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ABSTRACT
In many important cloud services, diòerent tenants execute
their requests in the thread pool of the same process, requiring
fair sharing of resources. However, using fair queue schedulers
to provide fairness in this context is diõcult because of high ex-
ecution concurrency, and because request costs are unknown
and have high variance. Using fair schedulers like WFQ and
WF2Q in such settings leads to bursty schedules, where large re-
quests block small ones for long periods of time. In this paper,
we propose Two-Dimensional Fair Queuing (2DFQ), which
spreads requests of diòerent costs across diòerent threads and
minimizes the impact of tenants with unpredictable requests.
In evaluation on production workloads from Azure Storage,
a large-scale cloud system at Microso�, we show that 2DFQ
reduces the burstiness of service by 1-2 orders of magnitude.
On workloads where many large requests compete with small
ones, 2DFQ improves 99th percentile latencies by up to 2
orders of magnitude.
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•Computer systems organization→ Availability;
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1. INTRODUCTION
Many important distributed systems and cloud services exe-

cute requests ofmultiple tenants simultaneously._ese include
storage, conûguration management, database, queuing, and
co-ordination services, such as Azure Storage [9], Amazon
Dynamo [16], HDFS [53], ZooKeeper [36], and many more.
In this context, it is crucial to provide resource isolation to
ensure that a single tenant cannot get more than its fair share
of resources, to prevent aggressive tenants or unpredictable
workloads from causing starvation, high latencies, or reduced
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throughput for others. Systems in the past have suòered cas-
cading failures [19, 27], slowdown [14, 20, 27, 28, 33], and even
cluster-wide outages [14, 19, 27] due to aggressive tenants and
insuõcient resource isolation.

However, it is diõcult to provide isolation in these sys-
tems because multiple tenants execute within the same process.
Consider the HDFS NameNode process, which maintains
metadata related to locations of blocks in HDFS. Users invoke
various APIs on the NameNode to create, rename, or delete
ûles, create or list directories, or look up ûle block locations.
As in most shared systems, requests to the NameNode wait
in an admission queue and are processed in FIFO order by a
set of worker threads. In this setting tenant requests contend
for resources, such as CPU, disks, or even locks, from within
the shared process. As a result, traditional resource manage-
ment mechanisms in the operating system and hypervisor
are unsuitable for providing resource isolation because of a
mismatch in the management granularity.

In many domains, resource isolation is implemented using
a fair queue scheduler, which provides alternating service to
competing tenants and achieves a fair allocation of resources
over time. Fair schedulers such asWeighted Fair Queuing [46],
which were originally studied in the context of packet schedul-
ing, can be applied to shared processes since the setting is
similar: multiple tenants submit �ows of short-lived requests
that are queued and eventually processed by a server of lim-
ited capacity. However, in shared processes there are three
additional challenges that must be addressed:
● Resource concurrency:_read pools in shared processes
execute many requests concurrently, o�en tens or even
hundreds, whereas packet schedulers are only designed for
sequential execution of requests (i.e. on a network link);

● Large cost variance: Request costs vary by at least 4 orders
of magnitude across diòerent tenants and API types, from
sub-millisecond to many seconds. By contrast, network
packets only vary in length by up to 1.5 orders of mag-
nitude (between 40 and 1500 bytes). Unlike CPU thread
schedulers, requests are not preemptible by the application;

● Unknown and unpredictable resource costs:_e execu-
tion time and resource requirements of a request are not
known at schedule time, are diõcult to estimate up front,
and vary substantially based on API type, arguments, and
transient system state (e.g., caches). By contrast, the length
of each network packet is known a priori and many packet
schedulers rely on this information.
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_ese challenges aòect the quality of schedules produced by
algorithms such as Weighted Fair Queuing (WFQ) [46] and
Worst-Case FairWeighted FairQueuing (WF2Q) [6]. Figure 1a
shows an example of a bursty request schedule which does
occur in practice as we verify in our evaluation. In the bursty
schedule, the service rates allocated to tenantsA andBoscillate
signiûcantly because C and D have large requests. Most fair
packet schedulers produce the bursty schedule, despite the
existence of the better smooth schedule. _is occurs in part
because the schedulers only quantify and evaluate fairness
in terms of worst-case bounds, which the bursty and smooth
schedules both satisfy. For example, consider MSF2Q [8], a
packet scheduler that extends WF2Q to multiple aggregated
network links (a setting analogous to request scheduling in
worker thread pools). MSF2Q bounds by how much a tenant
can fall behind its fair share to N ⋅Lmax where N is the number
of threads and Lmax is the cost of the largest request. It also
bounds by how much a tenant i can get ahead of its fair share
to N ⋅ L i

max where L i
max is the cost of i’s largest request. Worst-

case bounds are suõcient to avoid unacceptable bursts in
packet scheduling, but in our context they are insuõcient due
to large concurrency (large N) and large cost variance (large
Lmax). It might not be possible to improve worst case bounds
in theory, so instead we seek a scheduler that, in practice,
achieves smoother schedules on average.

_e practical obstacle to smooth schedules is cost estima-
tion. In shared services, request costs are not known at sched-
ule time; instead the scheduler must estimate costs based on
past requests or some other model. However, request costs
are diõcult to predict and estimates could be oò by orders
of magnitude. When a tenant sends many expensive requests
estimated to be very cheap, the scheduler can start them to-
gether, blocking many or all available threads for long periods
of time. _us incorrect costs lead to bursty schedules and high
latencies, particularly for tenants with small requests.

In this paper, we present Two-Dimensional Fair Queuing
(2DFQ)1, a request scheduling algorithm that produces fair
and smooth schedules in systems that can process multiple
requests concurrently. Our solution builds on two insights to
address the challenges above. First, we take advantage of the
concurrency of the system and separate requests with diòerent
costs across diòerent worker threads. _is way, large requests
do not take over all the threads in the system and do not block
small requests for long periods of time. Second, when request
costs are unknown a priori, we use pessimistic cost estimation
to co-locate unpredictable requests with expensive requests,
keeping them away from tenants with small and predictable
requests for whom they would cause bursty schedules.

2DFQ produces smooth schedules like the schedule illus-
trated in Figure 1b, even in the presence of expensive or un-
predictable tenants. 2DFQ improves per-tenant service rates
compared to existing schedulers such as WFQ, WF2Q and
MSF2Q. While it keeps the same worst-case bounds as MSF
2Q, 2DFQ produces better schedules in the average case by
avoiding bursty schedules where possible.

1Two-dimensional because it schedules requests across both time
and the available threads.
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Figure 1: An illustration of request execution over time with four tenants
sharing two threads. Tenants A and B send requests with 1 second duration
while tenants C and D with 10 second duration. In each schedule, rows rep-
resent the threads over time labeled by the currently executing tenant. Both
schedules are fair; over long time periods, all tenants receive their fair share.
Top: bursty schedule; small requests receive no service for 10 second periods.
Bottom: smooth schedule with only 1 second gap between two requests of
tenant A and B. Schedulers such as WFQ, WF2Q, or MSF2Q generate the
bursty schedule; 2DFQ is designed to generate the smooth schedule.

_e contributions of this paper are as follows:
● Using production traces from Azure Storage [4, 9], a large-

scale system deployed across many Microso� datacenters,
we demonstrate scheduling challenges arising from high
concurrency and variable, unpredictable request costs;

● We improve upon existing fair schedulers with Two-Dimen-
sional Fair Queuing (2DFQ), a request scheduler based on
WF2Q that avoids bursty schedules by biasing requests of
diòerent sizes to diòerent threads;

● Tohandle unknown request costs we present 2DFQE, which
extends 2DFQ’s cost-based partitioning with pessimistic
cost estimation to mitigate the impact of unpredictable
tenants that cause bursty schedules;

● We evaluate 2DFQ and 2DFQE with extensive simulations
based on production workload traces from Azure Storage.
We ûnd that 2DFQ has up to 2 orders of magnitude less
variation in service rates for small and medium requests
compared to WFQ andWF2Q. Across a suite of 150 experi-
ments, 2DFQE dramatically reduces mean and tail latency,
by up to 2 orders of magnitude for predictable workloads
when they contend against large or unpredictable requests.

2. MOTIVATION
Need for Fine-GrainedResource Isolation.Many important
datacenter services such as storage, database, queuing, and co-
ordination services [9, 30, 36, 53], are shared among multiple
tenants simultaneously, due to the clear advantages in terms of
cost, eõciency, and scalability. In most of these systems, mul-
tiple tenants contend with each other for resources within the
same shared processes. Examples include performing meta-
data operations on the HDFS NameNode and performing
data operations on HDFS DataNodes [53].
When tenants compete inside a process, traditional and

well-studied resource management techniques in the operat-
ing system and hypervisor are unsuitable for protecting ten-
ants from each other. In such cases, aggressive tenants can
overload the process and gain an unfair share of resources.
In the extreme, this lack of isolation can lead to a denial-of-
service to well-behaved tenants and even system wide outages.
For example, eBayHadoop clusters regularly suòered denial of
service attacks caused by heavy users overloading the shared
HDFS NameNode [20, 34]. HDFS users report slowdown for
a variety of reasons: poorly written jobs making many API
calls [33]; unmanaged, aggressive background tasks making
too many concurrent requests [32]; and computationally ex-



pensive APIs [28]. Impala [37] queries can fail on overloaded
Kudu [41] clusters due to request timeouts and a lack of fair
sharing [38]. Cloudstack users can hammer the shared man-
agement server, causing performance issues for other users
or even crashes [14]. Guo et al. [27] describe examples where
a lack of resource management causes failures that cascade
into system-wide outages: a failure in Microso�’s datacenter
where a background task spawned a large number of threads,
overloading servers; overloaded servers not responding to
heartbeats, triggering further data replication and overload.

Given the burden on application programmers, inevitably,
many systems do not provide isolation between tenants, or
only utilize ad-hoc isolationmechanisms to address individual
problems reported by users. For example, HDFS recently intro-
duced priority queuing [29] to address the problem that “any
poorly written MapReduce job is a potential distributed denial-
of-service attack,” but this only provides coarse-grained throt-
tling of aggressive users over long periods of time. CloudStack
addressed denial-of-service attacks in release 4.1, adding man-
ually conûgurable upper bounds for tenant request rates [13].
A recent HBase update [31] introduced rate limiting for oper-
ators to throttle aggressive users, but it relies on hard-coded
thresholds, manual partitioning of request types, and lacks
cost-based scheduling. In these examples, the developers iden-
tify multi-tenant fairness and isolation as an important, but
diõcult, and as-yet unsolved problem [10, 38, 47].

Research projects such as Retro [43], Pulsar [3], Pisces [52],
Cake [60], IOFlow [54], and more [61], provide isolation in
distributed systems using rate limiting or fair queuing. Rate
limiters, typically implemented as token buckets, are not de-
signed to provide fairness at short time intervals. Depending
on the token bucket rate and burst parameters, they can either
underutilize the system or concurrent bursts can overload it
without providing any further fairness guarantees. Fair queu-
ing is an appealing approach to provide fairness and isolation
because it is robust to dynamic workloads. However, as we
demonstrate in §3, in many systems, request costs can vary by
up to four orders of magnitude and are unpredictable, which
can cause head-of-line blocking for small requests and signiû-
cantly increase latencies.
DesirableProperties. In this paper, we characterize a resource
isolation mechanism that provides “so�” guarantees by using
a fair scheduler. _e scheduler attempts to share the resources
available within a process equally or in proportion to some
weights among tenants currently sending requests to the sys-
tem. Incoming requests are sent to (logical) per-tenant queues.
_e system runs a set of worker threads, typically in the low 10s,
but sometimes in the 100s, to process these requests. When a
worker thread is idle, it picks the next request from one of the
per-tenant queues based on a scheduling policy that seeks to
provide a fair share to each of the tenants.
We specify two desirable properties of such a scheduler.

First and foremost, the scheduler should bework conserving—
a worker thread should always process some request when it
becomes idle. _is property ensures that the scheduler max-
imizes the utilization of resources within a datacenter. _is
requirement precludes the use of ad-hoc throttling mecha-
nisms to control misbehaving tenants.

Second, the scheduler should not be bursty when servicing
diòerent tenants. For example, a scheduler that alternates be-
tween extended periods of servicing requests from one tenant
and then the other is unacceptable even though the two ten-
ants get their fair share in the long run. Providing fairness at
smaller time intervals ensures that tenant request latency is
more stable and predictable, andmitigates the aforementioned
challenges like denial-of-service and starvation.
Fair Queuing Background. A wide variety of packet sched-
ulers have been proposed for fairly allocating link bandwidth
among competing network �ows. _eir goal is to approximate
the share that would be provided under Generalized Proces-
sor Sharing (GPS) [46], constrained in that only one packet
can be sent on the network link at a time, and that packets
must be transmitted in their entirety. Well-known algorithms
includeWeighted Fair Queueing (WFQ) [46], Worst-case Fair
Weighted Fair Queueing (WF2Q) [6], Start-Time Fair Queue-
ing (SFQ) [23], Deûcit Round-Robin (DRR) [50], and more.
We brie�y describe WFQ.

WFQ keeps track of the work done by each tenant over
time and makes scheduling decisions by considering the work
done so far and cost of each tenant’s next request. To track
fair share, the system maintains a virtual time which increases
by the rate at which backlogged tenants receive service, for
example, for 4 tenants sharing a worker thread of capacity 100
units per second, virtual time advances at a rate of 25 units per
second; for 4 tenants sharing two worker threads each with
capacity 100 units per second, virtual time advances at a rate
of 50 units per second; and so on. We use A(r j

f ) to denote
the wallclock arrival time of the jth request of tenant f at the
server, and v(A(r j

f )) to denote the system virtual time when
the request arrived. WFQ stamps each request with a virtual
start time S(r j

f ) and virtual ûnish time F(r j
f ) as follows:

S(r j
f ) = max{v(A(r j

f )), F(r
j−1
f )} F(r j

f ) = S(r j
f ) +

l jf
ϕ f

where ϕ f is the weight of tenant f and l jf is the size of the
request. For a single tenant, the start time of the jth request is
simply the ûnish time of the ( j − 1)th request, unless the tenant
was inactive, in which case it fast-forwards to the current
system virtual time. Each time a thread is free to process a
request, WFQ schedules the pending request with the lowest
virtual ûnish time.

Worst-case Fair Weighted Fair Queuing (WF2Q) [6] ex-
tends WFQ and is widely considered to have better fairness
bounds. _e authors identify and address a prominent cause
of bursty schedules that can occur on a single networking
link.WF2Q restrictsWFQ to only schedule requests a�er they
become eligible, with a request becoming eligible only if it
would have begun service in the corresponding GPS system,
i.e. S(r) ≤ v(now).

Request scheduling across many threads is analogous to
packet scheduling across multiple aggregated links. Blanquer
and Özden previously extended WFQ to multiple aggregated
links and examined the changes to its fairness bounds, packet
delays, and work conservation [8]. While they termed the
algorithm MSFQ, we retain the name WFQ in the interest of
familiarity, and use WF2Q to refer to the naïve work conserv-
ing extension of WF2Q to multiple aggregated links.
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Figure 2:Measurements of Azure Storage showwidely varying request costs.
Whiskers extend to 1st and 99th percentiles; violins show distribution shape.

3. CHALLENGES
In this section we describe two challenges to providing fair-

ness in shared processes. _e ûrst challenge, described in §3.1,
arises when requests with large cost variance are scheduled
across multiple threads concurrently. _e second challenge,
described in §3.2, arises when request costs are unknown and
diõcult to predict. To demonstrate the challenges we collect
statistics from 5-minute workload samples across 50 produc-
tion machines of Azure Storage [4, 9], a large-scale system
deployed across many Microso� datacenters.

3.1 High Request Cost Variability
We ûrst illustrate how request costs in shared services vary

widely, by up to 4 orders of magnitude. For cost, we report the
CPU cycles spent to execute the request, and anonymize the
units. Other metrics we considered include wallclock execu-
tion time and dominant resource cost [21].
Figure 2a shows anonymized cost distributions for several

diòerent APIs in Azure Storage, illustrating how some APIs
are consistently cheap (A), some vary widely (K), and some
are usually cheap but occasionally very expensive (G).
Figure 2b shows cost distributions for several diòerent ten-

ants of Azure Storage, illustrating how some tenants onlymake
small requests with little variation (T1), some tenants make
large requests but also with little variation (T11), and some
tenants make a mixture of small and large requests with a lot
of variation (T9).

In aggregate across all tenants and APIs, request costs span
four orders of magnitude — a much wider range than net-
work packets, for which most scheduling algorithms were
developed, where sizes only vary by 1.5 orders of magnitude
(between 40 and 1500 bytes). High cost variance is not unique
to this production system and is shared bymany popular open-
source systems as well: in storage and key-value stores, users
can read and write small and large objects; in databases, users
can specify operations that scan large tables; in conûguration
and metadata services, users can enumerate large lists and
directories. All of these operations can have very high cost
compared to the average operations in the system.
As illustrated in Figure 1, both bursty and smooth schedules

are possible when there are multiple worker threads. Bursty
schedules adversely aòect tenantswith small requests by servic-
ing them in high-throughput bursts rather than evenly paced
over time. Since realistic systems have such high cost variance,

● ● ●●● ●● ●●●

●●●● ●●● ●●●● ●● ●● ●●●● ● ●●● ●

●●● ●● ●● ●● ●●●● ●● ●●●● ●● ● ●●●●●●● ●● ●● ●●

●● ●● ● ●●●● ●●●●● ●●● ●●●●●●● ● ●●●● ●●●

●● ●●●● ●● ●●●● ●●● ● ●●●●

●● ● ●● ●●●●●●● ●● ●●● ●● ●●●● ●●●●●● ●●● ● ●●● ●●●● ●●● ●●●● ●

T11

T10

T7

T6

T5

T1

100 1000 104 105 106 107

Cost [Anonymized Units]

Te
na

nt

 0.125

 0.25

 0.5

 1

 2

 4

 8

100 1000 104 105 106 107

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

Mean Request Size

A
B

E
G

H

Figure 3: Le�: cost distributions of some tenants using API G, illustrating
variability across tenants. Right: scatter plot showing, for each tenant and
API, the average request cost (x-axis) and coeõcient of variation (y-axis)
for the tenant’s use of that API. Each point represents one tenant on one
API, indicated by color. Each API has tenants using it in predictable and
unpredictable ways.

tenants like T1 will experience large service oscillations if the
scheduler lets too many expensive requests occupy the thread
pool. In §6 we verify that existing schedulers like WFQ and
WF2Q do produce bursty schedules in practice.

Our insight to generating smooth schedules is that given
the large number of available threads, we can spread requests
of diòerent costs across diòerent threads. In some cases it will
be preferable to prioritize small requests in order to prevent
long periods of blocking that would occur if we selected a
large request. We discuss the details of our approach in §4.

3.2 Unknown Request Costs
To motivate the second challenge we illustrate how some

tenants are dynamic, with varying and unpredictable request
costs. Figure 4 shows time series for T2, T3, and T10, illustrat-
ing request rates and costs for the APIs being used. T2 (4a)
has a stable request rate, small requests, and little variation
in request cost. T3 (4b) submits a large burst of requests that
then tapers oò, with costs across four APIs that vary by about
1.5 orders of magnitude. T10 (4c) is the most unpredictable
tenant, with bursts and lulls of requests, and costs that span
more than three orders of magnitude.
Even within each API, request costs vary by tenant. For ex-

ample, while API G illustrated in Figure 2a has several orders
of magnitude between its 1% and 99% request costs, if we also
condition on the tenant, see Figure 3 (le�), most tenants using
this API actually have very low cost variance. Figure 3 (right)
shows the scatter plot of mean and coeõcient of variation
(CoV = mean / stdev) of request costs across many tenants
andAPIs._e ûgure illustrates that each API has tenants using
it in predictable and unpredictable ways.

Unknown request costs are a challenge to making eòective
scheduling decisions, since packet schedulers need to know
costs a priori. As a workaround, costs can be estimated based
on past requests or some other model. However, while cost
estimation is suitable for stable, predictable tenants, it loses
eòectiveness for dynamic tenants. Models can be inaccurate
since costs depend on numerous factors: the API being called,
its parameters, content of various caches, sizes of internal
objects that the request might process, etc. Estimates based on
recent request history, such as moving averages, only re�ect
the past and can be consistently wrong proportional to how
frequently costs vary.
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(b) Stable with gradual changes (T3)
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(c) Unstable tenant with frequent changes (T10)

Figure 4: Details of three Azure Storage tenants over a 30 second interval. Each color represents a diòerent API labeled consistently with Figure 2a. Points
represent individual requests with their costs on the le� y-axis. Lines represent the aggregate request rate during 1 second time intervals (right y-axis).

Incorrect cost estimates lead to bursty schedules. _ey oc-
cur when an expensive requestmasquerades as a cheap request
and is scheduled as though it is cheap, blocking its worker
thread for longer than expected. When a burst of these re-
quests occurs, they can block many or all worker threads for a
long period of time, impacting the latency of all other waiting
tenants. _e challenge is orthogonal to the scheduling strategy
– it aòects not only existing schedulers, but also new schedulers
designed to address the cost variability challenge of §3.1.
Feedback delays exacerbate the impact of underestimates.

Consider an estimator based on per-tenant moving averages,
a typical approach to estimating request costs [3, 42, 43, 51, 52].
_ere is an inherent feedback delay between estimating a re-
quest’s cost and eventually updating the estimator with the
actual cost once the request ûnishes. If a tenant transitions
from cheap to expensive requests then the scheduler will in-
correctly schedule not just one request, but potentially up to N
requests (where N is the number of threads), since the expen-
sive costs won’t be re�ected back in the estimator until a�er
one of the expensive requests has completed. While a bursty
schedule is inevitable when a tenant transitions from cheap
to expensive requests, in this scenario it can be signiûcantly
ampliûed. _e tenant will also deviate from its fair share un-
less the scheduler reconciles the error between each request’s
estimated and actual cost.

Our insight to generating smooth schedules under unknown
request costs stems from the following observations. If the
scheduler underestimates a request’s cost, then the request
can block the thread pool for a long period of time leading
to bursty schedules for other tenants. However, if the sched-
uler overestimates a request’s cost, it only immediately af-
fects the one tenant that was forced to wait for longer than it
should have. Since workloads typically contain a mixture of
predictable and unpredictable tenants, it is better to give good
service to a predictable tenant than to try – and fail – to give
good service to an unpredictable tenant. In order to prevent
unpredictable tenants from interfering with predictable ten-
ants, we try to reduce the chance of underestimating request
costs. We discuss the details of our approach in §5.

4. TWO-DIMENSIONAL FAIR QUEUING
_e goal of Two-Dimensional Fair Queuing (2DFQ) is to

produce smooth schedules for tenants with small requests, by
minimizing burstiness over time and over space. _is section

W1 a 1 b 1 a 2 b 2 a 3 b 3 a 4 b 4 a 5 b 5 a 6 b 6 a 7 b 7 a 8 b 8 a 9

W0

…

c 3 …c 1 d 1 c 2 d 2

(a) Ideal request schedule over time on two threads
Request a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 Request c 1 c 2 c 3

Start Time 0 1 2 3 4 5 6 7 8 Start Time 0 4 8

Finish Time 1 2 3 4 5 6 7 8 9 Finish Time 4 8 12

Request b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 Request d 1 d 2 d 3
Start Time 0 1 2 3 4 5 6 7 8 Start Time 0 4 8

Finish Time 1 2 3 4 5 6 7 8 9 Finish Time 4 8 12

…

…

…

…

(b) Request start and ûnish times for WFQ and WF2Q

…b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8d 1 d 2 b 9W1

…a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8c 1 c 2 a 9W0

(c) Request schedule produced under WFQ
W1 b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9d 1 d 2
W0 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9c 2c 1

…

…

(d) Request schedule produced under WF2Q

Figure 5: Example schedules comparingWFQ andWF2Q to the ideal sched-
ule for four tenants sharing two worker threads. Tenants A and B have re-
quest size 1; tenants C and D have request size 4. See description in §4.

outlines the design of 2DFQ, a request scheduler for known re-
quest costs; in §5 we present 2DFQE, a scheduler for unknown
request costs.

We begin by demonstrating howWFQ andWF2Q produce
bursty schedules. Consider four backlogged tenants (A . . .D)
sharing two worker threads (W0 andW1). Tenants A and B
have small requests (size 1), while tenants C and D have large
requests (size 4). Figure 5a illustrates an ideal schedule of
requests over threads in this scenario.
Figure 5b outlines the virtual start and ûnish times used by

WFQ and WF2Q. Figure 5c illustrates the resulting schedule
forWFQ. SinceWFQ schedules requests in ascending order of
ûnish time, it uses both threads to execute 4 requests each for
A and B. Only at t =4 do C and D have the lowest ûnish time
causing WFQ to simultaneously execute one request each for
C and D, occupying the thread pool until t =8. _is schedule
is bursty for A and B, because they each get a period of high
throughput followed by a period of zero throughput. In gen-
eral, WFQ’s bursts are proportional to the maximum request
size (i.e., the size of C and D’s requests) and the number of
tenants present (i.e., doubling the number of tenants would
double the period of blocking).
Figure 5d illustrates the resulting schedule under WF2Q

which also has periods of blocking proportional to maximum
request size. WF2Q also schedules requests in ascending order
of ûnish time, but with the additional condition that a request



cannot be scheduled if its virtual start time has not yet arrived.
As a result, WF2Q does not schedule the second requests of A
or B – their virtual start time is 1, which means they cannot
be scheduled until t =2. _e only remaining requests for WF
2Q to pick are those of C and D. Like WFQ, WF2Q produces
a bursty schedule that alternates between concurrent service
for A and B, followed by concurrent service for C and D.
Burstiness occurs underWF2Qwhenmultipleworker threads

become available and only large requests are eligible to be
scheduled. Since each request is instantaneously eligible to
run on all worker threads when its virtual start time S(r j)

arrives, if small requests are ineligible for one thread then they
will be ineligible for all threads. _e key to 2DFQ is to break
this tie. 2DFQ modiûes WF2Q’s eligibility criterion to make a
request eligible at diòerent times for diòerent worker threads,
avoiding WF2Q’s “all or nothing” behavior. 2DFQ uniformly
staggers each request’s eligibility across threads, making them
eligible to run on high-index threads sooner than low-index
threads. Formally, in a system with n threads, r j is eligible on
thread i at virtual time S(r j) −

i
n × l j where 0 ≤ i < n. _is

staggers the eligibility of r j across threads in intervals of l j
n .

Once S(r j) arrives, r j will be eligible on all worker threads.
With these modiûed eligibility criteria, each worker thread

has a diòerent threshold for when a request will become eligi-
ble; while one thread might ûnd that only large requests are
eligible, other threads might still see eligible small requests
and select those instead. _e practical eòect of 2DFQ is to par-
tition requests across threads by size. Small requests become
eligible on high-index threads ûrst and tend to be dequeued
and serviced on those threads before they are ever eligible for
low-index threads. On the other hand, due to the lack of eligi-
ble small requests, low-index threads end up mostly servicing
large requests.

Returning to the previous example, Figure 6a outlines the
modiûed eligibility times of requests under 2DFQ, which are
now diòerent forW0 andW1. Figure 6b illustrates the schedule
under 2DFQ. _is time, the second requests of A and B will
not be eligible on W0 until t =2, but on W1 they are eligible at
t = 1. As a result, 2DFQ schedules c1 on W0, but selects a2 for
W1. _erea�er, A and B continue alternating requests on W1.

_e following theorem shows that 2DFQ is fair by proving
a bound on how far tenants can fall behind the fair share
provided by the ideal �uid GPS server.

Theorem 1. At any instant t, if W f
2DFQ(0, t) represents the

amount of resources consumed by tenant f under 2DFQ and
W f

GPS(0, t) represents the resources consumed by f under GPS,
then

W f
GPS(0, t) −W f

2DFQ(0, t) ≤ N × Lmax

where N is the number of threads and Lmax is the maximum
resource consumed by any request in the system.

Proof. _e proof follows from the corresponding theorem
for MSFQ (_eorem 3 in [8]) and the fact that adding a regu-
lator does not modify this bound (_eorem 1 in [6]) provided
the regulator makes a request eligible for schedule at or before
the start time of the request in the GPS server. _e eligibility
condition of 2DFQ has this property.

Request a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 Request c 1 c 2 c 3
Eligible W0 0 1 2 3 4 5 6 7 8 Eligible W0 0 4 8

Eligible W1 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 Eligible W1 -2 2 6

Request b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 Request d 1 d 2 d 3
Eligible W0 0 1 2 3 4 5 6 7 8 Eligible W0 0 4 8

Eligible W1 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 Eligible W1 -2 2 6

…

…

…

…

(a) Modiûed eligibility times under 2DFQ

W0 a 1 d 2 …c 1 c 2d 1

W1 b 1 a 2 b 2 a 3 b 3 a 4 b 4 a 5 b 5 a 6 b 6 a 7 b 7 a 8 b 8 a 9 b 9 …

(b) Request schedule produced under 2DFQ.
Figure 6: Schedule for 2DFQ for the example described in §4 and Fig. 5.

5. SCHEDULING REQUESTS WITH
UNKNOWN COST

_is section outlines the design of 2DFQE, which extends
2DFQ with mechanisms for eòectively dealing with unknown
request costs. We outline the pessimistic estimation strategy
of 2DFQE as well as two practical bookkeeping mechanisms
– retroactive charging and refresh charging – for managing
unpredictable request costs.
Bookkeeping:RetroactiveCharging Since request costs aren’t
known a priori, most schedulers update counters at schedule
time using an estimate of the cost, for example using a moving
average that is updated when requests complete. For sched-
ulers based on virtual time (cf. §2) this is lr , used to calculate
ûnish times: F(r) = S(r) + lr/ϕ f .

Scheduling only based on estimates can lead to arbitrary
unfairness in systems where multiple requests can execute
concurrently. For example, suppose we use the cost of themost
recently completed request as our estimate. _en in a thread
pool with n threads, any tenant can achieve approximately n
times their fair share by alternating between one small request
of size 1, followed by n concurrent large requests of size k. _e
scheduler would predict size n for the small request, and size 1
for the large requests, thereby charging n + k for kn + 1 work.

Retroactive charging ensures that a tenant is eventually char-
ged for the resources it actually consumed and not just our
a priori estimate. _e system measures the resource usage cr
of each request, and reports it back to the scheduler upon
completion. If cr > lr , we charge the tenant for its excess
consumption; if cr < lr , we refund the tenant for unused
resources. To do this we adjust the tenant’s start and ûnish
tags by cr − lr . Regardless of the initial estimate lr , retroactive
charging eventually reconciles the error between lr and cr ,
thereby guaranteeing that the tenant will receive its true fair
share of resources in the long run.
Pessimistic Cost Estimation It is important to have a good
cost estimator to avoid bursty schedules in the short term.
Following from §3.2, we are most concerned about the case
when our cost estimate for a tenant is low and it transitions
to expensive requests; i.e. lr ≪ cr . If the scheduler mistakenly
estimates an expensive request to be cheap, the expensive re-
quest can occupy a worker thread for signiûcantly longer than
the scheduler may have anticipated. If the scheduler mistak-
enly estimates multiple expensive requests to be cheap, then
they can concurrently block part of all of the thread pool. _is
will cause a burst of service to this tenant followed by a lull
once the scheduler incorporates the true cost and compen-
sates other tenants for this aggressive allocation. _e duration



1: procedure Enqueue(r j
f ) ▷ request j of tenant f

2: if f ∉ A then
3: A← A ∪ f
4: S f ← max(S f , v(now))
5: end if
6: Push(Q f , r

j
f ) ▷ enqueue r j

f
7: end procedure

8: procedure Refresh ▷ runs periodically
9: for r j

f ∈ Running requests do
10: c ← new resource usage
11: if c < c jf then ▷ already paid for c
12: c jf ← c jf − c
13: else ▷ not paid yet, charge the tenant
14: S f ← S f + (c − c jf )/ϕ f
15: c jf ← 0
16: end if
17: end for
18: end procedure

19: procedure Dequeue(i) ▷ dequeue to thread i
20: Enow ← { f ∈ A ∶ S f − i

n L
f
max < v(now)}

21: f ∗ ← f ∈ Enow with smallest S f + L fmax/ϕ f
22: r j

f∗ ← Pop(Q f∗) ▷ request to run
23: c jf∗ = L f

∗

max ▷ remember how much we paid for r j
f∗

24: S f∗ = S f∗ + L f
∗

max/ϕ f∗
25: return r j

f∗

26: end procedure

27: procedure Complete(r j
f ) ▷ Service was completed

28: c ← new resource usage
29: T ← total resource usage of r j

f
30: L fmax ← max(αL j

max , T) ▷ update L j
max

31: S f ← S f + (c − c jf )/ϕ f ▷ reconcile usage
32: if ∣Q f ∣ = 0 then
33: A← A ∖ f
34: end if
35: end procedure

Figure 7: 2DFQE on n threads. A is the set of active tenants. c jf keeps track of how much credit we have le� for this request. It is initialized on line 23 based on
the cost estimate we charge the tenant and it is updated during Refresh; for each new measurement of request r j

f , if we still have credit, we subtract from it
(line 12), otherwise we increase tenant’s clock forward (line 14). A�er completion of request, we reconcile the ûnal resource measurement with the remaining
credit on line 31. We update the per-tenant L fmax estimate on line 30, and use it for eligibility and ûnish time calculation on lines 20 and 24.

of the burst is proportional to cr – the longer the request, the
longer it will take to incorporate the true cost back in the
scheduler and the longer other tenants will be blocked.
We are less concerned with the other extreme when a ten-

ant’s cost estimate is high and it transitions to cheap requests;
i.e. lr ≫ cr . If the scheduler mistakenly estimates a cheap
request to be expensive, then the scheduler might delay the
request for longer than normal. However, once it is scheduled
the request will not occupy a worker thread for any longer
than the scheduler anticipated, so the request will not cause
burstiness to other tenants. _e eòect will only persist for
a short duration since the cheap requests complete quickly.
Retroactive charging will refund the unused cost to the tenant
thereby guaranteeing that it will receive its fair share of service
in the long run. Most importantly, overestimation does not
cause prolonged thread pool blocking for other tenants.

With known costs (§4) 2DFQ spreads requests across threads
by size, a property we take advantage of to handle unpre-
dictable costs. Since workloads contain a mix of predictable
andunpredictable tenants, we limit the impact of unpredictable
tenants by treating them as if they are expensive. We bias un-
predictable tenants towards low-index threads to keep them
away from small requests on high-index threads. 2DFQE uses
a pessimistic cost estimator that overestimates costs as follows:
individually for each tenant on each API, it tracks the cost
of the largest request, L i

max ; a�er receiving the true cost mea-
surement cr of a just-completed request, if cr > L i

max , we set
L i

max = cr , otherwise we set L i
max = αL i

max , where α < 1, but
close to 1. In eòect, 2DFQE penalizes unpredictable tenants
that repeatedly vary between cheap and expensive requests by
just treating all requests as expensive. Requests will run on low-
index threads mixed in among expensive requests. _ey will
not run on the high-index threads and thereby not interfere
with other tenants’ small requests. On the other hand, stable

tenants with cheap requests will maintain lower estimates and
remain on the high-index threads. _e α parameter allows us
to tune the trade-oò between how aggressively we separate
predictable tenants from unpredictable ones, and how much
leeway a tenant has to send the occasional expensive request.
Bookkeeping: Refresh Charging When a tenant submits
cheap requests for a sustained period of time, 2DFQE will
be susceptible to underestimation if the tenant transitions to
expensive requests. When this happens, L i

max will be a low
value that underestimates the expensive requests until their
cost can be incorporated into the estimator. As we outlined in
§3.2, up to N underestimated requests can run concurrently
due to this large feedback delay in updating the estimator.

Refresh charging is a ‘damage control’ mechanism that peri-
odically measures the resource usage of long-running requests
and incorporates measurements into the scheduler immedi-
ately. It lets us notice expensive requests quickly and imme-
diately charge the tenant for the excess cost while the request
is still running, short-circuiting the typical cost estimation
feedback loop. _e computational overhead for measuring re-
source consumption is non-negligible, so the scheduler must
strike a balance between frequent measurements and accept-
able overheads. In practice we found that refresh charging
every 10ms had no signiûcant overhead.
Algorithm We summarize 2DFQE in Figure 7.

6. EVALUATION
In this section, we evaluate the following goals: that 2DFQ

provides smooth service to all tenants when request costs are
known, despite the presence of expensive requests; and that
2DFQE provides smooth service to predictable tenants when
request costs are unknown, despite the presence of unpre-
dictable requests.
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Figure 8: Synthetic workload described in §6.1.1.

We implemented all schedulers in a discrete event simula-
tor where requests were scheduled across a ûxed number of
threads. We used synthetic workloads and traces from Azure
Storage [4, 9] to keep the server busy throughout the experi-
ments, but also ran experiments at lower utilizations.
We compare 2DFQ to WFQ and WF2Q as baseline algo-

rithms. Besides WFQ and WF2Q, we implemented several
other algorithms including SFQ [23],MSF2Q[8], andDRR [50].
However, we omit these algorithms from our evaluation as we
found the results to be visually indistinguishable from either
WFQ or WF2Q– occurring because the key diòerences be-
tween the algorithms are incidental to their fairness bounds.
For example, since we do not use a variable rate server, the pri-
mary feature of SFQ is not necessary and SFQ and WFQ pro-
duced nearly identical schedules. Similarly, WF2Q and MSF
2Q produced nearly identical results; MSF2Q’s distinguishing
feature handles the case where one tenant has a high weight
or few tenants are sharing many links, whereas we evaluate
with many tenants (up to several hundred) and equal weights.
Furthermore, many algorithms such as DRR [50] and WF
2Q+ [5] improve algorithmic complexity but do not improve
fairness bounds or add additional features; in practice they
have similar or worse behavior compared to WFQ or WF2Q.
To evaluate the schedulers, we use the following metrics:
Service lag: the diòerence between the service a tenant should
have received under GPS and the actual work done. For N
threads with r processing rate, we use a reference GPS system
with rate Nr.
Service lag variation: the standard deviation, σ of service
lag. Bursty schedules have high service lag variation due to
oscillations in service.
Service rate: work done measured in 100ms intervals.
Latency: time between the request being enqueued and ûn-
ishing processing. We focus on the 99th percentile of latency,
unless otherwise noted.
Gini index: an instantaneous measure of scheduler fairness
across all tenants [49].

Evaluation summary Our evaluation of 2DFQ shows that:
● When request costs are known, for both synthetic (§6.1.1)
and real-world (§6.1.2) workloads, 2DFQ provides service

to small and medium tenants that has one to two orders of
magnitude reduction in service lag variation.

● When many tenants have expensive requests, 2DFQ main-
tains low service lag variation for small tenants (§6.1.1).

● When request costs are unknown, 2DFQE reduces the ser-
vice lag variation by one to two orders of magnitude for
small and medium tenants (§6.2.2).

● With increasingly unpredictable workloads, 2DFQE impro-
ves tail latency of predictable tenants by up to 100× (§6.2.1).

● Across a suite of experiments based on production work-
loads, 2DFQE improves 99th percentile latency for pre-
dictable tenants by up to 198× (§6.2.2)

6.1 Known Request Costs
Our ûrst set of experiments focuses on scheduling with

known request costs that may vary by several orders of mag-
nitude. We ûrst evaluate 2DFQ under workloads with increas-
ingly many expensive requests, and compare with the service
provided under WFQ and WF2Q. Second, we evaluate the
overall service and fairness provided by 2DFQ on a workload
derived from production traces.

6.1.1 Expensive Requests
In this experiment we simulate the service received by 100

backlogged tenants sharing a server with 16 worker threads,
each with a capacity of 1000 units per second. For varying
values of n, we designate n of the tenants as small and 100 − n
of the tenants as expensive. Small tenants sample request sizes
fromanormal distributionwithmean 1, standard deviation 0.1;
large tenants sample request sizes from a normal distribution
with mean 1000, standard deviation 100.
Figure 8a examines the service received over a 15 second

interval for one of the small tenants, T, when 50% of tenants
are expensive (n = 50). Since the thread pool has 16 threads,
the ideal schedule would split cheap and expensive requests
into separate threads, producing steady service of 160 units
per second per tenant. Figure 8a (top) shows that the service
provided by WFQ has large-scale oscillations. _is occurs
because WFQ alternates between phases of servicing all of
the 50 small tenants, followed by all of the 50 large tenants, in
bursts of up to 1 thousand units per tenant. Figure 8a (bottom)
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(b) Illustration of request sizes running on each thread. Horizontal lines repre-
sent worker threads; ûll color indicates the running request size at each instant
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colored blocks of expensive requests. 2DFQ partitions requests by size.

Figure 9: Time series for a production workload on a server with 32 threads
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tribution of service lag, the more oscillations a tenant will experience.

plots the service lag over time, showing that small tenants
oscillate between 1 and 2 seconds ahead of their fair share,
with a period of approximately 6.25 seconds. Small tenants are
consistently ahead of their fair share because small requests
have the earliest ûnish time soWFQ services themûrst.WF2Q
has less long-term oscillation, but suòers from more extreme
oscillations over shorter time scales; the small tenant receives
no service for almost a second. By design, WF2Q prevents
T from getting too far ahead of its fair share, but due to the
presence of the expensive tenants, T continually falls behind by
up to 1 second. _is occurs because WF2Q determines that all
small tenants are ineligible, and schedules expensive requests
to run on every worker thread, as illustrated in Figure 8b.
Note that because average execution time of a small tenant’s
request is 1ms, such rate oscillation delays the tenant by up to
1000 requests. Finally, the service provided by 2DFQ is more
stable, but still with occasional oscillations._e oscillations are
characterized as a period of slightly reduced service followed
by a burst of increased service. As illustrated in Figure 8b
(bottom), 2DFQ mostly partitions requests by size across the
threads, and the remaining oscillations are a side eòect of

randomness in request sizes that enables expensive requests
to temporarily run on 9 of the worker threads instead of 8.

We varied the proportion of expensive tenants n between 0
and 100 and show the resulting standard deviation of service
lag in Figure 8c. WFQ andWF2Q experience a linear increase
in standard deviation as the proportion of expensive tenants
grows. WFQ grows unboundedly, whereas WF2Q eventually
plateaus.With only 25%of theworkload comprising expensive
tenants, WF2Q converges to its worst-case behavior. On the
other hand,while 2DFQalso sees gradually increased standard
deviation, it is an order of magnitude lower compared to other
schedulers.

6.1.2 Production Workloads
In this experiment we evaluate fair share provided by 2DFQ

with a workload derived from production traces of Azure
Storage. We simulate the service received by tenants sharing
a server of 32 worker threads, each with capacity 1 million
units. We replay 250 randomly chosen tenants drawn from
workload traces of 50 servers. As a baseline for evaluation in
this and subsequent experiments, we include tenants T1 . . .T12
described in §3.2. In aggregate across all tenants, request costs
for this experiment vary from 250 to 5 million.
We ûrst illustrate the improved service for tenants with

small requests. Figure 9a (top) shows a 15 second time series
for T1, comprising primarily small requests between 250 and
1000 in size. Figure 9a (middle) plots T1’s service lag. Under
WFQ, the service received oscillates between 3s and 3.7s ahead
of GPS. WF2Q more closely matches GPS, but occasionally
falls behind by up to 50ms due to the thread pool becoming
occupied by expensive requests. 2DFQ (the horizontal red
line) closely matches GPS at all times. Figure 9a (bottom)
plots the Gini index [49] over time, an aggregate measure of
fairness across all tenants. WFQ is signiûcantly less fair in
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(b) _read occupancy over time for 2DFQE for increasingly unpredictable
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Figure 11: Time series as the overall server workload mix comprises 0% (top), 33% (middle), and 66% (bottom) unpredictable tenants.

aggregate, while 2DFQ and WF2Q are comparable. Figure 9b
illustrates sizes of requests running on threads during the
experiment. Service spikes under WF2Q correlate with sev-
eral large requests occupying threads simultaneously. 2DFQ
partitions requests across threads according to request size,
avoiding such spikes. Figure 10 plots a CDF of the service lag
standard deviations across all tenants included in the experi-
ment. A low standard deviation is desirable, as it corresponds
to fewer oscillations in service. _e ûgure shows that the ûrst
quartile of tenants have approximately 50x lower standard
deviation under 2DFQ than WF2Q and 100x lower standard
deviation under 2DFQ than WFQ. _ese tenants are the ones
with primarily small requests.

To more precisely understand how 2DFQ impacts tenants
based on request sizes, we repeat the experiment and include
an additional seven tenants, t1 . . . t7. _ese tenants submit
requests with ûxed costs of 28 , 210 , 212 , . . . , 220 respectively
(from 256 to 1 million), spanning the range of costs in our
workload. Figure 10 (right) plots the distribution of service lag
experienced by t1 . . . t7 under WFQ, WF2Q and 2DFQ. Each
distribution shows how much the tenant deviates from its
fair share. Under all schedulers, large requests (t7) experience
a wide range of service lag, because service is received in
large, coarse-grained bursts. For progressively smaller requests
(t6 . . . t1), WFQ reduces service lag to a range of 0.8 seconds;
WF2Q reduces it to 0.5 seconds, while 2DFQ reduces it to
0.01 seconds. _ese results illustrate how 2DFQ particularly
improves the service received by tenants with small requests.

6.2 Unknown Request Costs
Our second set of experiments evaluates schedulers when

request costs are not known a priori. We compare 2DFQE

(α = 0.99) to variants of WFQ and WF2Q that estimate re-
quest costs using per-tenant per-API exponential moving av-

erages (α = 0.99). We refer to them, respectively, as WFQE

and WF2QE. We also implemented both retroactive charging
and refresh charging for WFQE and WF2QE. Without these
techniques, we found that the quality of schedules deteriorated
by a surprising amount. It turned out to be relatively common
for workloads to have back-to-back requests that diòer by sev-
eral orders of magnitude; without retroactive charging it takes
too long to incorporate measurements back into the moving
average to rectify estimation error. For the same reason, with-
out refresh charging it would quickly lead to multiple large
requests taking over the thread pool. Since the bookkeeping
techniques are straightforward to implement, we applied them
to all algorithms, and our experiment results only re�ect the
diòerences between scheduling logic and estimation strategy.

We ûrst evaluate 2DFQE for workloads where an increasing
proportion of the tenants are unpredictable, comparing to
service under WFQE and WF2QE. Second, we compare the
schedulers across a suite of 150 workloads generated from
production workload traces, and assess the overall eòect on
service lag and request latency.

6.2.1 Unpredictable Workloads
In this experiment we evaluate 2DFQE’s pessimistic cost

estimation strategy, demonstrating how it co-locates unpre-
dictable and expensive tenants, keeping them away from pre-
dictable tenants with small requests. We examine a single
workload in detail; in §6.2.2 we give aggregate results across
a suite of experiments. We show that 2DFQE improves ser-
vice for those tenants compared to WFQE and WF2QE, which
deteriorate under the same conditions.
We examine a workload of 300 randomly selected tenants

plus T1 . . .T12 as in §6.1.2. We repeat the experiment three
times. Initially, most tenants in the workload are predictable,
and 2DFQE provides little, if any, improvement over WFQE
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Figure 12: Request latencies as the overall server workload mix is increasingly unpredictable. Top row: latency distributions for T1 . . .T12 with 1% and 99%
whiskers; each cluster of three bars shows the latency distribution for one tenant under WFQE, WF2QE, and 2DFQE respectively. 2DFQE mitigates the impact
of unpredictable tenants and signiûcantly improves latencies for predictable tenants with small requests, such as T1 . Bottom le�: CDFs of service lag standard
deviation. Bottom right: latency boxplots for ûxed-cost tenants t1 . . . t7 .

and WF2QE. However, for the second and third repetitions of
the experiment, we make 33% and 66% of these tenants explic-
itly unpredictable, by sampling each request pseudo-randomly
from across all production traces disregarding the originating
server or account. _e resulting tenants lack predictability in
API type and cost that is common to real-world tenants as
shown in §3.2, and as the workload becomes unpredictable,
WFQE and WF2QE rapidly deteriorate.
Figure 11a plots a time series of the service received by T1

under WFQE, WF2QE, and 2DFQE. _e top ûgure shows that
with the baseline workload, WFQE provides service with the
most oscillations; WF2QE provides service with occasional
spikes, and 2DFQE provides consistently smooth service. Os-
cillations under WFQE are lower than they were in experi-
ment 6.1.2 since a side eòect of EMA averaging is to make
costs more uniform across tenants: for tenants with any varia-
tion in request size, small requests are perceived to be larger
than they are and large requests are perceived to be smaller.
_e middle and bottom ûgures demonstrate how the service
deteriorates with increasingly unpredictable workloads (33%
middle; 66% bottom). WFQE and WF2QE produce large scale
oscillations in service, while 2DFQE has occasional spikes of
service.
Figure 11b illustrates the schedules produced by 2DFQE for

the three experiments. _e ûgure shows how 2DFQE initially
partitions requests accurately according to cost, but as more
unpredictable tenants are present, the partitioning becomes
more coarse grained. _is occurs when a request is estimated
to be large but it is small, or vice versa. It can be observed by
small requests interspersed among large requests, and vice
versa. Each of the brief spikes in service experienced by T1 in
Figure 11a can be correlated with an temporary imbalance of
expensive requests.

Oscillations in service can have a profound eòect on re-
quest latencies. Figure 12 shows boxplot latency distributions

for T1 . . .T12 (top row), with whiskers highlighting 1st and
99th percentile latencies. Each cluster of three bars shows
the latency distribution under WFQE, WF2QE, and 2DFQE

respectively for one tenant in one experiment. For the baseline
workload (0% Unpredictable) median and tail latencies under
WFQE and 2DFQE are comparable. WF2QE has similar me-
dian latencies, but higher 99th percentile latencies for small
requests because of the blocking eòects outlined in §2.

However, with 33% and 66% unpredictable tenants present,
latencies under WFQE and WF2QE increase nearly uniformly
across all tenants, to approximately 1 second 99th percentile
latency. _e relative increase in latency is most noticeable for
tenantswith smaller requests (T1 . . .T4), withmedian and 99th
percentile latencies increasing by a factor of more than 100×.
By contrast with 2DFQE these tenants are signiûcantly less
impacted by the unpredictable tenants, with 99th percentile
latencies increasing by a maximum factor of 10× among ex-
periments. With 66% of the workload unpredictable, 2DFQE

provides a 99th percentile latency speedup of up to 100× over
WFQE for tenants such as T1 with small, predictable requests.
On the other hand, tenants such as T10 do not experience
signiûcant latency improvements. Recall Figure 4c from §2:
T10’s requests vary widely in cost, by more than 3 orders of
magnitude. 2DFQE does not improve T10’s service because it
is an example of the expensive and unpredictable tenants that
must be isolated from others.
Despite some tenants being more predictable than others,

T1 . . .T12 nonetheless have variation in request costs. To more
precisely understand how 2DFQE aòects latencies for tenants
based on request size, we repeat the experiment to include the
ûxed-cost tenants t1 . . . t7 as described in §6.1.2. Figure 12 (bot-
tom right) shows boxplot latency distributions for t1 . . . t7, and
illustrates how the relative latency degradation disproportion-
ately aòect tenants t1 . . . t4, whose requests are the smallest.
Across all tenants, as the workload becomes less predictable,



latencies converge towards the latency of the most expensive
requests in the system.
Figure 12 (bottom le�) plots CDFs of the service lag stan-

dard deviation across all tenants. It shows the successive in-
crease in the proportion of tenants with high standard devi-
ation – this corresponds to the unpredictable tenants. _e
remaining predictable tenants experience approximately 10 to
15× reduced standard deviation under 2DFQE compared to
WFQE and WF2QE.

6.2.2 Production Workloads
Finally, we run a suite of 150 experiments derived from pro-

duction workloads of Azure Storage. We simulate the service
received by tenants under WFQE, WF2QE, and 2DFQE, as
we randomly vary several parameters: the number of worker
threads (2 to 64); the number of tenants to replay (0 to 400);
the replay speed (0.5-4×); the number of continuously back-
logged tenants (0 to 100); the number of artiûcially expensive
tenants (0 to 100); and the number of unpredictable tenants
(0 to 100). To compare between experiments, we also include
T1 . . .T12.

We measure the 99th percentile latency of tenants in each
experiment and calculate the relative speedup of 2DFQE com-
pared toWFQE andWF2QE. As an example, in the “0%Unpre-
dictable” experiment of §6.2.1, T1’s 99th percentile latency was
3.3ms under 2DFQE, 4.5ms under WFQE, and 28ms under
WF2QE, giving 2DFQE a speedup of 1.4× overWFQE and 8.5×
over WF2QE.
Figure 13a (le�) plots the distribution of 2DFQE’s speedup

over WFQE and WF2QE. Across the experiments, 2DFQE sig-
niûcantly improves 99th percentile latency for tenants such
as T1, whose requests are small and predictable (illustrated in
§2). T1 has a median improvement of 3.8× over WFQE and
142× over WF2QE. However, 2DFQE does not improve 99th
percentile latency as much for tenants with large and/or un-
predictable requests, such as T10 and T12. Figure 13a (right)
plots the 99th percentile latencies across all experiments for
T10, comparing 2DFQE to WFQE (top) and WF2QE (bottom).
2DFQE resulted in worse 99th percentile latency for T10 in 64
of the experiments for WFQE and 47 for WF2QE. However,
when 2DFQE did improve latencies for T10, it was by signif-
icantly larger factors (up to 61×) than when latencies were
worse (up to 5×).

To better understand how 2DFQE improves latencies for
tenants with smaller requests, we repeat the experiment suite
to include the ûxed-cost tenants t1 . . . t7 as described in §6.1.2.
Figure 13b plots the distribution of 2DFQE’s speedup over
WFQE and WF2QE for t1 . . . t7, and illustrates how latency
is primarily improved for tenants with small requests (t1).
Conversely, tenants with very expensive requests such as t7
and T12 see little, if any improvement.

Overall, the experiments where WFQE and WFQE per-
formedbest correlatedwith lownumbers of both unpredictable
and expensive tenants, for which request cost estimates were
accurate and there was little chance for thread pool blocking.
On the other hand, the experiments where 2DFQE performed
best correlated with high numbers of either unpredictable
or expensive tenants, with most speedups occurring when
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Figure 13: Comparison of 99th percentile latencies across 150 experiments
based on production workloads. Whiskers extend to min and max values.

both were true. WFQE and WF2QE rapidly deteriorate as
the workload becomes unpredictable, increasing the relative
improvement of 2DFQE. For example, in §6.2.1, the initial
workload (0% Unpredictable) was more predictable than a
typical workload, and 2DFQ only improved 99th percentile
latency for T1 by a factor of approximately 1.5× over WFQE.
On the other hand, the ûnal workload (66% Unpredictable)
was less predictable than a typical workload, and T1’s 99th
percentile latency improvement over WFQE was more than
100×. _e suite of 150 experiments presented here similarly
vary in how predictable they are, and the range of 99th per-
centile latency speedups illustrated in Figure 13a (le�) re�ect
this range.

7. DISCUSSION
2DFQ Intuition 2DFQ improves service compared to WFQ
andWF2Qprimarily due to themanageablemix of predictable,
unpredictable, cheap and expensive requests in real workloads.
Consider the illustration in Figure 14. At one extreme we have
predictable workloads with low variation in request cost (À).
_is scenario is representative of packet scheduling on net-
work links, and WFQ, WF2Q and 2DFQ would provide simi-
larly good quality of service because little, if any, blocking can
occur. At the other extreme lies workloads with hugely varying
request costs and completely unpredictable tenants (Á). In this
scenario, all schedulers would behave poorly because blocking
would be unavoidable, even for 2DFQ. However, starting from
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Figure 14: Illustration of the intuition behind 2DFQ’s signiûcantly improved
service for our workloads.

the ûrst extreme and transitioning to the second, with work-
loads becoming less predictable, 2DFQ does not deteriorate as
rapidly as WFQ or WF2Q do. Between the two extremes lies
a middle ground where WFQ and WF2Q experience block-
ing and reduced quality of service, but 2DFQ does not (Â).
Many real-world workloads lie between these two extremes,
containing both unpredictable and predictable tenants. Our
results in §6.2.1 and §6.1.1 demonstrated this deterioration.
Estimators Wedesigned 2DFQE’s pessimistic estimation strat-
egy to take advantage of 2DFQ’s cost-based partitioning.WFQ
andWF2Q lack cost-based partitioning, so there is nothing
fundamental about them that would beneût from this esti-
mation strategy. Nonetheless, we can apply it to these algo-
rithms; we experimented with numerous combinations of
scheduler and estimator, and found thatWFQ andWF2Qwith
pessimistic estimation performed no better, and o�en signiû-
cantly worse, than using an EMA. We view estimator choice
as an important design point for future work in this space – to
ensure good behavior when over- or under-estimating request
costs.
Limitations While 2DFQ improves quality of service when
the system is backlogged, work-conserving schedulers in gen-
eral cannot improve service when the system is under-utilized.
Inevitably, all worker threads could be servicing expensive re-
quests if no other requests are present. Any subsequent burst
of small requests would have to wait for the expensive re-
quests to ûnish. _is behavior occurs under 2DFQ and all
non-preemptive schedulers, and creates large delay for the
small requests. One way to avoid this is to make the sched-
uler not work-conserving, for example, by allowing threads
to remain idle despite the presence of queued requests. An-
other option is to allow a variable number of worker threads
and to spawn new threads when small requests show up. _is
would over-saturate the CPU and thus slow down already
running requests, but would allow the small requests to ûnish
faster; however, it would incur additional overhead frommore
context-switching. In the extreme, we could take a thread-per-
tenant approach; however, this results in more context switch-
ing, contention for application level (e.g., locks, caches) and
system level (e.g., disk) resources, and substantially reduced
goodput. _is is especially relevant since requests can be very
short – less than 1ms in duration for many requests – which
exacerbates context switching overheads. Our approach in
this paper – fair queue scheduling at the application level –
is the preferred approach in cloud services [15] for eõciency

and to keep low-level resource queues (e.g., disk) short.
_e challenges presented in this paper are the result of wide

cost variation in cloud services. An alternative approach is
to reduce cost variation by splitting up long requests into
shorter ones [15]. For example, a�er 100ms of work a request
could pause and re-enter the scheduler queue. However, this
approach implies more overhead on the developer; it can be
applied only to certain request types; and it aòects execution ef-
ûciency because of, e.g., data loaded in various system caches.

8. RELATED WORK
We discuss related work based on the core challenges ad-

dressed in this paper.
Packet Scheduling Fair queue scheduling has been devel-

oped in the context of packet scheduling [6, 23, 46, 50], where
packets are sent sequentially across a single link. Because of
this, the majority of papers in this area only consider sequen-
tial execution. An exception is, for example,MSF2Q [8], where
the authors consider scheduling packets across multiple ag-
gregated links. While this setting is very close to ours, the
scheduler is a direct extension of WF2Q and we found that it
produces near identical behavior in the presence of large re-
quests. Single-link schedulers such as WFQ [46] or WF2Q [6]
require packet size to schedule because they order �ows based
on their ûnish tag. SFQ [23] does not need the packet size be-
fore scheduling the packet because it selects packets based on
their start tag, which is computed based on sizes of previous
packets. When a packet completes, its observed cost is used
to update the start tag of its �ow. When applied to request
scheduling where multiple requests of the same tenant can
execute concurrently, this approach, however, does not work
because we would have to execute each tenant sequentially.

_read Scheduling and Pre-Emption _read scheduling
in the operating system is analogous to packet scheduling.
In the research literature, lottery scheduling [58] and stride
scheduling [59] were independently developed and later found
to be equivalent to fair queuing [17,46]. Scheduling algorithms
have proliferated in both domains, for example start-time fair
queuing was proposed for both hierarchical link [23] and
CPU [22] sharing. On multicore systems, hierarchical sched-
ulers such as the Linux Completely Fair Scheduler [45] and
Distributed Weighted Round Robin [40] extend fair queuing
to multiple cores by maintaining per-core run queues and
load-balancing runnable threads across cores.

_read schedulers can control the amount of time a thread
spends running on a core (i.e., the quantum or time slice).
_us they have the means to explicitly bound how long a
core can be occupied before a diòerent thread gets to run. In
the worst case, this reduces burstiness to the granularity of
the largest time slice. For example, Li et al. [40] discuss for
infeasible thread weights: “Eventually, this thread becomes the
only one on its CPU, which is the best any design can do to fulûll
an infeasible weight.”

However, applications cannot control preemption or spec-
ify fairness goals because operating systems do not expose
suõcient control over these mechanisms. Current operat-
ing systems do not give applications the ability to conûgure



thread preemption; at most, Windows User-Mode Schedul-
ing [55] (most notably used by Microso� SQL Server [35])
gives applications control over thread scheduling but lacks
conûgurable time slices – threads only yield to the sched-
uler when they make blocking systems calls or a direct call to
UmsThreadYield(). Operating systems also lack application-
level tenant information and do not have access to application-
level request queues. Fairness mechanisms like cgroups [11]
enable operators to divide resources between processes and
threads to provide fairness and isolation, but do not have ac-
cess to application-level queues. More importantly, due to
the high number of tenants, a thread-per-tenant approach
is infeasible; short requests less than 1ms in execution du-
ration exacerbate context-switching overheads and reduce
throughput, while higher concurrency increases contention
over application-level (e.g., locks, caches) and system-level
(e.g., disk) resources.
Event-based systems have long been debated in the op-

erating systems community as a dual to thread-based sys-
tems [39, 44, 56]. A key feature of event-based systems is coop-
erative multitasking: event handlers are not preemptible and
run until completion, simplifying concurrent programming
on single-core machines because event handlers are implicitly
atomic [44, 56]. _read-based systems also adapted this fea-
ture into cooperative scheduling [1, 57], whereby threads only
yield to the scheduler at pre-deûned points speciûed by the
developer. For both event-based and thread-based systems,
cooperative scheduling is vulnerable to long-running event
handlers, or threads that go for a long time without yield-
ing to the scheduler. When this occurs, programs can block
for large periods of time and the program may become non-
responsive [1,44,57]. To avoid this behavior, developers can ex-
plicitly split up long-running threads or handlers into smaller
ones that reenter the scheduler more frequently. _is solution
is similarly applicable in our domain, and is the approach
taken, for example, by Google’s Web search system [15]. How-
ever, it requires manual intervention from developers, and
only reduces the range of request costs – it does not eliminate
variation entirely. _e approach is fundamentally constrained
by factors that aòect execution eõciency, e.g. data loaded in
various system caches and intermediary memory allocation,
and is burdened by need for “stack ripping” [1]. An alternative
to manual intervention is framework support for automati-
cally reentering the scheduler, for example by analyzing code
to identify the boundaries of critical sections [57], or as part of
the language runtime [18]. In all of these systems, if fairness is
a goal, then 2DFQ can be used to provide smooth average-case
schedules.

Middlebox Packet Processing Dominant-Resource Fair
Queuing (DRFQ) [21], a multi-resource queue scheduler for
middlebox packet processing, allows concurrent execution
of multiple requests, such as on the CPU, but does not deal
with large variation in request costs and only permits serial
execution for each tenant. DRFQ builds on top of SFQ and
uses linear resource consumption models for diòerent types
of requests. _e authors show that for several middle-box
modules linear models work relatively well, but acknowledge
that if models are inaccurate, allocated shares might be oò

proportionally to the estimation error. Further, because the
resource models depend on which modules the packet exe-
cuted in, resource accounting happens only a�er the request
completes, which limits DRFQ to executing single tenant’s
packets sequentially.

Storage and I/O pClock [26], mClock [25], and Pisces [52]
propose queue schedulers for physical storage, where several
I/O requests execute concurrently. I/O request costs are much
less variable than in the cloud setting, and dynamic workloads
remain an open challenge [61]. Similar request cost modeling
has been done in the storage domain as well [25, 54], where
type of operations and hardware variability are limited. For
example, IOFlow [54] periodically benchmarks the storage
device to estimate costs of tokens used for pacing requests.
Also, to bound the uncertainty of arbitrary long IO requests,
they break them into 1MB requests.
Distributed Systems Many distributed systems schedulers,

such as Retro [43], Cake [60], and Pulsar [3] periodically
measure request costs and use these estimates in the next
interval. However, in dynamic workloads, such as shown in
Figure 4, such approach can lead to arbitrary unfairness across
tenants unless estimation errors are addressed. _ese systems
enforce fair share using rate limiters, typically implemented
as token buckets, which are not designed to provide fairness
at short time intervals. Depending on the token bucket rate
and burst parameters, they can either under-utilize the system
or concurrent bursts can overload it without providing any
further fairness guarantees.

Web Applications A large body of work – for example
[7, 48] or see [24] for a survey – has focused on providing
diòerentiated services or quality-of-service (QoS) for cluster-
based applications; they deûne multiple user classes (or ten-
ants) with diòerent scheduling policies based on priorities,
achieved utility or required resources. _ese papers typically
consider problems related to admission control, allocating
resources to maximize total utility, or distributed scheduling
and do not deal with providing ûne-grained resource fairness.
Scheduling requests with inaccurate or unknown size has been
studied previously [2, 62]. However, these papers concentrate
on various priority-based policies, such as shortest-job-ûrst
or shortest-remaining-time-ûrst, and ignore resource fairness.
For example, Aalo [12], schedules co-�ows in a network with-
out prior knowledge of their size; by using a priority queue
where new �ows start at the highest priority and their priority
decreases as they send more data.

9. CONCLUSION
In this paper we demonstrated the challenges of fair queu-

ing in multi-tenant services, where requests with large cost
variance execute concurrently across many threads. We pro-
posed and evaluated a practical scheduler for such settings,
Two-Dimensional Fair Queuing, which achieves signiûcantly
more smooth schedules and can improve latencies of small
requests when competing with large requests.
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