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Abstract—We propose a context-sensitive-chunk based back-
propagation through time (BPTT) approach to training deep
(bidirectional) long short-term memory ((B)LSTM) recurrent
neural networks (RNN) that splits each training sequence into
chunks with appended contextual observations for character
modeling of offline handwriting recognition. Using short context-
sensitive chunks in both training and recognition brings fol-
lowing benefits: (1) the learned (B)LSTM will model mainly
local character image dependency and the effect of long-range
language model information reflected in training data is reduced;
(2) mini-batch based training on GPU can be made more efficient;
(3) low-latency BLSTM-based handwriting recognition is made
possible by incurring only a delay of a short chunk rather than
a whole sentence. Our approach is evaluated on IAM offline
handwriting recognition benchmark task and performs better
than the previous state-of-the-art BPTT-based approaches.

I. INTRODUCTION

Recurrent neural networks (RNNs) (e.g., [1], [2]) are a kind
of artificial neural networks that contain cyclic connections,
which can model contextual information of a sequence dynam-
ically, and their bidirectional version [3] provides a framework
to utilize future and past information simultaneously at each
time step. To address the difficulty of training RNNSs, a special
type of RNNs, namely long short-term memory (LSTM)
networks, are proposed, which contain special units called
memory blocks in recurrent hidden layers to ensure constant
error flow through time (e.g., [4]-[6]), and their bidirectional
version, namely BLSTM, has been successfully applied to
automatic speech recognition (ASR) (e.g., [7], [8]), hand-
writing recognition (HWR) (e.g., [9]), and optical character
recognition (OCR) for printed text (e.g., [10]). Inspired by the
recent success of deep neural networks (DNNs) in ASR (e.g.,
[11], [12] and the references therein), deep (B)LSTMs, which
mean stacking multiple (B)LSTM layers on top of each other
just as feed-forward layers are stacked in DNNs, have also
been applied to and become the state-of-the-art solutions to
both ASR (e.g., [13]-[17]) and offline HWR (e.g., [18]-[21]).

As a type of RNN, deep LSTM can be trained via var-
ious gradient-based algorithms designed for general RNN,
for example, real-time recurrent learning (RTRL), different
variants of back-propagation through time (BPTT) algorithms

This work was done when Kai Chen was an intern in Speech Group,
Microsoft Research Asia, Beijing, China.

978-1-4799-1805-8/15/$31.00 ©2015 IEEE

including BPTT(c0), BPTT(h), BPTT(h, h'), epochwise BPTT,
and a hybrid algorithm called FP/BPTT(h) (see [2] for details).
Given a fully connected RNN with n units, RTRL’s space
complexity is O(n?®) and FP/BPTT(h)’s is O(n3 + nh), so
when the network has large number of units, these algorithms
become impractical. Among BPTT-type methods, BPTT(co)
injects one error signal each time step and back-propagates
it to the beginning of the sequence. BPTT(h) also injects
one error every time but back-propagates it for at most h
time steps. Per time step updating strategy makes these two
methods very time consuming so they are of more theo-
retical than practical interest. As an improved version of
BPTT(h), BPTT(h,h’) [1] updates the network parameters
every h' time steps through injecting h’ error signals and
back-propagating for at most h time steps during each update.
When h = h' = sequence length, this approach is
equivalent to epochwise BPTT (e.g., [2]), which needs to
store network states of all time steps, while when h =
h' < sequence length, the approach is called truncated
BPTT, which is used in [16]. Like in training feed-forward
DNNs, mini-batch based training can also be used to accelerate
training, where the mini-batch can be defined over sequences
(e.g., [22]) or truncated chunks (e.g., [16], [18]).

Although many algorithms have been proposed for RNN
training, most of them cannot be applied to train bidirectional
RNN due to the whole sequence dependence at each time
step. Luckily epochwise BPTT can handle this case and leads
to several successful applications (e.g., [7]-[10], [13]-[15],
[20], [21]). Nowadays, GPUs are widely used in deep learning
by leveraging massive parallel computations via mini-batch
based training. When epochwise BPTT is used, GPU’s limited
memory restricts the number of sequences used in a mini-
batch, especially for very long sequences, which leads to poor
acceleration. In [18], a chunking and batching approach was
proposed to solve this problem, but when the chunk size is not
large enough, it performs worse than the epochwise BPTT due
to the loss of contextual information of training chunks. We
call this approach chunk BPTT thereinafter.

In the previous work of using (B)LSTM for ASR and
OCR/HWR, the learned (B)LSTM will include both local
acoustic/character model information and global language
model information from the training data. If the training text
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is highly mismatched with recognition tasks, such a (B)LSTM
may not work well. However, in a so-called hybrid approach
[23] of using (B)LSTM and hidden Markov model (HMM) for
ASR and OCR/HWR, it is possible to force the (B)LSTM to
model mainly the local acoustic/character information which
can be trained from an appropriate set of speech/image training
data, while the language model can be learned from another
large set of text data. In this paper, we propose a context-
sensitive-chunk based BPTT (CSC-BPTT) approach to train-
ing deep (B)LSTM. We split each training sequence into
short chunks with appended contextual observations. Using
short context-sensitive chunks in both training and recognition
brings following benefits: (1) the learned (B)LSTM will model
mainly local observation dependency and the effect of long-
range language model information reflected in training data is
reduced; (2) mini-batch based training on GPU can be made
more efficient; (3) short-delay BLSTM-based recognition is
made possible by incurring only a delay of a short chunk
rather than a whole sentence. As a first step, we evaluate our
approach on IAM offline handwriting recognition benchmark
task [24] and compare its performance with several state-of-
the-art BPTT-based approaches [16], [18], [22].

The remainder of this paper is organized as follows. In
section II, we give a brief introduction of prior arts and
describe our proposed approach in detail. In section III, we
present experimental results. In section IV, we analyze the
observations and finally we conclude the paper in Section V.

II. OUR APPROACH

In this section, we first review several previous deep
(B)LSTM training methods. Then we introduce our proposed
CSC-BPTT method and present some implementation details.

A. Prior Arts

1) Epochwise BPTT (e.g., [2], [7], [22]): Given a se-
quence, this method must accumulate the history of activations
in the network over the entire sequence, along with the history
of errors, then back-propagation is carried out to calculate
gradients. After that, weights are updated accordingly. In
order to accelerate training by GPU, mini-batch technique
can be used as in DNN training, where several frames are
processed per update, but the mini-batch here has to be defined
over sequences due to the interdependence of frames in the
sequence [22]. Therefore for very long sequences and large
networks, memory size of GPU restricts the number of parallel
sequences in a mini-batch so the acceleration is quite limited.

2) Truncated BPTT (e.g., [1], [16]): This method is well
studied on traditional RNNs, and can also be directly applied
to LSTMs. Activations are forward-propagated for a fixed
length of time steps T},yunc, then errors are accumulated over
this chunk and back-propagated. After weights are updated, if
current sequence hasn’t finished, preserve the network states
and process next chunk; otherwise, reset the network states and
process first chunk of a new sequence. Mini-batch technique
can be applied and defined over truncated chunks. Note that
the last chunk of each sequence can be shorter than Ty,
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Figure 1.  [Illustration of different chunk-based approaches. Each row on
the left/right side corresponds to one sequence/chunk and each column
corresponds to a batch of current time steps. (a) is proposed in [18], where
the sequences are partitioned into chunks of a particular length, with empty
frames appended to short chunks, and recombined into a large batch as shown
on the right; (b) is our proposed method for LSTMs. Each sequence is firstly
partitioned like (a). Then, left context from previous frames is appended.
Finally, all chunks are padded to the same length with empty frames; (c) is our
proposed method for BLSTMs. Given a particular length, the sequences are
firstly split into chunks. Then, left and right contexts are appended. Finally,
all chunks are padded to the same length with empty frames.

but can be padded to the full length with empty frames,
though no gradient is generated for these padded frames. With
this approach, we can break the barrier of GPU’s memory
limitation and process many chunks in parallel, but BLSTMs
can’t benefit from it for the bidirectional interdependence.

3) Chunk BPTT ( [18]): This is a simple but effective
method. As Fig. 1-(a) shows, each sequence is firstly split
into (possibly overlapping) chunks of a particular length N,
and recombined into a large batch as shown on the right. For
chunks shorter than N., empty frames are appended. Then
forward this batch in parallel and update the network param-
eters, just as epochwise BPTT does. Chunks of a batch only
come from a small set of sequences, therefore the variations
caused by various irrelevant factors are small within the batch.
With this approach, [18] achieves comparable results and 3x
speedup compared with epochwise BPTT, but a relatively large
N, is needed to alleviate performance degradation.

B. CSC-BPTT for LSTMs

Chunks in section II-A3 are treated as isolated sequences
so that they can be processed in parallel. However, the
interdependence between chunks is lost, which causes chunk
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Figure 2. Forward and backward procedure of CSC-BPTT to train LSTM.
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Figure 3. Forward and backward procedure of CSC-BPTT to train BLSTM.

BPTT with short chunks to perform worse than the epochwise
BPTT. To compensate for the lost/incomplete past states, as
is shown in Fig. 1-(b), we append N; previous frames before
each chunk, while for the first chunk of each sequence, N,
empty frames are appended. We call these chunks as context-
sensitive chunks (CSCs). The appended N; frames only act as
context and give no output, as illustrated in Fig. 2.

C. CSC-BPTT for BLSTMs

Due to bidirectional interdependence, BLSTM trained with
chunk BPTT suffers from lost/incomplete past and/or future
states. As is shown in Fig. 1-(c), we append N; previous
frames as left context and N, future frames as right context
to each chunk, while for the first/last chunk of the sequence,
left/right context is filled with empty frames. Like the case
of LSTM, appended frames only work as context and give
no output. Fig. 3 illustrates the corresponding forward and
backward procedure. Naturally in our cases, mini-batch is
defined over CSCs.

Let’s denote a CSC of length N, with N; left context and
N, right context as “N;-N.+N,.” for simplicity. In LSTM case,
N, always equals to 0, while for chunk BPTT, a traditional
chunk can also be represented in this way as “0-N.+0”. We
denote chunk configuration of epochwise BPTT as “0-Full+0”
because a chunk here is the full sequence. To keep consistent
with [1], truncated BPTT with chunk size 7},,n. 1S denoted
as BPTT(T}runc, Ttrunc) in this paper.

D. Implementation Issues

Our HWR system is based on (B)LSTM-HMM framework
as in a neural-network/HMM hybrid system [23]. Frame-level
state targets are provided by a forced alignment given by a

Table 1
OVERVIEW OF IAM OFFLINE HANDWRITING DATABASE

Training Validation  Test
# of text lines 6,159 900 1,861
# of words 53,823 7,897 17,615
# of characters 227,731 33,769 65,920
# of frames 1,978,170 298,960 563,078

Gaussian mixture model HMM (GMM-HMM) system. The ac-
tivation function of (B)LSTM’s output layer is softmax, whose
unit number is the total number of HMM states. In training,
a frame-level cross-entropy objective function is minimized.
Our GPU-based training tool is developed by starting from
Currennt open source toolkit [22]. We modified Currennt to
implement all the methods in Section II and conducted all
experiments on a Nvidia Telsa K20xm GPU. During training, a
constant learning rate is used with a validation set monitoring
the training progress. When improvement on validation set
hasn’t been observed for 10 continuous sweeps, training will
be stopped. Sequences in training set are shuffled randomly
before a new sweep starts. For our proposed approach, CSCs
of a mini-batch can also be selected from different parts
of different sequences randomly, but no much difference is
observed in our experiments compared with the batching
strategy shown in Fig. 1. In recognition, the same sequence
split strategy as in training is adopted. The state-dependent
scores derived from the (B)LSTM are combined with HMM
state transition probabilities and language model (LM) scores
to determine the recognition result by using a WEST-based
decoder modified from the open source Kaldi toolkit [25].

III. EXPERIMENTAL RESULTS
A. Experimental Setup

We compare our method with the prior arts on IAM offline
handwriting database [24]. There are two validation sets in
IAM and we only used one. In preprocessing, each horizontal
handwriting sentence in this database is normalized to have
a height of 60 pixels. Each sentence is first split into frames
by a sliding window of 30 pixels wide with a frame shift
of 3 pixels. Then each frame is smoothed by applying a
horizontal cosine window. Because the sliding window for
feature extraction has a size of 30 x 60 and we use raw pixel
values as original features, the dimension of original feature
vector is 1800. Then, Principal Component Analysis (PCA)
is used to reduce the dimension of each feature vector to 50.
Finally, these 50-dimensional feature vectors are normalized
such that each dimension of feature has a zero sample mean
and unit sample variance on training set. Basic information of
the data set is summarized in Table I.

To conduct forced alignment, a context-independent GMM-
HMM based HWR system is built first by maximum likelihood
training [26]. For simplicity, each character is modeled by
a 3-state left-to-right GMM-HMM with self-loop transitions.
There are 78 character classes in our character set, includ-
ing 52 case-sensitive English letters, 10 digits, 15 punctu-
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Table II
EVALUATION RESULTS OF DEEP LSTM UNDER DIFFERENT CHUNK
CONFIGURATIONS (%)

Table III
EVALUATION RESULTS OF DEEP BLSTM UNDER DIFFERENT CHUNK
CONFIGURATIONS (%)

Config Validation Set Test Set Config Validation Set Test Set
: FER CER WER FER CER WER : FER CER WER FER CER WER
0-Full+0 34770 12.81 2429 3736 1571 29.59 0-Full+0 23.68 10.28 20.61 2620 12.46 25.38
BPTT(32,32) 34.80 12.78 24.17 37.46 1585 29.55 0-16+0 30.18 11.92 2324 3275 1454 28.60
0-128+0 36.01 13.34 25.18 38.36 16.01 30.44 4-16+4 25.08 10.37 21.07 27.57 1245 2548
0-64+0 37.11 1425 2587 3938 16.89 31.11 8-16+8 23.86 10.01 2028 26.31 12.17 25.05
0-32+0 38.34 1348 2535 40.82 1698 31.49 0-32+0 2722 1094 21.12 29.56 12.78 26.26
32-32+0 3471 12.69 24.03 3720 1542 29.48 8-32+8 2379 1025 20.32 2626 1229 25.02
16-32+0 35.07 1271 2373 37.09 1516 29.03 16-32+16  23.10  9.85 1997 2534 11.71 24.21
0-64+0 2524 1073 21.20 27.81 12776 2599
16-64+16  23.04 9.70 19.33 2545 11.79 24.11
32-64+32 23.04 9.77 19.66 2543 11.79 24.49
ation marks (! # " ' & () * -, / . ; ?) and 0-128+0 2445 11.08 21.64 26.66 13.03 26.37

a “space” symbol. Consequently, the (B)LSTM output layer
has 3 x 78 = 234 units. The memory block of (B)LSTMs
has the same topology as that in [14]. Random noise subject
to Gaussian distribution N'(0,0.6) is added during training
to improve generalization. In recognition, a standard word
trigram LM is used, which is built by using 500 out of
4,000 documents from a Linguistic Data Consortium (LDC)
corpus (catalog number LDC2008T15) and has a vocabulary
of 200k most frequently occured words in the training corpus.
To construct context-sensitive chunks, different numbers of
contextual frames are tried, including 4, 8, 16 and 32 frames.
For the above feature extraction procedure, 1 character has
about 8 frames of feature vectors on average.

In training (B)LSTMs, learning rate is carefully tuned for
each experimental configuration, and the one leading to the
best validation performance is selected to perform recognition
on test set. Frame error rate (FER), character error rate (CER)
and word error rate (WER) are used to evaluate different
models. It is noted that our 200k-word lexicon leads to an
out-of-vocabulary (OOV) word rate of about 8% and 10% on
validation and testing sets, respectively.

B. Experimental Results on Deep LSTM

The deep LSTMs used here have 5 hidden layers with 256
memory cells in each layer, resulting in approximately 2.5 mil-
lion parameters. These networks are randomly initialized and
optimized with epochwise, truncated, chunk and CSC BPTT
methods, respectively. For epochwise and truncated BPTT, 32
sequences are processed in parallel in each mini-batch, and
Tirune = 32, while for chunk and CSC BPTT, the networks
are updated every 4k frames (including contextual frames).
We treat the result of epochwise BPTT as the baseline. Table
IT summarizes the experimental results. Among all the four
algorithms evaluated, CSC-BPTT performs best. Both “16-
32+0” and “32-32+0” achieve better results than the baseline.
Other methods work as expected: truncated BPTT is slightly
better than epochwise BPTT but can’t beat ours while the
performance of chunk BPTT approaches to that of epochwise
BPTT as the chunk size increases. The result also shows that
only small chunk sizes are required for CSC-BPTT to achieve
such promising results.

C. Experimental Results on Deep BLSTM

We use 5-hidden-layer deep BLSTMs to compare the pro-
posed approach with other methods. Each hidden layer has
256 memory cells (128 for forward and 128 for backward
states), which results in approximately 1.8 million parameters.
According to section II, these randomly initialized networks
are optimized by epochwise, chunk and CSC BPTT meth-
ods, respectively. 32 sequences are processed in parallel by
epochwise BPTT while chunk and CSC BPTT methods update
the networks every 32 chunks. Again epochwise BPTT is used
as the baseline.

Table III summarizes the evaluation results under different
chunk configurations. Similar to deep LSTMs, chunk BPTT
approaches the performance of epochwise method as chunk
size increases, but the gap always exists. All CSC-BPTT
experiments except “4-16+4” achieve better performance than
the baseline, while even the exception case achieves compa-
rable performance with the baseline and performs better than
the best chunk BPTT result under the configuration of “O-
128+0”. “16-32+16” gives the best FER and CER on test
set, and the relative error reductions against the baseline are
3.28% and 6.02% respectively, while the best WER is brought
by “16-64+16”, and the relative error reduction is 5.0%. In
both N;-16+N, and N;-32+N, experiments, longer context
window leads to better performance, while for N;-64+N,
experiments, this is not the case: “16-64+16" performs better
than “32-64+32”. In Table II, “16-32+0” also outperforms
“32-324+0”. To conclude, 16 frames seem a good choice to
provide contextual information, which is equivalent to about
2 characters. It should be noted that “8-16+8” and “8-32+8”
perform worse than “0-Full+0” in terms of FER while bet-
ter in terms of CER and WER. Furthermore, large gap of
FER between “4-16+4” and “0-Full+0” only leads to small
gap in CER and WER. These observations show that our
method makes BLSTMs model mainly the local dependency
of character images, and the influence of long-range language
model information learned from the training set is reduced
successfully.
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IV. DISCUSSION

In our (B)LSTM-HMM based HWR systems, the (B)LSTM
is responsible for character modeling. However, the interde-
pendence of time steps in (B)LSTM makes epochwise and
truncated BPTT training take advantage of LM information
prematurely, which affects the learning of character model
negatively. Chunk technique can weaken the influence of
LM by breaking the interdependence between chunks, and
make (B)LSTM focus on character modeling. In reality, the
variability of a character image may be affected by the images
of several characters before and after it, which has been
empirically confirmed by our experimental results. However,
epochwise and truncated BPTT just ignore this prior knowl-
edge and try to learn the dependency automatically. Even with
the capacity to bridge variant time intervals through input,
output and forget gates, it is still a difficult mission because
these gates do not open or close synchronously. Splitting a
sequence into chunks with particular length is equivalent to
reset those gates and cell states manually and periodically. For
offline HWR, we found that “16-32+0” in LSTM, “16-32+16"
and “16-64+16” in BLSTM perform better than epochwise
training, which indicates that there is no need to model
long-term image dependencies. Meanwhile, chunks without
contextual frames give poorer performance even with larger
size. These observations show that contextual information is
important for chunk technique, and 16 frames seem enough,
which correspond roughly to 2 characters according to our
feature extraction method. CSC-BPTT reduces the number
of frames needed for each chunk, which makes it easier to
model and train deep (B)LSTM in parallel on GPU. The short-
chunk requirement also makes deep BLSTM applicable to low-
latency decoding with the delay of a short chunk. To the best
of our knowledge, this is the first successful attempt to perform
such a low-latency decoding by using BLSTM for sequence
pattern recognition.

V. CONCLUSION

In this paper, we have proposed a CSC-BPTT approach to
training deep (B)LSTM for sequence pattern recognition. Its
effectiveness has been confirmed on an offline handwriting
recognition task. This modeling and training approach can also
be applied to other tasks such as ASR and OCR, and we will
report those results elsewhere.
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