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Video Annotation Through Search
and Graph Reinforcement Mining
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Abstract—Unlimited vocabulary annotation of multimedia doc-
uments remains elusive despite progress solving the problem in the
case of a small, fixed lexicon. Taking advantage of the repetitive
nature of modern information and online media databases with in-
dependent annotation instances, we present an approach to auto-
matically annotate multimedia documents that uses mining tech-
niques to discover new annotations from similar documents and
to filter existing incorrect annotations. The annotation set is not
limited to words that have training data or for which models have
been created. It is limited only by the words in the collective annota-
tion vocabulary of all the database documents. A graph reinforce-
ment method driven by a particular modality (e.g., visual) is used
to determine the contribution of a similar document to the annota-
tion target. The graph supplies possible annotations of a different
modality (e.g., text) that can be mined for annotations of the target.
Experiments are performed using videos crawled from YouTube. A
customized precision-recall metric shows that the annotations ob-
tained using the proposed method are superior to those originally
existing for the document. These extended, filtered tags are also
superior to a state-of-the-art semi-supervised technique for graph
reinforcement learning on the initial user-supplied annotations.

Index Terms—Data mining, graph theory, video annotation,
video content analysis.

I. INTRODUCTION

HE current multimedia boom demands effective, yet

quickly adaptive, organization for efficient user retrieval
and browsing. Tagging, or annotation, enables text-based
querying which is the most common way to search for multi-
media documents using current technology. Tagging drives the
search process in all online media repositories like Flickr [5] and
YouTube [33]. Annotation also summarizes content and enables
surfing. However, the automatic detection of events or objects
using computer vision techniques and low-level features remains
an open problem. The tagging therefore is done on sites like
YouTube and Flickr by users who supply keyword annotations
for their files. This results in annotations dependent on user
interpretation as well as the current vocabulary for and under-
standing of a subject. This vocabulary may change over time,
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as, for instance, in the case where “swk” became a nickname
for the “star wars kid” whose video propelled him to Internet
stardom. Therefore, web video repositories such as YouTube
have user-generated annotations that have not been quality-con-
trolled. These annotations are typically incomplete and noisy
since they result from one-time annotations from single users.
The annotation set typically contains incorrect keywords and is
missing quite a few relevant ones. An automated method that
provides both high recall and precision of tags is needed before
these large databases can be effectively searched and viewed.

Annotation has largely been done in the research commu-
nity by building a model for each keyword. Each model is then
applied to every document to test for each annotation. How-
ever, this process largely ignores the work that has already been
done by humans for comparable documents. The manual anno-
tations are particularly useful when a similar or identical docu-
ment has already been annotated. Since online media networks
are driven by large communities with similar interests, the con-
tent tends to grow virally and a video can be easily tagged by
collecting and filtering the tags of similar videos. Motivation
for an approach that leverages this information is given by the
YouTube example shown in Fig. 1 which demonstrates the re-
dundant quality of many repositories. In sites such as YouTube,
each video is tagged independently, but using the overlap we can
learn better annotations that improve retrieval and browsing of
the site. This paper motivates a new form of video annotation af-
forded by an online media community where similar variations
of the same video frequently exist and user annotations are noisy
and incomplete.

Using knowledge that modern information and documents
have a repetitive nature as indicated both by the literature [2],
[30] as well as the empirical example in Fig. 1, and inspired by the
graph fusion technique used for annotation in [28], we propose to
leverage graph theory techniques on information from individual
community users for annotation with an unlimited vocabulary.
This paper tackles the annotation problem from a novel perspec-
tive, i.e., a data mining approach that focuses on mining frequent
terms out of documents relevant to a particular target. By using
the annotations provided from independent tagging instances,
it furthermore addresses an opportunity uniquely afforded by
online communities and one that has not been explicitly tested. It
is a new or complementary direction for computer vision-based
automatic annotation, because it leverages the large-scale data
on the Internet to mine repetitive patterns and find new concepts
which cannot be discovered using existing approaches. This
technique amounts to mining correct annotations out of a
collection of possible annotations found for similar documents.

A diagram of the proposed annotation system aggregating
user information is shown in Fig. 2. First, a query is issued to
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Fig. 1. Top results for “etrade commercial” on YouTube. Duplicates and similar
videos can be found in top results, with repetition of tags and annotations. In this
example, the “superbow]” tag appears for the third and fourth return, a term often
used in describing the video motivated by the debut forum of the clip. Extending
this tag to the first two returns may be helpful in retrieval or description of the
video.
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Fig. 2. System diagram. The system first collects similar videos and generates
small graphs for different visual features. For example the visual features may
be AutoCorrelogram (AC), Color Moment (CM), Edge Distribution Histogram
(EDH), and so on. A stable graph is found by iterative diffusion using similarity
matrix W over the connected nodes and then annotations are mined from the
weighted [aac, @cm, ppu] annotations of each stable graph. A zipf-based
cutoff is used to determine the relevant annotations for a particular video.
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the database crawled from YouTube to search with a modality
independent of the annotation type. For instance, if text anno-
tations are sought, then the search is done using a non-textual
feature such as a visual feature, e.g., Color Moment (CM),
Edge Distribution Histogram (EDH), or AutoCorrelogram

(AC). Then a stable graph is found that emphasizes frequent
labels in the result set of similar videos, [z1,...,2n]. The
stability induces a smoothness on the document annotations so
that similar documents have similar annotations; that is, anno-
tations roughly correlate with the distance between documents
represented by the similarity matrix W. The stable graph can
be directly analyzed for keywords or combined using weights
[@cu, - - -, agpu] with other graphs to annotate the target.
This approach addresses the shortcoming of limited vocabulary
size in previous methods since the process is not restricted to
machine learning of certain annotations or categories. Instead, a
general unsupervised process is used where visual features are
used to find similar videos, and then analysis of their user tags
determines the annotations for the target. The dictionary size
is limited only to the union of all annotations used anywhere
in the system, rather than by those with sufficient training data
to learn a model based on feature primitives. The mining of
similar videos improves the completeness and accuracy of the
annotation process.

In the remainder of this paper, Section II presents previous
work in video and image annotation as well as research on on-
line media sites. Section III explains the proposed stable graph
creation using user annotations. Section IV details the subse-
quent frequent term mining for annotation. Section V gives ex-
perimental results, and Section VI concludes the paper.

II. RELATED WORK

This paper addresses the problem of multimedia annotation of
images and videos. Simultaneously, its unique focus on online
community-based data uses principles from research on collab-
orative tagging and social media sites, such as YouTube, Flickr,
and other multimedia repositories. The research in these areas
is explained below in Sections II-A and II-B.

A. Multimedia Annotation

The annotation problem has received significant attention in
image and video realms, since annotation helps bridge the se-
mantic gap that results from querying using one mode (e.g., text)
for returns of another mode (e.g., images). Multimedia annota-
tion algorithms can be said to be supervised or unsupervised
based on whether it uses known training data. An annotation
method can also be described as a computer vision approach if
it builds word-specific models from low-level visual features, or
a data mining approach if it mines correlations among annota-
tions or propagates existing information.

Typical supervised methods for image and video annotation
developed through the TRECVID collaboration [24] began
using supervised learners, specifically support vector machines
(SVM), to learn a pre-defined, small set of concepts from
labeled training images. Extending from this single SVM for
annotation, work performed by Yan et al. trains two SVMs
using different features, adding the most confident predictions
to the labeled training set and then training and classifying
using the other SVM iteratively until all targets have been
annotated [22].

More recent work extends single annotation SVM models by
mining for correlations in the SVM-produced annotation pre-
dictions. For example, Natsev et al. employ correlation mining
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using model vectors created from a low-level visual method
[18]. Qi et al. also mine annotation correlations, such as “moun-
tain” and “outdoor,” as well as cross-modal correlations be-
tween visual and textual features [19]. Lavrenko et al. employ
both vision and mining to construct a joint probability of vi-
sual region-based words with text annotations, incorporating
co-occurrent visual features and co-occurrent annotations [12],
while Yan et al. use decision trees to mine correlations in anno-
tating around 30—40 concepts [32]. Tseng et al. present a fused
model that combines rule-mining in temporal, speech, and vi-
sual models with the model in [12] to improve results using on
the TRECVID annotation set [25]. Data mining is used in these
supervised methods exclusively for correlation discovery within
a small annotation set. The largest vocabulary in these works has
120 words.

Recently, techniques combining computer vision and data
mining derived from graph theory have attracted extensive at-
tention by mining co-occurrence data revealed by the structure
of vision-based graphs. The graph techniques used for annota-
tion are typically considered to be semi-supervised learning, a
special case of supervised learning where the distribution of un-
labeled points is used in the learning process. Chapelle [3] and
Zhu [36] provide a survey of semi-supervised learning and asso-
ciated graph theory. Jing shows how graph learning can be used
to rerank image search results [10]. Zhou introduces the smooth
manifold ranking theorem on a single graph as a solution to the
semi-supervised labeling problem [34]. Tong et al. provide a so-
lution for combining two graphs for label propagation [23], and
Wang extends this method to an arbitrary number of graphs [28].
These studies use data mining techniques to examine neigh-
borhood properties and guide propagation. As supervised tech-
niques, they are limited to a fixed lexicon; the largest lexicon is
limited to 39 words since the initial labeling is performed using
a computer vision model for each label.

Attempts using a larger vocabulary in an unsupervised frame-
work have been made. In image annotation, Rui ef al. present a
bipartite graph theory technique that has an unlimited vocabulary
[20]. They identify candidate annotations in the text around an
image, and then extend these annotations using surrounding text
from images simultaneously close in visual and semantic space.
Velivelli et al. use automatic speech recognition (ASR) results to
mine a corpus for annotations [26]. However, in this approach
data mining creates a vocabulary for the entire database rather
than finds specific annotations for a video. Xing et al. focus on
topic discovery in a video using multi-wing harmoniums, where
each harmonium is derived from a different mode [31]. Xing’s
work does not explicitly address the accuracy of annotations as-
sociated with the general topics they discover, despite an indica-
tion that certain topic words can be extracted. The specificity of
these topic words is limited, however, in that only general topics
with a large number of positive examples are extracted.

It is observed that existing annotation methods usually suffer
from two problems: 1) supervised approaches do not address
tag discovery, since previously unseen annotations lack training
data and as a result are limited to a pre-defined concept set;
and 2) unsupervised approaches such as [26] fail to use mining
when annotating a specific target, limiting the mining step to
initial dictionary creation before a target is chosen or general
topic annotation. This paper proposes an unsupervised video
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annotation algorithm based on data mining annotations from a
large vocabulary.

B. Social Media and Collaborative Tagging

Simultaneously, research into online media communities has
motivated an exploration of the effectiveness of user annotation
and the learning possible from independent annotations freely
offered by community users. Shirky has indicated the impor-
tance of the annotation process that can occur in online media
websites as it allows for a dynamic, evolving understanding of
the world [21]. Kennedy et al. provide an example of effec-
tive learning from an online media site [11], using community
image annotations to create geographic tags (e.g., landmarks
and neighborhoods) and temporal tags (e.g., event tags). A mod-
erate body of literature exists identifying statistics, trends, and
taxonomies for online media databases. Golder and Huberman
provide an overview of collaborative tagging, that is, the user-
generated tagging fostered in community media sites [8].

The Flickr case study performed by Golder and Huberman
analyzes tag statistics of the photo-sharing site to motivate prob-
lems such as combating spam [8], an issue that Cho et al. also
cite [4]. The Google Image Labeler represents an application
that addresses this issue by using repeated tagging instances [9].
It turns robust image annotation into a game in which each party
independently labels an image and receives points only when
an annotation overlaps with that of another user. Tag collabo-
ration can protect a site against exploitative attacks that occur
when a user uploads advertising media and tags the disguised
ad with popular search terms to attract hits. The repeated tag-
ging instances afforded by aliased data in online media sites [2]
enable tag filtering in social media computing to prevent anno-
tation spam.

Simultaneously, Furnas ef al. emphasize tag extension for
such sites by relating that a large number of keywords can be
generated only by a large group of users [6]. The work in this
paper harnesses the large amount of freely contributed over-
lapping annotation [2] to address the issues of consistency and
spam [4], [7], [14] in an automated learning process. This ques-
tion of effective learning using user-supplied information has
not been explicitly tested.

The contributions of this work are two-fold. In comparison
to [28] which focuses on multi-graph semi-supervised learning,
inspiring the proposed graph learning, this work does not rely
on a training set that limits the annotation set to those labels
for which there is training data. Rather, it discovers the appro-
priate annotations in tagging instances of similar documents
using a graph technique without annotation modeling from fea-
ture primitives. Secondly, the annotation scheme presented in
this paper addresses a timely problem put forth by the research
community [4], [6], [7], gleaning trustworthy keywords from
the tagging synergy of multiple online community users, that
has not been previously attempted.

III. GRAPH REINFORCEMENT ON SIMILAR DOCUMENTS

The graph reinforcement technique represents an inductive
learning process that uses the weak predictions afforded by each
similar video to create a stronger prediction of appropriate an-
notations for the set of videos. This graph reinforcement formu-
lation can also be seen as combining a collection of weak clas-
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TABLE I

ANALOGY BETWEEN GRAPH THEORY TERMINOLOGY AND COLLABORATIVE TAGGING ALGORITHM, WITH NOTATION
Physical Analogy | YouTube Analogy Notation |
vertex or node video T; |
weighted edges similarity between videos ¢ and j Wij |
initial attribute w at node % user-supplied annotation w for video Y |
subsequent attribute w at node ¢ | annotation w updated by neighboring video annotations £ |
attribute w relevance over nodes annotation w relevance for all videos in graph fv=fv= [ 11’ fé”,..]T |
stable attribute over nodes annotation relevance for stable graph fo* |

sifiers to produce a stronger one. Each video in the graph for-
mulation is an error-prone annotator or a weak classifier. These
weak classifiers from the individual documents are then com-
bined using a graph stabilization technique that produces a reli-
able annotation.

The collaborative tagging algorithm formulated as a graph
theory problem creates a graph from the near neighbors of the
target. This process is done in our case by querying the YouTube
database using a particular visual feature and then forming a
graph using the closest videos for the reinforcement step. By al-
lowing correlations in near neighbors to reinforce each other, we
are able to extract better annotations for the documents. A term
that does not appear in annotations for a document, but appears
frequently in a collection of similar documents, may be extended
as a “new” annotation for the original document. Additionally,
annotation “spam” will be filtered in the instances where an
annotation does not also occur in the set of similar documents.

We begin by showing stable graph reinforcement of a
single graph. The well-established, state-of-the-art semi-su-
pervised case of graph reinforcement annotation is presented
in Sections III-A1 and III-B1, and then our extension to the
unsupervised case in Sections III-A2 and III-B2. The flexibility
of using more than one graph allows the system to use multiple
modalities and distance metrics that can be combined using an
adaptive weighting.

A. Single Graph Reinforcement

First let us consider the technique using a single graph. The
problem is formulated by a set of vertices (or nodes) and edge
weights. Vertices, in our case, are YouTube videos, and the
edges represent the similarity between node videos, as shown in
Fig. 2. Similar YouTube videos, as found in repeated versions
of the original or remixed/edited copies of the original, will
have heavier edges. This similarity can be measured using
any singular feature distance; it may be affinity in text, visual,
audio, or concepts/semantic space, for instance. The graph
analogy is summarized in Table L.

Once the vertices have been extracted and edge weights cal-
culated, the problem becomes finding the most stable graph
structure. In finding a “stable” structure, the idea is to smooth
the attributes (annotations) of each node over the space: the at-
tributes of one node should be similar to those of a node nearby.
Before stabilization, this may not be the case as the attributes
are the result of a noisy initial state formed by the uploader’s an-
notations. Each node is to influence its neighbors such that the
node attributes vary proportionally with the distance in space.
Finding the stable graph structure designates stable feature at-
tributes, f;’*, at each of the vertices, x;, that vary proportionally
with edge weights.

The similarity matrix of the graph, W/, has elements W;; that
are the edge weights of the fully-connected graph between ver-
tices ¢ and j. Typically this distance is normalized, or shaped,
using a radius parameter o. The elements of W are given by the
standard similarity metric

exp (——d(m;’mj)) , ifi#j
0, else

W, =

1

ey

where d(z;, z;) is some distance function between z; and z;.
The shaping parameter o was set to be the standard deviation
of a particular feature distance. This affinity metric, proposed in
[34], is strictly positive and has the quality that close features
receive a high weight.

The problem of defining the most stable graph diverges in the
case where the attributes of some nodes are known, in which
case supervised or semi-supervised learning is preferable,
versus the case in nearly all practical annotation instances,
where the vocabulary is so extensive that groundtruth for all
annotations does not exist. Rather, a few videos have a limited
number of annotation predictions that positively identify only
a few feature attributes but do not negatively identify any
annotations. We will next describe graph reinforcement via
semi-supervised and unsupervised learning.

1) Semi-Supervised Graph Reinforcement: Semi-supervised
learning typically outperforms the classification of supervised
learning methods when only a handful of annotations exist in a
large collection of data [3], [35]. In semi-supervised learning,
assumptions made on the large set of unlabeled data are built
into models to improve performance.

The authors of [34] phrase the annotation problem in terms
of a regularization framework. Finding the most stable graph
amounts to solving

gy
2 Wi | U5~ e

nY =Y

where Y, is the initial labeling of node ¢ for annotation w:
+1 for positive, —1 for negative, and O for unlabeled regarding
annotation w; D is the diagonal normalizing matrix given by
D;; => j Wi;j; and f;¥ is the label value, or confidence that
a particular label is applicable, at node z;. The first term in (2)
can be considered a “‘smoothness constraint” implying a cost for
labels that change too quickly over the space. The second term
is a “sticking constraint” that implies a cost for changing the
initial labeling. The closed-form solution to (2) is found to be

+

@

f* = arg min
fw

1 -1
for = (I + —L) YV 3)
1
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where L is the normalized graph Laplacian given by the
equation L = D-/2(D — W)D-(/?) and Y* =
[Y Y3* ...]7 is the initial confidence or predictions
made by a user or a computer vision model of the label w on
each node. Alternatively, we can solve the problem sequen-
tially. Applying the update

w 1 w P

P = T DL Y @)
iteratively results in convergence at f** [28]. The reinforcement
of the initial labeling Y is apparent in this equation, and may not
be ideal in the case where initial labels are unknown. In the next
section, we explore an unsupervised approach that extends from
this case.

2) Unsupervised Graph Reinforcement: In the case of unsu-
pervised learning where a training set has not been given, the it-
erative process described in (4) process reduces to a trivial case.
Without initial labeling, Y;* = 0 V%, w, and (2) reduces to

2
f 5 )2
— - +u ) £
Dii  /Dj; Z
&)

The second summation, the “sticking constraint,” becomes a
constant positive value, and minimizing the expression over f*
results in a trivial solution where f;* = f;”. Furthermore, “sup-
posing” or “imposing” an initial labeling Y* results in a re-
peated reinforcement of noisy, often incorrect, labels which is
apparent when considering (4). “Supposing” an initial labeling
using the owner annotations results in incorrect reinforcement
since the lack of an initial label does not necessarily imply that
label is inappropriate, as it may have only been overlooked. Ex-
periments in this study show that supposing either a negative
annotation, Y;¥ = —1, or an unlabeled value, Y;* = 0, for
missing annotations underperforms a more explicitly unsuper-
vised graph propagation technique.

Instead, a different tack must be taken to find a stable graph
over the feature space. The weights in W are used to update the
nodes according to the properties of its neighbors. Consider W'
the row-normalized W, that is W’;; = (W;)/(3_; Wij). W’
is a non-generative diffusion kernel on a fully-connected graph.
By “non-generative,” we simply mean that the final weighted
number of annotations of the graph at convergence is the same
as the initial number of annotations, but has been redistributed.
Effectively, the potential annotations of each node diffuse to the
other nodes, weighted by affinity between the nodes.

We consider the keyword f;" of a particular term w for the
video z;, and update it according to ]7-“, the annotation confi-
dence in video j. Additionally, a term is included such that each
step does not completely transfer its current labels to neighbors,
but retains them weighted by some factor p. For each possible
term w for the video, the distribution of the term over the graph
nodes after one iteration is described by the term frequency
vector f*

fw* = arg I‘Ifli)n Z VI/U
0,

P = (1= )W+ ] £, (©)

where L is the identity matrix and f* = [ f{* f&’ et
is the feature vector indicating classification annotation w for
each of the N documents.
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As the update matrix, [(1 — u)W’ 4 uI], is row-normalized,
the total number of annotations does not grow but rather redis-
tributes. The ergodic theorem indicates that the process will con-
verge [13]. Intuitively, if a particular keyword is only found for
the target, it will be distributed to the nodes and its importance
minimized (tag filtering). On the other hand, if the other similar
documents have an annotation that is not contained in the target,
that keyword will be added to the attributes of the target node
(tag extension). Additionally, the graph will reinforce a partic-
ular term in the target that is also present in other documents.

The formulation thus far has been limited to discussion of
reinforcement using a single graph. Extension to the multi-graph
case, which allows for use of multiple features, modalities, and
distance metrics, is discussed in the next section.

B. Multiple Graph Reinforcement

Multi-graph learning has been used for learning situations in
which more than one feature, mode, or distance measure can
typify similarity. For instance, perhaps the system has a metric
for visual similarity and audio similarity, but it is not intuitively
obvious how to effectively combine these two disparate met-
rics. Combination of multiple metrics or features can be done
through a weighted combination of the stable graph generated
by different cases. In some situations, this amounts to a weighted
bagging technique, where each graph represents a classifier and
they are combined to create a stronger prediction.

The problem in multi-graph learning becomes solving for
a4, the weighting terms used when combining the individual
graphs. In a totally naive case, [ aq, ag ] can be set to
equal values, or in a case of perfect knowledge set to 1 for the
best graph and O for the others. In all other cases, a smoothness
measurement can be calculated on each of the graphs to provide
an estimate of the quality of the graph. Intuitively, smoother
graphs, which show a great degree of intra-similarity in term
space for a great degree of visual feature similarity, are better
models of the particular node x; or the particular term w.

1) Semi-Supervised Learning With Multiple Graphs: In
terms of Zhou’s regularization framework [34], the semi-super-
vised multi-graph problem is taken to be solving

£

G N
U = arg ri’livn Z Z 9 Wois v/ Dg.ii V/Dg.jj
9=1 i.j togn Y, 1 - Y

N
Wang [28] shows that solving (7) by optimizing over both f and
acresults in a trivial solution where g, = 1 for the smoothest
graph (gpest = argming{ for L,f"})and a, = 0 otherwise.
This weighting amounts to doing single graph reinforcement on
only the smoothest graph. Instead, Wang suggests thatby relaxing
Qg to a;, we can solve for g, in the case of fixed ", with

1 T—1
( wT w w_y 2)
ay = f Ly fe+plf Y| - (8)

ZG ( 1 )7‘71
g=1 fwl Lgfxu_i_u'fm_)/‘Q

and solve for f*, in the case of fixed «, with

s AN
[ PR MELVATA I ©)
1
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An iterative EM algorithm that alternates updating a according
to (8) and then f* according to (9) converges to a unique solu-
tion [28].

2) Unsupervised Learning for Multiple Graphs: The afore-
mentioned weighting formulation is limited when negative sam-
ples do not exist as explained in Section III-A2. Equation (8)
requires that close nodes should have similar annotations with
term f w’ L, f*. However, this relies on a normalization of fea-
ture attributes f}” € [—1, 1] so that diverging decisions provide
a negative contribution to fwT L, f*. Yet the nature of user an-
notation is such that we cannot assume an annotation is irrele-
vant to a video simply because it is omitted from the user-sup-
plied labels. Building on the idea of smoothness formulated in
(8), we derive a smoothness function for the unsupervised case
when negative examples do not exist.

Using the same principle as in the semi-supervised learning
scenario, we stress that close nodes in the modality used during
graph creation should also be close in annotations. Therefore,
a greater “cost” should be assigned when annotations differ for
close neighbors. We assign a “cost” function per annotation

Co(f",Wy) = Wi £ = £ (10)

2%

For each of the G graphs, it makes the most sense to average the
graph’s smoothness over the possible annotations. The graph
smoothness for a particular graph sums the cost function from
each word found in (10) but we also include a relaxation param-
eter r similar to that in (8). By summing the cost over all anno-
tations and then normalizing, we find weights that sum to 1

r—1

1
st

(11)

Oég:

r—1

1
2 {Zw C(f“’,Wg)}

This smoothness measurement can be thought of as the “good-
ness” of the particular graph, and can be used to deemphasize
poor (“unsmooth”) graphs. Intuitively, as r — oo, ay — (1/G),
equally weighting all graphs. As » — 1, only the smoothest
graph with small >~ C(f", W,) is kept.

IV. ANNOTATION IDENTIFICATION

After the stable graphs have been formed and the appropriate
weights calculated, the target node’s annotations have been up-
dated to include a weighted proportion of the annotations for
similar videos. Now annotations must be found in the stable
graph. The relevant words describing the target must be gleaned
from the set of labels associated with each video in the G graphs.
We identify the words most confidently tied to the target video
and supply them as annotations of the video. Using a zipf-based
cutoff for keyword extraction has been used elsewhere for an-
notation [17], [27], and we describe and motivate this process
for our annotation algorithm.

The zipf curve has been cited as an approximate model of
word distributions in natural language [1]. The zipf curve is an
instance of the power law family. The curve is defined using a

shape parameter s which uniquely defines the distribution, de-
fined for the kth most frequent word in the case of a dictionary
of size N as

1/k®
Zi\;l 1/n*

Using a threshold based on a zipf curve allows the algorithm
to keep a variable number of keywords, rather than, say, a fixed
number K most important keywords. It is not dependent on
a pre-specified threshold or a pre-specified number of annota-
tions, which is important because some videos require more an-
notations than others. For each stable graph, a best-fit zipf curve
is found by solving for the shape parameter s for a vector of
the target node’s attributes or annotations, f;. Then, keywords
appearing more often than the theoretical K’th-ranked word,
f(K';s,N), are flagged as annotations. A range of K’ provides
instances that can create a precision/recall-like curve allows us
to see the tradeoffs as we include fewer (greater precision) or
more (greater recall) keywords.

f(k;s,N) = (12)

V. EXPERIMENTS

Experiments were conducted to evaluate the effectiveness of
the proposed unsupervised approach for automatic collabora-
tive tagging. Specifically, a comparison is made between the
unsupervised approach, the semi-supervised approach in [28]
and summarized in Sections III-A1 and III-B1, and the original
tags provided for a YouTube video by an individual user. An
analysis of annotation extension and filtering of the proposed
technique follows in Section V-D and the performance without
aid of initial tags in Section V-E. We conclude with a study of
system parameters graph size, N, and weighting parameter, r,
in Sections V-F and V-G.

A. Data

For our experiments, YouTube videos were used as the an-
notation targets since such data has the necessary qualities of 1)
repetitiveness, and 2) independent tagging instances. The repos-
itory was crawled to extract 728 videos. It was ensured that some
of the videos had overlapping and similar content in the total
set. For instance, several e-trade commercials featuring a talking
baby were extracted, along with the clips YouTube has identified
as “duplicates.” These duplicates and similar videos were not
explicitly marked in the database. The local database was grown
to 728 videos such that performance gain was not random, re-
sulting from inclusion of the most common annotations. The
inclusion of similar videos is reasonable since it is believed that
85% of YouTube videos have such overlap in the online data-
base [2]. Complicating instances were explicitly included, such
as commercials with similar themes or revisions/edits of an orig-
inal video, along with other randomly crawled YouTube videos.
These instances were expected to make the task more difficult,
but representative of YouTube videos which often undergo iter-
ations or edits.

A keyframe was extracted on average once every 10 s. They
were not regularly spaced in time but were the frames closest
to the centroids of clustered CLD features. Using the CLD cen-
troid frames allows the keyframes to capture different scenes or
views from the video. The similarity between two videos was
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considered to be the maximum of any pairwise keyframe simi-
larity between the two videos. Certainly, this is a limitation of
the system and a more sophisticated method for similarity esti-
mation can be adopted. The annotation dictionary was limited
only by the total set of user-supplied labels. The total lexicon
dictated by the 728 videos consisted of 3326 words.

B. Performance Metric: Relevance-Coverage

A standard precision-recall metric does not accurately reflect
the performance of this algorithm since annotations do not fit
neatly into a binary true/false categorization. Rather, they fitinto
a range between “relevant” to “irrelevant,” and can also be “in-
correct.” Our scoring provides a tag w with a score, ¢,, = +1 for
arelevant tag, O for an irrelevant tag, and —1 for an incorrect tag.
A similar three-class scoring method has been adopted in our
previous work on video annotation from transcripts [17] as well
as studies on image annotation [16], [29]. The “relevance” and
“irrelevance” were judged from belief that a typical user may
use that word in a query seeking the video, and thus, whether
applying such a keyword would help in querying for that video.
Relevance was gauged by a group of judges that had viewed the
videos and were given these instructions. A modified precision
metric, called relevance, is defined as the average score of the
K extracted tags that occur more frequently than the K'th most
frequent word in the best-fit zipf curve, P = (1/K) Zf‘zl Ci.

Furthermore, the set of relevant tags for a particular video is
not strictly limited, and therefore a standard recall metric cannot
be used. Instead, a running list was kept of all “relevant” an-
notations for a video encountered using any set of parameters
found in this paper or previous work by the authors. Then, we
adopted a recall-like metric, called coverage, that indicates the
percentage of all seen positive annotations A for a certain video
covered by the method: R = (|S N A|)/(|A]), where S is the
set of tags extracted using the particular method. A is the union
of all positive annotations found through any method during the
experiments. The best metric has the greatest area under the rel-
evance/coverage curve created by varying K’, exhibiting high
relevance without expending coverage.

C. Unsupervised Learning versus Semi-Supervised Learning

An experiment was done to compare the proposed approach
to the semi-supervised approach (OMG-SSL) from Wang [28].
For OMG-SSL, we use the owner’s initial labels for the videos
as training data for the semi-supervised case; that is, Y;* =
1 if the keyword w appeared in the annotations in the online
database. If a label w is not present, we give it an “unlabeled”
value of Y;* = 0. An experiment not shown was done giving
it an “incorrect” Y;* = —1, initializing a missing annotation as
not relevant, which showed worse performance.

For these studies, only visual modalities were used, and only
an L» norm is used for distance measurement between features.
However, it is notable that these specifications are adaptable.
The following visual modalities were used which have proved
effective for video annotation [15]:

¢ Edge Distribution Histogram (EDH) 75-dimensional,

¢ 5 x 5 Color Moment (CM5 x 5) 225-dimensional, based

on 5 x 5 block division of images in Lab color space;

¢ 3 x 3 Color Moment (CM3 x 3) 81-dimensional, based

on 3 x 3 block division;
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Fig. 3. Graph showing proposed unsupervised approach versus semi-super-
vised approach and the relevance/coverage point of the owner tags. Unsuper-
vised multi-graph reinforcement performs the best. Unsupervised singular graph
reinforcement offers higher relevance but lower coverage than semi-supervised
learning since it considers fewer videos.

¢ Wavelet Texture (WT) 128-dimensional;

¢ Color AutoCorrelogram (AC) 144-dimensional, based on

36-bin color histogram and four distances;

« HSYV Color Histogram (HSV) 64-dimensional;

¢ Co-occurrence Texture (CT) 75-dimensional.

The single graph case creates a graph with nodes x; formed
by videos, and edge weights, W;;, the linear combination of the
normalized distance between two nodes in each modality. For
the single-graph learning case, the typical similarity metric

_ dfeat (zi X ) fa q
Wij = Zfeat €xp ( Ofeat ’ ) ’ if 7 ;é J

(13)

, else
is used for feat € {EDH,CM5 x 5 CM3 x 3,
WT,AC,HSV,CT}. Shaping parameter of.; Wwas set

to the standard deviation of dg..:. This choice of o ensures that
the variance in any singular feature space does not dominate
the distance between two videos. The multi-graph learning
case takes each of these features and creates a separate graph,
and combines them using the weighting scheme found in
Sections III-B1 and III-B2. The similarity between two videos
is taken as the maximum pairwise similarity between two
keyframes. Regrettably, this reduces the power of the algorithm
since a clip of a video is taken as identical to the full video. A
feature based on the video as a whole rather than a singular
keyframe is desirable and can be used in future work.

Fig. 3 highlights some results of this study. The proposed
approach performs better than the state-of-the-art OMG-SSL.
OMG-SSL assumes prior labels from the incomplete initial tags
and repeatedly emphasizes them, a factor identified as prob-
lematic in Section III-A2. The unsupervised approach signifi-
cantly outperforms the original annotations, even at the same
recall level. Additionally, the graph shows that singular graph
reinforcement has higher initial relevance, but lower coverage
at low relevance, than the semi-supervised approach. This re-
sult arises from singular graph reinforcement’s consideration of
only a few very similar videos. Fig. 4 shows an example set of
initial tags, as well as tags from both semi-supervised and un-
supervised graph reinforcement and mining.
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ID: Title

BJDdwZjB4z8: “star wars kid”

35p4PIXeMMU: “Women know

6q3HP4vFd7g: “E-Trade

Superbowl XLII (42) 2008 'Baby"

your limits’ Commercial !!!I”
LOOK LISTEN
Frame from & TAKE
Video “ E E n
star, wars, kid comedy, dinner, fun, limits, 42, ad, advert, advertisement,
women baby, clown, commercial, e,
Initial Tags england, etrade, giants, new,

patriots, superbowl, trade, xlii,
york

OMG-SSL

star, wars, kid, starwars

women, know, your, limits, fun,
dinner, comedy

trade, baby, commercial, e,
superbowl, clown, etrade, xlii,
ad, 42, advertisement, england,
giants, york, patriots, advert, new

Proposed
Unsuper-

star, wars, kid, lightsaber,
starwars, fat, jedi, funny

women, know, your, limits,
funny, woman, comedy, dinner,

e, trade, baby, superbowl,
commercial, super, bowl, clown

vised fun
Learning

Fig.4. Example test videos and annotations, with red bold text for correct, plain
black text for irrelevant, and italics for incorrect. The left two examples exhibit
the tag extension afforded by unsupervised and semi-supervised learning. The
right example shows the tag filtering possible using unsupervised learning, that
is not done properly by the semi-supervised algorithm. Collaborative tagging
done using graph mining techniques generally improves the tags, providing new
tags and filtering irrelevant ones.

D. Collaborative Annotation Extension and Filtering

In Section II, the possibility of tag extension and tag filtering
afforded by online communities was emphasized. Here, we ex-
plicitly test OMG-SSL’s and our algorithm’s performance in
each of these areas separately. One of the biggest contributions
of this annotation process that leverages similar multimedia doc-
uments is in supplying new annotations. Considering all relevant
annotations found in this study, on average 69.6% were discov-
ered only after mining neighbors; that is, on average, the ini-
tial labeling had 30.4% of the relevant annotations that can be
discovered by collecting the annotations of similar videos. The
ability to correctly find new annotations from weakly labeled
training data without building a distinct model for a particular
annotation is a unique feature of the system.

Fig. 5 plots the receiver operating characteristic for tag exten-
sion. A false alarm is a tag that is extended that is incorrect, and
amiss is a correct tag that is not extended. These extended anno-
tations represent terms not found in the original document and
therefore impossible to discover without mining similar docu-
ments. Both the unsupervised and semi-supervised technique
are successful at annotation discovery, though the unsupervised
technique shows a slight advantage arising from the “sticking”
constraint of the semi-supervised technique.

In the effort to combat spam, owner annotations can be fil-
tered by the algorithm. Fig. 5 shows the receiver operating char-
acteristic for tag filtering. A false alarm is an incorrect initial tag
that is kept, and a miss is a correct initial tag that is discarded
by the algorithm. The unsupervised technique has a better ROC
since it does not repeatedly reinforce noisy, incorrect initial la-
bels as explained in Section III-A2 and as is clear from (4). The
unsupervised learning algorithm proposed here is better suited
for gleaning signal from noise in cases of with large amounts of
noisy initial data.

E. Annotating Without Initial Keywords

A special study was done to examine the performance of the
algorithm when annotating a new video that had not already

Receiver Operating Characteristic - Tag Filtering
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Fig. 5. ROC curve for each algorithm’s treatment of tag extension and tag fil-
tering. Tag extension: TP for annotation extended by algorithm to video and
judged correct, FP for extended but judged incorrect, TN for not extended and
judged incorrect, and FN for not extended but judged correct. Unsupervised an-
notation has better tag extension qualities because of elimination of “stickiness”
on initial labels. Tag filtering: TP for annotation judged correct and kept by al-
gorithm, FP for judged incorrect but kept, TN for judged incorrect and discarded,
and FN for judged correct but discarded. Unsupervised learning has more area
under ROC and therefore better treatment of owner annotations.
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Fig. 6. Performance of proposed algorithm and state-of-the-art when presented
with an unlabeled video. Great performance results from redundancy in social
media sites. OMG-SSL performs on par with the proposed method since the
sticking constraint of the initial labeling is not a hindrance in this scenario.

been given initial keywords by the owner. This scenario cor-
responds to annotations at the time of upload that could be sug-
gested to the user. As shown in the relevance/coverage graph
in Fig. 6, both algorithms perform quite well annotating totally
unlabeled documents, a consequence of the presence of aliased
or similar data. When annotating without initial keywords, the
“stickiness” constraint explained in Section III-A1 has been re-
moved. Thus, the proposed algorithm only offers a slight advan-
tage specifically when the video has not already been annotated
but performs on par with OMG-SSL.

F. Evaluation of Graph Size, N

An experiment was conducted to find the effect of graph size
on annotations. “Graph size” refers to the number of near neigh-
bors that construct each of the graphs formed from different
modalities, denoted as IV in Section II1I-B2. Intuitively, the mul-
timedia annotation technique should be robust to graph size, as
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Fig. 7. (a) Effect of graph size on performance. Performance tends to improve
with larger graphs because more nodes result in positive reinforcement of com-
monalities without reinforcing irrelevant annotations from the additional nodes.
(b) Effect of r parameter. A biased weighting (r = 1.4) that significantly
weights the smoothest graphs rather than equally weighting all graphs (r =
1000) has the most area under relevance/coverage graph. Smoothing cost func-
tion derived from graphs effectively combines the graphs for multi-graph rein-
forcement. (a) By graph size, N. (b) By weighting parameter, r.

the graph diffusion step incorporates document similarity into
the annotation decision process.

The results using graph sizes 3, 5, and 10 for the unsupervised
multi-graph case are shown in Fig. 7(a). Clearly, larger /V values
improve performance. Intuitively, as the graph becomes larger
we are using more dissimilar videos. However, the system is
able to robustly handle them by reinforcing the similar elements
without contributing new incorrect ones. Only the commonali-
ties are positively reinforced.

G. Evaluation of Weighting Parameter, r

The value of parameter  can be used to vary the gradation
between smoothness differences on the multiple graphs, as de-
scribed in Section III-B2. As » — 1, the «, values render an
effect where only the smoothest graph is considered, oy, ., =1
and otherwise o, = 0. Increasing » — oo results in equal
weighting, &, — (1/G) Vg. The higher the visual correlation
between videos, the more their tags should correlate. As the tags
and visual feature similarity are from independent sources but
both provide information about the video, tag correlation serves

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 12, NO. 3, APRIL 2010

as validation that the choice of visual feature is appropriate. Re-
sults from an experiment which evaluated choice of parameter
r can be seen in Fig. 7(b).

Effectively using only one graph with r = 1.1, as expected,
results in the worst performance. We found that using a small
value of r, 1.4, which incorporated all graphs at varying weights
performed best. However it was only slightly better than using
all graphs at equal weights because all of the visual features
chosen are known to be relevant in video search. The perfor-
mance would be more profound if using features that were only
relevant for some videos; for instance, audio features are very
relevant in annotating music videos but less relevant perhaps
in commercials. Still, the slight improvement offered by using
weights rather than equal weighting validates the notion of using
graph smoothness to derive weights.

VI. DISCUSSIONS AND CONCLUSIONS

This paper presents the gains achievable through collabora-
tive tagging in community media sites. Sites such as YouTube
are populated by repeated, duplicate, and related documents be-
cause of the viral nature of Internet media. We have presented a
robust method for automatically annotating documents in such
an environment. The algorithm creates stable graphs that are
found in one medium (visual) that supplement the annotations
in another relevant media form (text). This method is robust and
trainable to particular qualities of the target data as well as an-
notation goals, with strong performance from a range of graph
sizes and weighting parameters. It is most powerful when per-
forming annotation using a collection of individual tagging in-
stances on identical documents (e.g., del.icio.us) or similar doc-
uments (e.g., YouTube).

Experiments were conducted only on annotating video with
text labels, but this system is fully capable of finding visual an-
notations or annotations in other modes, and also could be used
on webpages, songs with lyrics, or images with description. It is
fully combinable with an annotation method based on computer
vision modeling, and can be extended using lexical relations.
The social network links that underlie online media websites
can be formulated into a graph and used in the multi-graph an-
notation learning. Future research should be performed to com-
pare this method with alternate forms of collaborative tagging,
such as simple annotation frequency in some immediate neigh-
borhood, as well as its performance on alternate sites. Besides
just simple relevance/coverage analysis as performed here, use-
fulness may also be gleaned from user response when it is used
as a tag suggestion agent.
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