(k) to be
a game in which the first ¢ VERIFY queries are answered using Verify, the last ¢, — ¢ are answered
using the verification procedure defined in G{ (k) (referred to in the sequel as SimVerify), and the
verification at the end is considered the ¢, + 1st query; then H(‘;v +1(k) is the intermediate game and
Hg (k) is G{'(k). To transition from HZ (k) to HA | (k) for i < g, + 1, we therefore need only consider
the i-th verification query (m, o) (as the two games are identical both before and after this query), and
the probability that when sk = (¥, ¥, 2) are generated as above, Verify(sk,m, o) # SimVerify(sk’, 1, o)
for sk’ = (s,t,9, 7,9, 2'); i.e., that HA | (k) and H# (k) produce different responses on the i-th query.
We refer to this event as E;, and show that Pr[E;] < vy(k) for a negligible function vy (k).

If Verify(sk,m, o) = accept then

H, (ﬁ)/ﬁ)g(ert)

so SimVerify(sk’, m, o) = accept. That means E; can only happens if SimVerify(sk, 1, o) = accept but
Verify(sk,m, o) = reject. We will show that this occurs with only negligible probability. Consider R,,
Ry, and R, such that o, = Rxag"(ﬁl), oy = Ryagy(m), and o, = R,07; then Verify accepts if and only
if R, = Ry = R, = 1. If SimVerify(sk’, M, o) = accept then, since Hy(m) + sHy(m) = H,(m)/ and
2 = B(z +t), we have

(0y03)" = (001,) ()
(Ryo il RigeH= M) — (R.o%0t,) 07
(R;Ryggy(m)+5Hw(m))z’ _ (RszUH)Hy’(m)
(R Ryotv /P8ty _ gty () (40, (%)

Ow ==

(RiRy)Z, _ Rfy’("ﬁ)

(R:R,) Blatt) (2O H, () Rfy'(m)o Z+t)H, (17)

18

As up until the i-th query A has never seen the values of 2’ and 7/, however, it has at most a negligible
probability (in fact, probability 1/2%) of coming up with R,, Ry, and R, that satisfy this equation
but such that it is not the case that RjR, = R, = 1. Similarly, we can argue that the value of
s is information theoretically hidden from A’s view so far, so the probability that R,*R, = 1 but
it is not the case that R, = R, = 1 is also negligible. We therefore have that Pr[E;] < vy(k)
for a negligible function v(-), for all queries to the VERIFY oracle. To finally address the case of
i = ¢y + 1, in which we additionally check that (U;Hv(m*)o'm)Hy(m*) = (030,)H=("") we observe that
if Verify(sk, m*,0*) = accept then

(O‘,;H”(m*)dx)Hy/ (m*) —

This means that if Verify accepts m*,o* , then the final verification query in Ggl(k:) will also accept.
Finally, since the final verification check in G§ (k) includes verifying that (o,0%)% = (0,0%)"v (")
the argument above implies that if this check succeeds then Verify would also accept. This proves

Equation

Equation [
We now prove Equation 4l To do this, we consider a series of hybrids: in each hybrid H{‘(k), the first
i queries use the MAC values from Gf!(k), and the last g, — i use the values from G(k); Hg (k) is
then equivalent to G4 (k), and Hg‘m (k) is equivalent to Gf!(k). To argue that H# (k) is indistinguishable
from Hf‘fl(k), we cannot proceed in a single step. Instead, we gradually change the value of the i-th
query across two additional games Hf}l(k) and H;‘}Q(k), as shown in Figure

We then show that

Pr[H7 (k)] — Pr[H{L, (k)] < Advi™ (k) @)
Pr[Hfy (k)] — Pr[Hf (k)] = 0 ®2)
Pr[Hf (k)] — Pr[H{, (k)] = @)

for all k € N, from which Equation [4] follows.
To prove Equation the construction of B is as follows:

19

Procedure MACg () / HA (k) /| HA (k)

if (j <) then r,w, x ﬁ Fp; 0w < hY; 04 < hX; 0y gTHy(ﬁ‘)a_S' 0, g7Thwt

T)

if (j =) then r,ﬁ Fp; 0 < A7, ; Ty 4 (gHaOP) pH YT | o grHa(07) peoHy (1) |

oy P [

if (j > ¢) then r & Fp; 0w < h'; 0y < (g p iy 6 o grily (M) g s o« (gZh=t)"

Procedure MACy, () / HE (k) /| HE (k)

if (j = i) then r,w [X]& Fys 0y = b5 1y 4 g MMt [7, o gral) o) o |
rHy (1)

2r hfwt

Oy < g U;s;az%g

Procedure MAC, () HA,(k) /

if (j =) then r,w, x i Fp; 0w = Y5 04 < g’”HI(m)hTH”(mHX, ;

oy ngy(fn')O.gs; o, gzrh—wt

Figure 2: Games for the transition from H (k) to HZ(k) in proof of Equation [4f The boxed game uses the
boxed code and the other games do not.

B(p,G,9,A,B,C)

Q+ 0;h+ A

Xi = g hv Y« g X, P Vie {1,...,n}; iparams < ()Z,?)

(77_’1*, U*) ﬁ ASIMNIAC,VERIFY((p’ G,g, h), ipamms)

b ((0405)° = (020L)) A (01T,) W) = (030,) H=(0)) A (0, # 1)

T w

return ' = ((m* ¢ Q) A b)

Procedure SIMMAC g, (171)

On queries j < i or j > i: use &, 0,7, s, z,t, h to compute ¢ as in G{' (k) or G§ (k) respectively.
On query i: oy < C; oy < BH=01)CHu(m), Oy BHy(m)o;S; o, <+ B*C~!

and return (o, 0z, 0y, 0z)

Procedure VERIFY (1, 0)
return ((o,02)? = (0,0%) TN A (0, # 1)

First, note that (p,G, g, h), iparams is distributed exactly as in Hffl(k‘) and Hf}l(k‘). To see that B
successfully simulates the MAC oracle in both cases, observe that if we implicitly use » = b then, if
C = g%, we have

O_w:gab:hb:hr

bH. () _abH., (i) Ha (1) b Ho (1)

= (g
(771)0-;5

Or = (g
O'y =4
o, = gbzg—abt — (gzh—t)r’

9

bHy(n_i)O,;s _ ngy

20

which are distributed identically to the values in HZ | (k). If instead C' is random, then in particular

we can write it as C' = h% for some w ﬁ Fp. In this case

ow = h"

oy = ngI(WL)thU(Wn)
oy = ngy(n‘i)o_w—s

0, = gzrh—wt7

which are distributed identically to the values in Hf}l(k‘).
To prove Equation 2] we remind ourselves of the transition: in both games, the first i — 1 queries

are answered using hXi for x; & F, and the last g,,, — i queries are answered using (g (173) p Ho (1725) Y

for r; & F,. The i-th query then uses either g"i!=(M)pxi (in Hf}Q(k)) or g"#He (M) poHy (M) (ip Hfl(k));
if we can argue that the value of H,(m;) is independent of any other values in the game, then in
particular H,(m;) could take on any value and the distribution over these two values is identical.
To do this, we first observe that SimVerify, and thus VERIFY, is independent of ¥. The first i — 1
MAC responses are also independent of ¥, so we must prove only two properties: (1) the value of
(gM=(73) pHe(5) Y75 i the last g, — i MAC responses is independent of ¥, and (2) the value of H, (1)
is independent of the value of H,(m*), and thus changing the i-th query does not affect the distribution
at the end of the game.

To first prove this latter property, we observe that H,(-) is a pairwise independent function. As
the winning conditions of the game require that m* ¢ @ and thus m; # m*, this means that for any
ay,az € Fy, Pr[H,(m;) = oy A Hy(m*) = an] = 1/p?, which in turn implies that the values of H, (17;)
and H,(m*) are independent as desired.

To prove the former property, we perform a similar argument to that in the proof of Equation
consider a modified game in which z; = 2} — Sv;; then for the last ¢, — ¢ queries,

Oy = (g(Hz(mj)hHu(Tﬁj))Tj — gTj(Hz(ﬁleﬁHv(mj))) — grj(Hx/(Tﬁj)*ﬁHv(Vﬁj)JrﬁHu(ﬁj)) Tij/(le)’

=g
so these values information-theoretically hide . For the i-th query, however, we have

o (M) pwiHo (M) _ gri(Hz/(ﬁu)—ﬁHU(ﬁi))gﬁwiH/u(ﬁi) — gh‘Hz/(ﬁli)h(wi—ri)Hv(ﬁ%)’

which, given that as we have argued H,(m;) is independent of all other values, will be distributed
identically to gifa (M) px = grifle(mi) prifu(mi)+x for y F,. Thus, this is identical to the value in
HY (k).

To prove Equation we consider a modified version of H/ (k) in which, rather than pick & Fp,

ri H,
Or=g'°

we pick x’ & F, and set x := rHy(m)/B+rH,(m)+x'. Then the distribution over x is still uniformly
random and thus identical to the distribution in H#(k), and

hX = hTHx(ﬁ)/ﬁ+7’Hv(7ﬁ)+X,
B(rHe (1) /B+rHy () +X")

rHy (1) hTH" (m)+x’

g
= g
so the distribution over ¢, in the modified game is identical to that in H, (k).
Equation 7
Finally, we prove Equation If A outputs a forgery (m*, o*) such that b = 1, then (a;H” (m*)%)
= (030,)=(™") by definition. Since g and vy are not used in any values given to A and thus H, (17*)
and H,(m*) are information-theoretically hidden, however, A has a negligible probability of producing

(m*,0*) such that this equality holds and o,, # 1, meaning the probability that it wins the game is
bounded by v(k) = 27F, O

)

Hy (")

21

B Formal Security Definitions for Keyed-Verification Credentials

In this section we formally define the security properties of keyed-verification credential schemes,
introduced in Section [

To simplify the definition somewhat, we first consider the setting where the issuer sees all of the
user’s attributes when it issues the credential, and define correctness, unforgeability, and anonymity
in this setting. Then we require the existence of a blind issuing protocol, which is a secure two party
computation allowing the user to obtain credentials identical to those generated by Issue, while keeping
a subset of his attributes private.

We also include two algorithms which are used to define security for the system:

Issue(sk, (m1,...,my,)) uses the secret key to generate a credential for attributes (myq, ..., my). This
can be run directly, if the issuer is trusted to behave honestly and knows all the user’s attributes,
otherwise Blindlssue and BlindObtain should be used, as these allow the user to guarantee that
the credential received is valid, and to hide some of his attributes.

CredVerify(sk, (mq,...,my), cred) uses the secret key to verify a credential. This is never run (because
it reveals the attributes (mq,...,m,) as well as cred which may compromise the user’s privacy),
but is used to define the set of valid credentials for attributes (my,...,m,) under the sk.

For security, we require the following five properties to hold.

Definition 5 (Correctness). Let ® be the set of statements supported by a credential system, and U be
the universe of attribute sets. Then a keyed-verification credential system (CredKeygen, Issue, CredVerify,
Show, ShowVerify) is correct for ®,U if for all (m1,...,my) €U, for all sufficiently large k,

Pr [pamms & Setup(1%); (sk, iparams) & CredKeygen(params);
cred & Issue(sk, (ma,...,my)) : CredVerify(sk, (m1,...,my), cred) = 0] =0

and for all ¢ € ®, (my,...,my) € U such that p(mq,...,my) =1, for all sufficiently large k,

Pr [pamms & Setup(1%); (sk, iparams) & CredKeygen(params); cred & Issue(sk, (m1,...,my));
Show(iparams, cred, (m1,...,my), @) <> ShowVerify(sk,¢) = b : b= O] =0

The unforgeability property ensures an adversary cannot produce an accepting proof for a state-
ment ¢ unless at least one of the attribute sets that he requested a credential for satisfies ¢.

Definition 6 (Unforgeability). A presentation protocol Show,ShowVerify for keyed-verification cre-
dentials scheme defined by CredKeygen, Issue is unforgeable if for all PPT adversaries A, there exists
a negligible function v such that for all k,

Pr [params & Setup(1¥);

(iparams, sk) & Cred Keygen(params);

(state, @) & A(params, iparams) Issue(sk,-),ShowVerify (sk,)

A(state) <> ShowVerify(sk, ¢) — b
such that b=1A (V(mq,...,myp) € Q,¢(my,...,myp) = 0)] = v(k)

where Q is the list of all attribute sets (my, ..., my) queried to the Issue(sk,-) oracle, and all exzecutions
of ShowVerify are required to be sequentialﬂ

2Note that in the case that Show is non-interactive (as is the case with our construction when we instantiate the proof
systems using the Fiat-Shamir heuristic), all interactions are automatically sequential.

22

Definition 7 (Anonymity). A presentation protocol Show, ShowVerify for keyed-verification credentials
scheme CredKeygen, Issue is anonymous if for all PPT adversaries A, there exists an efficient algorithm
SimShow, and a negligible function v such that for all k, for all € ® and (my,...,my) € U such that

o(mi,...,my) =1, and for all params & Setup(1%) and all (iparams, sk) & KeyGen(params), for all
cred such that CredVerify(sk, (mq,...,my), cred) = 1:

{Show(iparams, cred, (m1,...,my), ¢) <+ A — state} ~ {SimShow(iparams, sk, ¢)},

i.e., the adversary’s view given the proof can be simulated by SimShow given only ¢ and a valid secret
key corresponding to iparams.

Note that the statement ¢ is known to A and may contain information about the attribute values,
which may identify the user. Definition [7| ensures that the keyed-verification credential scheme’s
protocols are anonymous, modulo information revealed in ¢.

Definition 8 (Blind issuance). Here we consider a setting where the user wishes to obtain cre-
dentials for attributes (mu,...,my), and the issuer knows only some subset S of those attributes.
Then we consider the following function: f((S, params, iparams), (sk,r),(m1,...,my)) on shared in-
put (S, params, iparams), issuer input (sk,r), and user input (my,...,my), returns L to the issuer
and returns to the user “params error” if (iparams, sk) are not in the range of CredKeygen(params),

“attribute error” if S does not agree with (mq, ..., my),and cred & Issue(sk, (mi,...,my);7) if neither
of these errors occursf|

We say that an issuance protocol Blindlssue, BlindObtain is a blind issuance protocol for Issue if
it is a secure two-party computation (against malicious adversaries) for the above function. See [21),
Chapter 7] for a definition of secure two-party computation.

Definition 9 (Key-parameter consistency). The key generation algorithm CredKeygen satisfies key-

parameter consistency if for any PPT adversary A, the probability that A given params & Setup(1¥)
can produce (iparams, sk1, ska) such that (iparams, sk1) and (iparams, ske) are both in the range of

CredKeygen(params) is negligible (where the probability is over the choice of params and the random
coins of A).

Note that correctness, blind issuance, and key-parameter consistency guarantee that if the user
receives a credential through BlindObtain, then the resulting credential will be accepted by CredVerify
for the one secret key that the issuer knows corresponding to iparams. Then anonymity guarantees
that Show will not allow the issuer to learn any information beyond ¢.

Definition 10 (Secure keyed-verification credential system). We say that (CredKeygen, CredVerify, Issue,
Blindlssue, BlindObtain, Show, ShowVerify) is a secure keyed-verification credential system if these algo-

rithms satisfy correctness, unforgeability, anonymity, blind issuance, and key-parameter consistency

as defined above.

C A Proof of Theorem [4

We present the following algorithms, which we use to specify the form of valid credentials when we
prove security of the scheme.

Issue(sk, (m1,...,my)): Output cred & MACppu(sk, (m1,...,my),).

3Here Issue(sk, (m1, ..., my,);r) means running lssue(sk, (mi, ..., m,)) with randomness r.

23

CredVerify(sk, (m1,...,my), cred): Output the result of Verifyppy(sk, (m1,...,my,), cred).

Proof. We show that these algorithms satisfy correctness, unforgeability, anonymity, and blind is-
suance.

Correctness. For correctness we need to show two properties. The first follows directly from cor-
rectness of the MAC. To see the second, consider the following:

Issue(sk, (m1, ..., my)) generates credentials of the form (u, u®0+21 #iMi ¥0+31 %M 2) Then if
both Show and ShowVerify are executed honestly, then the proof 7 is accepted by completeness of the
proof system. Also, the honest Show computes:

n T;
ow™ [T} Cm,™

Cy,
o.wazo H? o.wmixi h$iwi

ozg"e

Ve =

o n mix; T
_ Ow Hl Oy " X’wi
=1

029"

T n ., m;T; n
_ w Iy e™ I] X
To g, To+D] Tityg ¢
gru i=1
n
— 4 Tz Wy
=g]I X

=1

so the verifier’s check on V, succeeds. A similar equality holds for V. Finally, since Issue produces
0, = u?, the verifier’s final check succeeds and the verifier will accept.

Unforgeability. Here we prove unforgeability when A is given credentials generated by Issue. Blind
issuance then shows that this also holds with the blind issuance protocol. We have shown (Theorem
that MACppy is unforgeable under DDH. Suppose there exists an adversary A who can break the
unforgeability property of our credential system. Then we can construct an algorithm B that breaks

unforgeability of MACppy as follows:

. . $
B receives params, iparamsppy and chooses random Cy, Cyy, C, « F,. It then sends params,

iparams = (iparamsppy, Cy, Cyy, Cz) to A.

When A queries the Issue oracle, B forwards the query to its MAC oracle and returns the resulting
tag.

When A queries the ShowVerify oracle: A sends 0y, 0., Cnys - .. Cn,y, Vi, Vi, Co,, Cs,, and gives a
proof w. If the proof 7 is invalid, B returns 1. Otherwise B runs the proof of knowledge extractor
to extract {m;}7, rx,ryﬂ Then it computes 0, = C,,9 " and oy = C,,g~"v. Finally, it queries its
Verify oracle with (m,...my,), (0w, 04,0y, 0.), and outputs the result.

In the final show protocol, B again extracts {m;}7, 7z, r, and outputs (m1,...my), (0w, Ce, 97",
Cs,97", 0) as its forgery.

First, note that B’s response to Issue queries are identical to the honest Issue algorithm. Then, we
argue that its response to ShowVerify queries are also with overwhelming probability identical to the
output of the honest algorithm. To see this, note that the proof of knowledge property guarantees that

4Note that this requires the special proof of knowledge property, so that B can extract 7, o, and use it to obtain the
verification response to give to A.

24

the extractor succeeds in producing a valid witness with all but negligible probability. Furthermore,
if the extractor gives valid {m;}{, 74, ry then

o o™ H? Cm,™
Co,
e o™ H? (o™ R)

=g [X = c
1 Iz

n To+20T mazi T pwiTi
é ;gfrz H(hxl)wl _ Ow - Hl
1 Tz

— n . .
<:’>Oo_zg Tx — O-w-TOJFZl miTq

Ve

Cry owY0 H? Cmi vi

And similarly V, = o if and only if Cp g7 = 0,021 %imi - The final check that the
honest verifier makes guarantees that ¢, = 0,,%. Thus, the honest verifier algorithm accepts if and
only if (04, Co,97",Co,97 ", 0.) would be accepted by Verifyppy for message (mi,...,my).
Similarly, we can argue that B extracts a valid MAC from the final show protocol whenever
ShowVerify would have output 1. Thus, if A can cause ShowVerify to accept for some statement ¢
that is not satisfied by any of the attribute sets queried to Issue, then B extracts a new message

(mq,...,my,) and a valid tag for that message.

Anonymity. Suppose the user is trying to prove that he has a credential for attributes satisfying
some statement ¢. Then we want to show that there exists an algorithm SimShow that for the adversary
is indistinguishable from Show, but that only takes as input the statement ¢ and the secret key sk.
Let ¢ € ® and (my,...,my,) € U be such that ¢p(mq,...,my) = 1. Let (iparams, sk) be in the range
of CredKeygen, and let cred be such that CredVerify(sk, cred, (m1,...,my)) = 1.

Then SimShow(sk, ¢) behaves as follows: It chooses random values 0y, Cy,, Co,, Ciny, - - -, Om,, i
x n T Y, n Yq
G. It then uses {z;,y;}{, z from sk to compute o, = 0,°, V; = %, and V, = %0];[%

It runs A with these values as the first message, simulates the proof of knowledge, and outputs whatever
A outputs at the end of the proof.

First note that Cy,, Cs,, Cny s - - - , O, are distributed identically to those produced by Show. Next,
note that for any cred such that CredVerify(sk, cred, (mq,...,m,)) = 1, randomizing the credential
produces the same distribution as choosing random o, and computing o, = O 0T Tima oy =
oYt vimi and o, = oy,” for the values z, {z;,y;}§ in sk. Thus, oy, 0, is also distributed identically
to those produced by Show.

Finally, note that if we define r;, 7y, {w;}; to be the values such that C,, = Oy PO 2T Timi g
Co, = O Y0 TN Yimi g, and Cy,, = u™h* for the random values Cy,,Cy,,Cpy, - ., Cp, chosen by
SimShow, then the calculation above in the proof of correctness shows that the V;,V, that SimShow
computes is identical to those that the honest Show would have produced.

By the zero knowledge property of the proof of knowledge, we conclude that the resulting view is
indistinguishable from that produced by the adversary interacting with Show.

Blind issuance. First, we consider the setting where all of the attributes are known to the issuer and
we use the simpler algorithm. Consider the case where the user is corrupt. Then our 2PC simulator
on shared input (S, iparams) receives the user’s list of attributes (mq,...,m,) and forward it to the
functionality. The functionality returns “attribute error” if S # (my, ..., m,) and otherwise it returns
cred. If the error does not occur, the 2PC simulator then sends cred and runs the proof of knowledge

25

ZK simulator to simulate the proof of correctness for cred. By zero knowledge, this is indistinguishable
from the real world.

Next, we consider the case where the issuer is corrupt. In this case our 2PC simulator receives
cred = (0w, 0z, 0y, 0-) from the issuer and runs the verifier for the proof system. If the proof accepts, it
runs the proof of knowledge extractor to extract sk = ({x;}§,{vi}(, %, 9, Z) and r = 0y,. It sends (sk,r)
to the ideal functionality. By the proof of knowledge property, the credential sent in the real world is
Ow, 0™ [[} (0w™)", 0y = 0¥ T[] (00™)¥, 0. = 0,°) which is exactly what would be produced by
the ideal functionality on input the (sk,r) described above.

Then, we consider the more complex algorithm which allows hidden attributes. Consider the case
where the user is corrupt. Then our 2PC simulator on shared input (S, iparams) receives the user’s list
of ciphertexts (F1, ..., Ey,), and runs the verification for the proof of knowledge. If the proof accepts,
it then uses the proof of knowledge extractor to extract {m; };ey and send it along with the set S to the
functionalityﬂ The functionality returns cred = (0w, 0z, 0y,0:). The 2PC simulator then computes
an encryption £y of o, and an encryption E;, of oy, sends (0w, 02, E;, E) to the user, and uses the ZK
simulator to simulate the correctness proof)’| Note that in the real Blindlssue protocol, if E1, ..., E, are
encryptions of g™, ..., ¢g"", then the resulting F,, F, is distributed identically to a fresh encryption
of ™ []1 (0w™)%, 0% T[] (0™)¥. Thus, these are identical to what the simulator produces.

Next, we consider the case where the issuer is corrupt. In this case our 2PC simulator generates
encryptions E; of 1 for all i € H, sends them to A, and simulates the proof. It then receives cred =
(0w, 02,0y,0,) from A and runs the verification of the proof of knowledge; if the proof is accepting,
it runs the proof of knowledge extractor to extract sk = ({z;}2, {vi}%,%,7,%) and r = g*. It sends
(sk,r) to the ideal functionality. To see that this is indistinguishable from the real game, consider
the following series of games. The first game G is identical to the real game, except that instead of
computing o, 0, by decrypting the ciphertexts E,, E,, we run the proof of knowledge extractor to
extract sk, r and use those to form the credential by running Issue. By the proof of knowledge property
and correctness and homomorphic properties of the encryption scheme, the credential sent in the real
world is (0w, 0™ [} (0w™)%, 0% T[] (00™)¥, 04%) which is exactly what would be produced by
the ideal functionality on input the (sk,r) described above. Next, in game Gy we replace the proof of
knowledge of the messages in E; with a simulated proof - by zero knowledge this is indistinguishable.
Finally, we note that the only difference between this game and the simulated game is that E; is
generated as an encryption of g rather than 1; thus the two games are indistinguishable by CPA-
security of Elgamal encryption (which follows from DDH [29]).

Key-parameter consistency. This follows under the discrete log assumption from the binding
property of the Pedersen commitment scheme. (Note that the discrete log assumption is implied by
DDH.) O

D Instantiating Proofs of Knowledge

For our application we need a proof system that is zero knowledge and satisfies a strong proof of
knowledge property. In our setting we propose two approaches to instantiating the proof system.
The first is to use the Damgard protocol [16], which converts any sigma protocol into a three-round
interactive zero-knowledge proof of knowledge secure under concurrent composition. This protocol

5This is another instance where we need the strong proof of knowledge property: if we want to run this protocol
multiple times (sequentially), in each iteration we need to be able to extract sk,r, and continue the protocol.

5Note that, although our reduction needs to both simulate proofs and extract from proofs, in either of the alternatives
we discuss in Appendix [D| we do not need simulation soundness. Instead we can use two separate CRS’s or RO’s, one
for the issuer and one for the users.

26

requires trusted parameters but this restriction can be omitted in the random oracle model. The
second option is to make the assumption that the stronger extraction property holds for Fiat-Shamir
based proofs [I8] in the random oracle model.

In particular, we need that the proof of knowledge property hold even when the adversary is given
some information about previously extracted values, which can be modeled as access to an extraction
oracle. (This comes up, for example, in the credential unforgeability proof, when we need to extract
in order to answer the user’s ShowVerify queries. For standard model proof protocols, when proofs
are executed sequentially, this follows directly from the standard proof of knowledge property [4]. In
the random oracle model, however, we don’t know of any such implication. (See [19 p. 152] for a
discussion of some of the issues in this setting.)

In our setting we propose two approaches to instantiating the proof system. The first is to use
the Damgard protocol [16], as described above. To see that trusted parameters can be avoided in the
random oracle model, consider the commitment scheme that chooses and computes the commitment
as H(m;r). It is clear that in the random oracle model this is a trapdoor commitment, since control
of the random oracle can be used to open such a commitment to any message. Implementing the
trapdoor commitment this way means we do not need any trusted setup besides the establishment of
a secure hash function that can be modeled as a random oracle/[]

The second option is to make the assumption that the stronger extraction property holds for Fiat-
Shamir based proofs [I§] in the random oracle model. While it is not obvious how to show that this
property holds in the random oracle model, it seems like a reasonable assumption in the combined
random oracle and generic group model, following along the lines of [27, 30]. Since our analysis for
the MACggm scheme already uses this model, this may be a good choice for use with that scheme.

E Detailed Description of Show with MACggm

We describe an instantiation of our presentation protocol and corresponding verification when the ZK
proofs are implemented using non-interactive Schnorr proofs. This is the same proof system used in
U-Prove and Idemix. This protocol does not include proof of any additional predicates ¢, but outputs
commitments which may be used as input to further proof protocols. H will denote a cryptographic
hash function.
E.1 Proof generation
Inputs: params, a credential ug, uy, and attribute values my, ..., my,.
1. (Re-randomize) Choose a €p F,, compute u = up® and v’ = u(,”". Delete a.
2. (Form commitments)
(a) Choose r,z21,...2, €r).
(b) Compute {Cy,, :=u™h*} |, Cy :=1u'g".
3. (Create proof m)

(a) Choose 21,...,%2n, 7, M1, ..., My €R Fp.
(b) Compute {C’mi = u™ihF 0 and V=Xa...X%ng"

"For alternative trapdoor commitment schemes that do not require a random oracle, see [16 Section 4]. These
alternatives require trusted setup of a common reference string,

27

(¢) Form the challenge))
¢ = H(param||{Cn, }iy |Cor [{Comi }ia [[V)

(d) Compute responses (all mod p), {sy,, = m; —cmi, s;, = Z; — ¢z}, and s, = 7+ rc. Let
S denote the set of responses.

(e) Output ™ = (¢, S).
4. (Output) Output the presentation proof P = (u,{Cp,}1, Cur, 7).
E.2 Proof verification
Inputs: Presentation proof P, issuer and system parameters param, private key elements zq, z1, ..., Zy.
1. Parse P as (u,Cpyy ..., Cnm,,, Cur, 7).

2. Compute

3. (Verify m)

a) Parse m as (c, where S contains the responses computed 1n Step ol proot generation.
P S) where S ins th d in Step [3d| of f i
(b) Compute

¢ = H(param|{Cm, i1 | Cu [{Comi g™ h*5 Hy [V X1 X P2)

(c) Accept 7 as valid if ¢ = ¢, otherwise reject.

4. (Output) If 7 is valid, output {Cy,, }7;

28

	Introduction
	Preliminaries
	MACs in Prime-Order Groups
	MACGGM
	MACDDH

	Keyed-Verification Credentials
	Security properties
	Keyed-verification credentials from MACGGM
	Keyed-verification credentials from MACDDH

	Efficiency
	MAC Security
	Security of MACGGM
	Security of MACDDH

	Formal Security Definitions for Keyed-Verification Credentials
	A Proof of Theorem 4
	Instantiating Proofs of Knowledge
	Detailed Description of Show with MACGGM
	Proof generation
	Proof verification

