Declarative Networking

Timothy Roscoe
Joint work with Boon Thau Loo, Tyson Condie,
Joseph M. Hellerstein, Petros Maniatis, and Ion Stoica
Intel Research at Berkeley and U.C. Berkeley

1st June 2005

Despite nearly 40 years of research into routing on packet-
oriented networks, routing protocols are still highly com-
plex (with much of this complexity pushed into “policy”)
and difficult to configure and manage. Much of this com-
plexity in the Internet is a reflection of complex business
relationships which map poorly onto the actual protocol de-
sign, but it is remarkable that during this time practically
no new abstractions have emerged to simplify or modular-
ize the business of network routing — in stark contrast to
other fields of systems design, such as operating systems
(kernels, processes, etc.), distributed systems (RPC, objects,
state machines, etc.), and databases (the relational model).

In the Declarative Networking group in Berkeley, we are
investigating the connection between network routing and
distributed query processing. Our insight is to view up-
dating routing tables in a network as the ongoing process
of maintaining a distributed data structure with particular
properties — properties which characterize the network in
question. The properties of this distributed data structure
can be expressed declaratively as a query over distributed
network state, which is executed continuously (in the sense
of “continuous query processing”).

We have tried this approach, with some success, in two dif-
ferent settings: IP network routing (a paper in this year’s
SIGCOMM) and overlay networks.

Overlay networks represent an interesting, and attractive,
initial subproblem in this space. We use the term “overlay
network” broadly. Overlay networks are used today in a
variety of distributed systems ranging from file-sharing and
storage systems to communication infrastructures. Over-
lays of various kinds have recently received considerable
attention in the networked systems research community,
partly due to the availability of the PlanetLab platform.
However, a broader historical perspective is that overlay
functionality has implicitly long been a significant compo-
nent of wide-area distributed systems.

Despite this, designing, building and adapting these over-
lays to an intended application and the target environment
is a difficult and time consuming process.

To ease the development and the deployment of such over-
lay networks, our group has built a system which uses a

variant of the Datalog declarative logic language to express
overlay networks in a highly compact and reusable form.
The language can specify a Narada-style mesh network in
13 rules, and the Chord structured overlay in only 35 rules
— this includes code to perform churn handling and “stabi-
lization”. The language is directly parsed and compiled into
a per-node graph of dataflow elements which construct and
maintain the overlay networks. The system is implemented
in C++ and executes with small overhead and memory foot-
print.

Unlike some other proposals for overlay toolkits, we do not
aim for performance results on a par with handcrafted over-
lay implementations and hand-tuned overlay parameters.
Instead, we aim to show that declarative overlay descrip-
tions can be implemented with acceptable performance, and
that there are benefits to the declarative specification that go
beyond the raw performance of a single overlay design. We
believe that this is useful for rapidly prototyping new ideas,
and eventually for deploying production systems as well.
Experimental results show that the system can implement
overlay networks with reasonable efficiency compared with
existing implementations, which typically require two or-
ders of magnitude more code.

In this respect, our argument for declarative specification
of overlay properties, and in fact of network routing be-
haviour in general, is analogous to the argument for SQL
and relational database management systems some 35 years
ago: while remaining a fertile area for research, network
routing and topology construction are a sufficiently well-
understood technical problem that it’s high time we ab-
stracted this functionality into a domain-specific language
for all but very small or very specialized forms of network.
There is value in developers and operators paying a small
price in runtime efficiency and/or performance in exchange
for drastically reduced time spent in development, deploy-
ment, management, and evolution of routing logic.

The initial goals of our implementation are also akin to
those of the early relational database systems: to explore the
feasibility of the declarative approach in practice at a coarse
grain, without trying to capture all possible optimizations in
the first generation of the system.



