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Why is network management so difficult?  I think the complexity of the individual 
network elements is a big part of the problem, and a big barrier to fundamental change.  
Today's routers implement numerous routing protocols (e.g., BGP, OSPF, IS-IS, EIGRP, 
and RIP) and data-plane mechanisms (e.g., class-based queuing, RED, and access control 
lists), with inumerable configurable parameters that have a profound influence on the 
behavior of the network.  Despite years of research work on protocols and mechanisms, 
we have relatively few meaningful guidelines for (i) selecting and composing these 
features to build a network and (ii) setting the tunable parameters to maximize the 
performance, reliability, and security of a running network.  Rather than managing "the 
network," operators actually manage individual network  elements in low-level, device-
specific configuration languages. 
 
Clearly, we need to raise the level of abstraction to design and manage at the *network* 
level.  But, how should we approach this problem?  On the surface, building the 
abstraction on top of today's devices is an appealing approach.  We can design a high-
level language for specifying network goals and objectives, and then generate network 
designs and the low-level configuration commands that should be applied to the 
individual devices.  However, the intrinsic complexity of today's protocols and 
mechanisms makes this approach extremely difficult (if not impossible) to succeed in 
practice.  An alternative approach is to design the network elements, and their protocols 
and mechanisms, with network-level management in mind.  The "design for 
manageability" approach starts by asking what kind of network-level abstractions we 
want, and then designs the device-level interfaces and protocols to support them.   
 
Though conceptually appealing, the "design for manageability" philosophy runs head-
first against the important practical problem of how to achieve any significant 
deployment in practice.  I think that breaking the stalemate requires us to think creatively 
about evolutionary approaches to revolutionary change.  The key is the sometimes 
tedious notion of "incremental deployability."  To be incrementally deployable, a solution 
must have two key ingredients: 
 
- Backwards compatibility: To effect change, we need to find ways to move forward 

without requiring a "flag day" where the legacy equipment and protocols are 
replaced.  For example, approaches that retain the message formats of our existing 
protocols can allow substantive change while still accommodating legacy 
equipment. Ethernet is a great example of this principle -- significant change has 
occurred in the past decade or so while (and arguably *because of*) remaining 
compatible with the legacy specification of the message format. 

 
- Incentive compatibility: Each step along the way to the target end state needs to 

offer substantive benefits to the early adopters, and additional incentives for the 



remainder of the players to join the party.  The need for incentive compatibility is so 
strong that it might dictate the choice of steps and, in some cases,even the target end 
state itself.  A sound treatment of incentive compatibility requires accurate models 
of the cost of deployment and the benefits at each stage of adoption.  The 
construction of the steps along the way is arguably a research problem in its own 
right. 

 
As an example, the Internet's interdomain routing system is widely viewed fraught with 
difficult management problems.  The Border Gateway Protocol (BGP) is hard to 
configure, slow to converge, prone to serious anomalies (e.g., persistent oscillation, 
forwarding loops, and black holes), vulernable to malicious attack, difficult to 
troubleshoot, and overly sensitive to small topology changes.  Building meaningful 
abstractions on top of such a system is fundamentally hard.  The research community has 
made progress in creating static-analysis tools for detecting configuration errors, 
checking if a collection of routing policies are vulnerable to routing anomalies, and 
predicting the effects of configuration changes on the flow of traffic.  Other research has 
created tools for analyzing measurement feeds of BGP update messages to detect and 
diagnose routing problems.  These contributions have significantly improved our 
understanding of BGP and our ability to "work around" some of its limitations.  
However, raising the level of abstraction for BGP has remained elusive. Moreover, 
having a "flag day" to replace BGP with a new protocol is not viable in practice.  We 
cannot simply "reboot the Internet." 
 
Yet, BGP has one key feature that makes real change tantalizinglypossible: any system 
that sends BGP messages to a router in the appropriate format can tell the router what 
routes to use.  This enables us to change everything about interdomain routing, while still 
speaking to the legacy routers in terms they can understand.  In our work on the Routing 
Control Platform (RCP) [1], we exploit this observation and propose a three-step 
evolution to a new interdomain routing architecture: 
 

1. Path selection in a single domain: In the first phase, the RCP has internal BGP 
(iBGP) sessions with the operational routers in a single Autonomous System 
(AS).  This requires just a small configuration change on the routers (to exchange 
iBGP messages with the RCP, rather than one another), and enables the RCP to 
make customized routing decisions for each destination prefix on behalf of each 
router.  This phase enables more flexible traffic engineering and network 
maintenance, and allows the AS to avoid routing anomalies such as protocol 
oscillation, forwarding loops, and black holes by explicitly enforcing correctness 
constraints.  These capabilities provide a powerful incentive for an AS to deploy 
the RCP even if other ASes have not. 

 
2. Flexible routing policy in a single domain: In the second phase, the RCP has 

external BGP (eBGP) sessions directly with the border routers in neighboring 
ASes.  This requires the neighboring domains to make a small change to the 
configuration of the eBGP sessions on their border routers to exchange BGP 
messages with the RCP.  As a result, the RCP has complete control over the 



sending and receiving of BGP messages, as well as the policies for path selection 
and export.  The operational routers no longer have any BGP configuration state, 
except for the iBGP sessions to the RCP.  This phase enables the use of new 
policy specification languages, intelligent route-flap damping, minimization of the 
number of routing-table entries on the routers, and many other applications. 

 
3. Redefinition of interdomain routing: In the third phase, ASes coordinate 

interdomain routing directly through their RCPs.  This requires the participating 
ASes to run an interdomain routing protocol between their RCPs, while still 
communicating with legacy routers via iBGP. Although the RCPs could 
conceivably run a policy-based, path-vector protocol like BGP, they need not.  
For example, a new routing protocol could attach prices to advertised routes or 
explicitly support inter-AS negotiation.  RCPs could also base their routing 
decisions on measured end-to-end performance, as proposed in work on overlay 
networks, and even make the performance statistics available to end-host overlays 
through appropriate interfaces.  The RCP could also be used to deploy an 
interdomain routing protocol with better security properties than BGP. 

 
Each step offers strong deployment incentives by simplifying network management and 
enabling new services, while remaining backwards compatible with the installed base of 
routers.  (In addition, experiments with our prototype implementation [2] show that the 
RCP is feasible, from a systems perspective; the RCP can be made fast and reliable 
enough to make routing decisions for a backbone network with hundreds of routers.)  If 
the RCP approach is successful, future routers could be built with much less control 
software, and with new dissemination protocols for communicating with the RCP (rather 
than continuing to use iBGP for this purpose). 
 
Stepping back from the specific example of BGP and the idea of the RCP, I think that 
making significant progress in improving network management requires changes in the 
division of labor between the network devices and the management systems.  Making 
these changes actually happen requires us to grapple with backwards compatibility with 
the legacy equipment (e.g., by finding ways to use the existing protocols and message 
formats to coax the devices) and to identify compelling incentives for incremental 
deployment (e.g., by solving real problems and enabling new applications for the early 
adopters). 
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