Wireless network measurement challenges

David Kotz

Department of Computer Science Institute for Security Technology Studies Dartmouth College

Lots of wireless devices...

= lots of wireless traffic...

Why measure?

- Operational
 - observe misbehaving/misconfigured/cheating users
 - capture and detect 802.11 MAC-layer attacks
 - capacity planning, trouble shooting
- Research
 - understand devices: VoIP phones, gaming devices, ...
 - develop better MAC protocols and mobility models
- Note: wireless is not wired!
 - new usage patterns, more mobility, different connectivity

Measure

Measure Merge

Measure Merge Analyse

Measure Merge Analyse Publish

Wireless measurement is hard

- hearing all wireless frames is hard
 - radio range/interference, loss, reflections
 - data flows can be huge (54Mbps and rising)
- lack of portable tools, standard data formats, open driver interfaces
- modern APs can dynamically alter power levels and channel assignment
- we need to sniff the air...

Why sniff the air?

- Why not measure wired side of APs?
 - only observe bridged traffic
 - no management traffic, errors, attacks, etc
 - only observe known networks
 - only observe 802.11

"sniffing the air"

What's wrong with existing tools?

- Don't hear everything
 - war-driving only needs to hear beacons
- Aren't tested
 - often just use data frames to test performance
- Don't scale
 - many commercial products designed with multiple sensors, but only few packet captures at a time

Case study: MobiSys 2005

- deployed 3 multi-radio wireless sniffers
 - no wired network connectivity: hard to reconfigure
- Problems:
 - AP channels were reconfigured multiple times during conference
 - sniffers were not optimally positioned
- Result: lossy/corrupted data set

How could we do better?

- sniffers could be aware of changes in network configuration
 - e.g.,AP changes channel → sniffer changes channel
- sniffers could be reconfigured remotely
 - without wired connectivity
- sniffers could be optimally positioned
 - or leverage existence of other sniffers to aid capture

Problem: channel sampling

- 14 channels (802.11b/g), 20+ channels (802.11a)
- Each sniffer can only listen to one channel
 - But interesting traffic may be on other channels
- Channel-hop strategically
 - spend more time on "interesting" channels
 - e.g., highest frames/bytes/ESSIDs/BSSIDs/STAs/IBSSes
 - e.g., track a particular ESSID/BSSID/STA
 - e.g., largest change in a particular metric
 - e.g., non-802.11 signals (Bluetooth/microwave/etc.)

e.g., Equal/Time

 I
 2
 3
 4
 5
 6
 7
 8
 9
 10
 II
 I
 2
 3
 4
 5
 6

e.g., Proportional/FrameCount

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8

Hear more on relevant channels

Hear relevant frames

Sampling captures more attack frames

Multiple sniffers, multiple captures

Multiple sniffers, multiple captures

Multiple sniffers, multiple captures

Implementation

- Use beacon frames to synchronise clocks
 - this is difficult!
 - use TSF Timer as well as system clock
- Use FCS as keys in hash table
 - is this sufficient?
- Need to keep track of retransmits, reordering

Merging gives more realistic view

Fewer false alarms with merging

Problem: measurement loss

How do we know if we see a true picture of the air?

- how to verify that measurement is working?
 - e.g., what if sniffer is badly positioned?
- parse sniffer output to look for loss
 - recreate 802.11 FSM
 - e.g., look for DATA-ACK, RTS-CTS, etc
 - come up with 'single number' 'executive summary'
 - i.e., move sniffer around until number is higher

So, what do we do with all this data we've collected?

- Community Resource for Archiving Wireless
 Data At Dartmouth
 - Provide data for researchers, and tools to make it easy to collect more data
- 257 registered users
 - approximately 119 universities, 26 companies
- 13 data sets, and more coming
 - infrastructure/MANET/VANET/Bluetooth/etc.

Problem: sanitising wireless traces

- Need to remove identifiable information from traces before release
 - federal (IRB) requirements, privacy risks, etc.
- Is it possible to "anonymise?"
 - how much is enough?
- Our tools:
 - remove everything >L4
 - sanitise IP addresses (prefix-preserving IP anonymisation, Xu et. al., ICNP 2002)
 - sanitise 802.11 identifiers (MAC addresses, ESSIDs)

Challenges

- How can we best leverage multiple sniffers?
- How can we correlate with other data sources:
 - syslog, snmp, RADIUS, call manager, user location
- How can we verify that we are measuring well?
- How do we extract realistic mobility models?
- How can we protect users' privacy?
- How do we relate MACs to "users"?
- How do we identify different device types?
- How can we share the captured data?

Challenges

- How can we best leverage multiple sniffers?
- How can we correlate with other data sources:
 - syslog, snmp, RADIUS, call manager, user location
- How can we verify that we are measuring well?
- How do we extract realistic mobility models?
- How can we protect users' privacy?
- How do we relate MACs to "users"?
- How do we identify different device types?
- How can we share the captured data?