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ABSTRACT
Recognizing actions in videos is a challenging task as video
is an information-intensive media with complex variations.
Most existing methods have treated video as a flat data se-
quence while ignoring the intrinsic hierarchical structure of
the video content. In particular, an action may span differ-
ent granularities in this hierarchy including, from small to
large, a single frame, consecutive frames (motion), a short
clip, and the entire video. In this paper, we present a novel
framework to boost action recognition by learning a deep
spatio-temporal video representation at hierarchical multi-
granularity. Specifically, we model each granularity as a s-
ingle stream by 2D (for frame and motion streams) or 3D
(for clip and video streams) convolutional neural networks
(CNNs). The framework therefore consists of multi-stream
2D or 3D CNNs to learn both the spatial and temporal rep-
resentations. Furthermore, we employ the Long Short-Term
Memory (LSTM) networks on the frame, motion, and clip
streams to exploit long-term temporal dynamics. With a
softmax layer on the top of each stream, the classification
scores can be predicted from all the streams, followed by a
novel fusion scheme based on the multi-granular score distri-
bution. Our networks are learned in an end-to-end fashion.
On two video action benchmarks of UCF101 and HMDB51,
our framework achieves promising performance compared
with the state-of-the-art.
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1. INTRODUCTION
Recognizing actions in videos is one of the fundamental

problems of computer vision for a wide variety of appli-
cations, ranging from video surveillance, indexing and re-
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Figure 1: An action may span different granularities. For
example, the action of “playing piano” can be recognized
from individual frames, “jumping jack” may have high cor-
relation with the optical flow images (motion computed from
consecutive frames), “cliff diving” should be recognized from
a short clip since this action usually lasts for few second-
s, while “basketball dunk” can be reliably identified at the
video granularity due the complex nature of this action.
Recognizing actions therefore should take the hierarchical
multi-granularity and spatio-temporal properties into con-
sideration.

trieval, to human computer interaction [9, 23, 29, 32]. How-
ever, video is an information-intensive media with large vari-
ations and complexities, e.g., intra-class variations caused
by camera motion, cluttered background, illumination con-
ditions, and so on. These have made action recognition a
very challenging task. Moreover, as shown in Figure 1, an
action may span different granularities in a video includ-
ing, from small to large, a single frame, consecutive frames
(motion), a short clip, and the entire video. Therefore, rec-
ognizing actions in videos therefore should take the hierar-
chical multi-granularity and spatio-temporal properties into
consideration.

There has been extensive research on video action recogni-
tion, including hand-crafted feature-based methods [14, 15,
22, 28, 29, 33, 34, 36] or deep learning of video representa-
tions [9, 20, 16, 26, 27, 32]. The first category of research
predominantly focuses on the detection of spatio-temporal
interest points followed by the description of these points
with local representations, while the deep learning method-
s heavily rely on using the Convolutional Neural Networks
(CNNs) to learn visual appearance or the Recurrent Neural
Networks (RNNs) to model the temporal dynamics in the
video. However, most these methods treat video as a flat



data sequence while ignoring the aforementioned intrinsic
hierarchical structure of the video content deeply.

In this work, we aim at investigating a multi-granular ar-
chitecture to learn the deep spatio-temporal video represen-
tation for action recognition. A video is represented by a
hierarchical structure with multiple granularities, including
from small to large, a single frame, consecutive frames (mo-
tion), a short clip, and the entire video. We model each video
granularity as a single stream by 2D CNN (for frame and
motion streams) or 3D CNN (for clip and video streams).
The framework therefore learns both the spatial and tem-
poral representations via the multi-stream 2D or 3D CNNs.
Furthermore, we employ the Long Short-Term Memory (L-
STM) networks on the frame, motion, and clip streams to
exploit long-term temporal dynamics. With a softmax layer
on the top of each stream, the classification scores can be
predicted from each stream. A novel fusion scheme based
on the multi-granular score distribution is proposed to pre-
dict the final recognition results, where the weights of each
individual stream are learnt on the score distribution. This
is an effective way to reflect the importance of each stream
(and its components) to the overall action recognition. It is
worth noting that the entire architecture is trainable in an
end-to-end fashion.

The contributions of this paper are as follows.

• We propose a novel framework to learn a deep multi-
granular spatio-temporal representation for action recog-
nition. The learned representation can capture not
only the spatio-temporal nature of video sequence but
also the contributions from different granularities for
action recognition.

• We adopt the LSTM to model long-term temporal dy-
namics on the top of frame, motion and clip stream-
s, and optimize the recognition results from all the
streams through a novel fusion scheme based on the
multi-granular score distribution.

• We conduct extensive experiments and show that our
framework outperforms several state-of-the-art meth-
ods by clear margins on two well-known benchmarks.

The remaining sections are organized as follows. Section
2 describes related work on action recognition. Section 3
presents our multi-granular architecture for action recogni-
tion, while Section 4 formulates the importance of each com-
ponent over the predicted score distribution. Implementa-
tion details are given in Section 5. Section 6 provides empir-
ical evaluations on two popular datasets, i.e., UCF101 and
HMDB51, followed by the conclusions in Section 7.

2. RELATED WORK
Video action recognition has attracted intensive research

attention. We briefly group the methods for action recog-
nition into two categories: hand-crafted feature-based and
deep learning-based methods.

Hand-crafted feature-based methods usually start by de-
tecting spatio-temporal interest points and then describe
these points with local representations. Many video rep-
resentations are derived from image domain and extended
to measure the temporal dimension of 3D volumes. For
example, Laptev and Lindeberg propose space-time inter-
est points (STIP) by extending the 2D Harris corner detec-
tor into 3D space [14]. The global color moment feature

[34], Histogram of Gradient (HOG) and Histogram of Opti-
cal Flow (HOF) [15], 3D Histogram of Gradient (HOG3D)
[10], SIFT-3D [21], Extended SURF [31], and Cuboids [2]
are good descriptors as the local spatio-temporal features.
Recently, Wang et al. propose dense trajectory features,
which densely sample local patches from each frame at d-
ifferent scales and then track them in a dense optical flow
field [28, 29]. The further improvements are achieved by the
compensation of camera motion [6], and the use of advanced
feature encoding methods such as Bag-of-Words (BoW) [15]
and Fisher Vectors [19, 22].

The most recent approaches to action recognition are to
devise deep architectures for learning video representation-
s. Qiu et al. perform action recognition using the Support
Vector Machine with mean pooling of the CNN-based rep-
resentations over frames [20]. Karparthy et al. extend the
CNN-based architecture by stacking visual features in a fixed
size of windows and using spatio-temporal convolutions for
video classification [9]. Later in [27], Tran et al. employ 3D
ConvNets trained on the Sports-1M dataset to learn video
descriptors. Zha et al. leverage both spatial and temporal
pooling on the CNN features computed on patches of video
frames [35]. The late fusion is then exploited to combine
spatio-temporal representations. In the work by Wang et al.
[30], the local ConvNet responses over the spatio-temporal
tubes centered at the trajectories are pooled as the video
descriptors. Fisher vector is then used to encode these local
descriptors to a global video representation. Most recently,
the LSTM-RNN networks have been successfully employed
for modeling temporal dynamics in videos. In [16], tem-
poral pooling and LSTM are used to combine frame-level
(optical flow images) representation and discover long-term
temporal relationships. Srivastava et al. further formulate
the video representation learning as an autoencoder model,
which consists of the encoder and decoder LSTMs [26]. Wu
et al. present an approach using regularization in neural
networks to exploit feature and class relationships [32].

It can be observed that most existing methods treat video
as a flat data sequence while ignoring the aforementioned
intrinsic hierarchical structure of video content deeply. The
most closely related work is the two-stream CNN approach
[23]. The work applies the CNN separately on visual frames
and stacked optical flows. Our method is different from [23]
in that we extend two-stream to hierarchical multi-granular
streams, employ 3D CNN to learn the spatio-temporal rep-
resentation of video, and further utilize LSTM networks to
model long-term temporal cues. In addition, our work is
able to derive the fusion weights of each component from all
the streams in a principled way.

3. MULTI-GRANULAR ARCHITECTURE
FOR ACTION RECOGNITION

Video is essentially an information-intensive media with
multiple granularities. For example, a video can be repre-
sented by a hierarchical structure including, from large to s-
mall, the entire video, short clips, consecutive frames (called
motion, or optical flow), and individual frames. Different
granularity depicts distinct capability to describe different
actions. Recognizing actions from videos should take this
intrinsic structure into account. Motivated by the above
observations, we exploit such hierarchical nature of video
structure and decompose video representation into multi-
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Figure 2: Multi-granular spatio-temporal architecture for video action recognition. A video is represented by the hierarchical
structure with multiple granularities including, from small to large, frame, consecutive frames (motion), clip, and video. Each
granularity is modeled as a single stream. 2D CNNs are used to model the frame and motion (optical flow images) streams,
while 3D CNNs are used to model the clip and video streams. LSTMs are used to further model the temporal information in
the frame, motion, and clip streams. A softmax layer is built on the top of each stream to obtain the prediction from each
component. Suppose we have Nc clips, Np motions (consecutive frame pairs), and Nf frames, then we have Nc +Np +Nf + 1
components. The final action recognition result of the input video is obtained by linearly fusing the prediction scores from
all the components with the weights learned on the score distribution. Note that this deep architecture is trainable in an
end-to-end fashion.

granular streams. We design a deep architecture consisting
of modeling of individual streams, 2D/3D CNNs with LSTM
networks for learning spatio-temporal representations, and
a novel multi-granularity score distribution scheme for fu-
sion. Figure 2 shows the overall framework of our proposed
multi-granular architecture for action recognition.

3.1 Modeling Frame Stream
For action recognition, individual video frames can pro-

vide useful characteristics as some actions are strongly asso-
ciated with particular scenes and objects. To make full use
of static frame appearance, VGG 19 [24], the recent superior
CNN architecture for image classification, is adopted to ex-
tract high level visual features for each sampled video frame.
VGG 19 is a very deep convolutional network with up to 19
weight layers (16 convolutional layers and 3 fully-connected
layers). Thanks to the pre-train process using large dataset
from ImageNet challenge, the VGG 19 model can be used
to extract plentiful visual concepts like scenes and objects.
Thus, we choose the outputs of the fully-connected layer in
VGG 19 as the deep representation of a single frame.

3.2 Modeling Motion Stream
To model the displacement of consecutive frames, optical

flow is extracted to describe the motion between consecu-
tive frames. As the input to 2D CNN, the optical flow is
firstly computed between a temporal window of consecutive
frames with [1], and then converted to flow “image” by cen-
tering horizontal (x) and vertical (y) flow values around 128
and multiplying by a scalar such that flow values fall be-

tween 0 and 255. By this transformation, we can obtain two
channels of optical flow “image,” while the third channel is
created by calculating the flow magnitude. Furthermore, to
suppress the displacement caused by camera motion, which
may introduce additional noise into CNN, a global motion
component is estimated by the mean vector of each flow
and then subtracted from the flow [23]. Although the input
image is generated from optical flow, we also choose the pre-
trained VGG 19 architecture as used for frame stream, and
then fine-tune on the extracted optical flow “images.”

3.3 Modeling Clip and Video Streams
Besides static frame and motion information between con-

secutive frames, 3D CNN is used to construct video clip fea-
tures from both spatial and temporal dimensions by utilizing
3D convolutions. Unlike traditional 2D CNN, 3D CNN ar-
chitecture takes video clip (multiple continuous frames) as
the inputs and consists of alternating 3D convolutional and
3D pooling layers, which are further topped by a few fully-
connected layers as described in [7]. For describing video clip
by more powerful feature using 3D CNN, we choose the su-
perior architecture in [27], named C3D, which aims to learn
spatio-temporal features for videos using 3D CNN trained on
Sports-1M video dataset [9]. As the deep network architec-
ture is pre-trained on a large-scale video dataset, C3D can
model general appearance and motion information simulta-
neously, which is important for action recognition. Similar
to 2D CNN used for single frame and optical flow “image,”
we regard fully-connected layer outputs of C3D as the ex-
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Figure 3: A diagram of a LSTM memory cell.

tracted features for sampled video clips. With the extracted
features of each sampled video clip from a video by C3D,
we simply perform mean pooling over all the video clips to
generate video-level representations.

3.4 Modeling Temporal Dynamics with
LSTM

To model the long-term temporal information in videos,
we apply the Long Short-Term Memory (LSTM) on the
frame, optical flow and video clip streams. The standard
LSTM is a variant of RNN, which can capture long-term
temporal information in the sequential data. To address
the vanishing/exploding gradients issues when training tra-
ditional RNN, LSTM introduces a new structure called a
memory cell. As illustrated in Figure 3, a memory cell is
composed of four main elements: an input gate, a neuron
with a self-recurrent connection, a forget gate and an output
gate. The self-recurrent connection has a weight of 1.0 and
ensures that, barring any outside interference, the state of a
memory cell can remain constant from one timestep to an-
other. The gates serve to modulate the interactions between
the memory cell itself and its environment. The input gate
can allow incoming signal to alter the state of the memory
cell or block it. On the other hand, the output gate can
allow the state of the memory cell to have an effect on other
neurons or prevent it. Finally, the forget gate can modulate
the memory cell’s self-recurrent connection, allowing the cell
to remember or forget its previous state, as needed. Many
improvements have been made to the LSTM architecture
since its original formulation [5] and we adopt the LSTM
architecture as described in [17].

For timestep t, xt and ht are the input and output vector
respectively, T are input weights matrices, R are recurren-
t weight matrices and b are bias vectors. Logic sigmoid

σ(x) = 1
1+e−x and hyperbolic tangent φ(x) = ex−e−x

ex+e−x are
element-wise non-linear activation functions, mapping real

values to (0, 1) and (−1, 1) separately. The dot product and
sum of two vectors are denoted with � and +© respectively.
Given inputs xt, ht−1 and ct−1, the LSTM unit updates for
timestep t are:

gt = φ(Tgx
t + Rgh

t−1 + bg) cell input

it = σ(Tix
t + Rih

t−1 + bi) input gate

f t = σ(Tfx
t + Rfh

t−1 + bf ) forgetgate

ct = gt � it + ct−1 � f t cell state

ot = σ(Tox
t + Roh

t−1 + bo) output gate

ht = φ(ct)� ot cell output

4. FUSION WITH MULTI-GRANULAR
SCORE DISTRIBUTION (MSD)

Given the multi-granular streams in a video, we can pre-
dict the action score for each component from each stream.
Inspired by the idea of addressing the temporal ambiguity
of actions by learning score distribution in [4], we develop
a multi-granular score fusion architecture in our deep net-
works rather than only using max or mean. Consequently,
an improved action recognition score will be obtained by
automatically aligning the relative importance to each com-
ponent from all the streams based on the score distribution.

4.1 Formulation
Given a video, we combine the scores of all the components

from multi-granular streams in a distribution matrix as

S = (s1, ..., sc, ..., sC) ∈ <L×C , (1)

where sc ∈ <L denotes the score column vector of L compo-
nents from all the streams on the cth action class. Next, we
will define a sort function on the score distribution matrix
as

sort(S) =
(
sort(s1), ..., sort(sc), ..., sort(sC)

)
∈ <L×C , (2)

where sort(sc) ∈ <L is a function to reorder all elements of
the vector sc in descending order. With large L, sort(sc)
can represent the score distribution of all the components
on the cth action class.

Given N videos, each represented by the score distribution
matrix sort(S), we can learn a MSD classifier by formulating
the optimization problem as

min
wc,bc

N∑
i=1

C∑
c=1

max{1− yci (wc · sort(sc) + bc), 0} (3)

s.t.
L∑

l=1

wl
c = 1, c = 1, ..., C , (4)

w1
c ≥ w2

c ≥ ... ≥ wL
c ≥ 0, c = 1, ..., C. (5)

For the cth action class, the weight vector wc and the bias
item bc can separate score distributions of positive and neg-
ative data. The loss function (3) is the sum of Hinge Loss-
es. The constraint (4) requires the weights to have unit
sum because we are learning weights for each component.
The constraint (5) requires the weights to be monotonic and
non-negative, because sort(sc) are classification scores in de-
scending order and we want to emphasize the relative im-
portance of the components with high classification scores.



From the constraints, we can see that the feasible set of wc

includes two special cases: 1) w1
c = 1, w2

c = ... = wL
c = 0, 2)

w1
c = w2

c = ... = wL
c = 1

L
. The former corresponds to max

pooling, while the later refers to mean pooling.

4.2 Solution
As our architecture is an“end-to-end”neural network which

is learnt by using standard backpropagation, we solve the op-
timization problem (3) by using stochastic gradient descent
in a deep learning framework Caffe [8]. However, the two
constraints (4) and (5) make the optimization difficult to
be solved. To address this problem, we relax the two con-
straints by appending two penalty terms to the cost function
J as

J = L+ α
C∑

c=1

‖wc‖2 + β
C∑

c=1

(
1−

L∑
l=1

wl
c

)2
+ γ

C∑
c=1

L∑
l=1

ml
c, (6)

ml
c =

{
wl+1

c − wl
c, if w

l+1
c > wl

c

0, if wl+1
c ≤ wl

c

l = 1, ..., L and wL+1
c = 0,

(7)

where the first part L is the loss function in Eq. (3), the
second is a regularization term preventing over-fitting, the
rest are two penalty terms and α, β, γ are the tradeoff pa-
rameters.

Finally, the above cost function J is minimized with re-
spect to {wc}Cc=1 and the gradients are calculated by

∂J

∂wl
c

=
∂L
∂wl

c

+ 2αwl
c − 2β(1− wl

c) + γ
(
∂ml

c

∂wl
c

+
∂ml−1

c

∂wl
c

)
, (8)

∂ml
c

∂wl
c

=

{
−1, if wl+1

c > wl
c

0, if wl+1
c ≤ wl

c

l = 1, ..., L , (9)

∂ml−1
c

∂wl
c

=

{
1, if wl

c > wl−1
c

0, if wl
c ≤ w

l−1
c

l = 2, 3, ..., L and
∂m0

c

∂w1
c

= 0.

(10)

Each gradient is calculated upon a sorted score distribu-
tion. As the score order changes in each SGD iteration,
backpropagation of the sorting operator is similar to that of
max pooling layer. We store the index of sorted score in orig-
inal vector and propagate the gradients to the corresponding
element in the original vector when backpropagation. After
the optimization of J in Eq. (6), we can obtain the optimal

{wc}Cc=1. With this, we compute the final improved action
score for the video as

pc = wc · sort(sc) + bc. (11)

5. IMPLEMENTATIONS
Frame stream. We uniformly select 25 frames per video

and adopt the VGG 19 [24] to extract frame features. The
VGG 19 is first pre-trained with the ILSVRC-2012 training
set of 1.2 million images and then fine-tuned by using the
video frames, which is observed to be better than training
from scratch. Following [23], we also use data augmentation
like cropping and flipping. The learning rate starts from
10−3 and decreases to 10−4 after 14,000 iterations, then to
10−5 after 20,000 iterations. For temporal modeling, we ex-
tract the outputs of 4096-way fc6 layer from VGG 19 as
inputs and adopt one-layer LSTM. We conduct experiments
with different number of hidden states in LSTM. The LST-
M weights are learnt by using the BPTT algorithm with a
mini-batch size of 10. The learning rate starts from 10−2

Table 1: The accuracy of frame and motion streams on
UCF101 (split 1).

(a) The accuracy of different 2D CNN and LSTM used on frame and
motion streams. The results are reported for late fusion.

Training setting Frame Motion

AlexNet 67.1% 68.4%
AlexNet + LSTM 69.3% 70.3%
VGG 19 77.9% 70.6%
VGG 19 + LSTM 79.3% 73.8%
VGG 19 + LSTM + Augmentation 80.2% 74.6%

(b) The effect of hidden layer size in the LSTM (VGG 19).

Hidden layer size Frame Motion

128 78.2% 71.2%
256 78.8% 72.6%
512 79.1% 73.5%
1024 79.3% 73.8%
2048 78.5% 73.1%

and decreases to 10−3 after 100K iterations. The training is
stopped after 150,000 iterations.

Motion stream. We compute the optical flow between
consecutive frames using the GPU implementation of [1] in
OpenCV toolbox. The optical flow is converted to a flow
“image” by linearly rescaling horizontal (x) and vertical (y)
flow values to [0, 255] range. The transformed x and y flows
are the first two channels for the flow image and the third
channel is created by calculating the flow magnitude. More-
over, the settings of VGG 19 and LSTM are the same with
frame stream.

Clip stream. We define a clip as consecutive 16 frames,
which is the same setting as [27]. The C3D is exploited
to model video clip, which is pre-trained on Sports-1M [9]
dataset with 1.1 million sports videos and then fine-tuned
on UCF101 and HMDB51, respectively. As designed in C3D
architecture, the input of C3D model is 16-frame clip and
we uniformly sample 20 clips in each video. The learning
rate starts from 10−4 and decreases to 10−5 after 10,000 it-
erations, then the training is stopped after 20,000 iterations.
Again, the LSTM setting is the same with frame stream.

Video stream. The settings of video stream are similar
to the clip stream. The only difference is that we do not
involve LSTM after C3D and simply fuse the features of
all video clips by mean pooling to generate the video-level
representations.

6. EXPERIMENTS

6.1 Datasets
We empirically evaluate our multi-granular framework on

the UCF101 [25] and HMDB51 [12] datasets. The UCF101
dataset is one of the most popular action recognition bench-
marks. It consists of 13, 320 videos from 101 action cate-
gories. The action categories are divided into five group-
s: Human-Object Interaction, Body-Motion Only, Human-
Human Interaction, Playing Musical Instruments, and S-
ports. The HMDB51 dataset contains 6, 849 video clips di-
vided into 51 action categories, each containing a minimum
of 101 clips. The experimental setup is the same for both
datasets and three training/test splits are provided by the
dataset organisers. Each split in UCF101 includes about
9.5K training and 3.7K test video, while a HMDB51 split



Table 2: The accuracy of clip and video streams on UCF101
(split 1) and HMDB51 (split 1).

(a) The comparisons of using features from different layers of C3D
on clip stream.

Dataset fc6 fc7 prob fc6+LSTM

HMDB51 50.36% 48.65% 38.97% 51.3%
UCF101 83.11% 81.23% 69.81% 83.9%

(b) The comparisons of using the features from different layers of
C3D on video stream.

Dataset fc6 fc7 prob

HMDB51 51.09% 48.52% 39.10%
UCF101 83.77% 80.76% 67.01%

contains 3.5K training and 1.5K test videos. Following [23],
we conduct our analyses of different streams on the first split
of the UCF101 and HMDB51 datasets. The average accu-
racy over three splits on both datasets are reported when
compared with the state-of-the-art techniques.

6.2 Evaluation of Frame and Motion Streams
We first examine the recognition performances of frame

and optical flow streams from three aspects: 1) when differ-
ent 2D CNN are used, 2) when LSTM is utilized to explore
longer-term temporal information, and 3) how performance
is affected by the size of hidden layer in LSTM learning.

The results and comparisons on UCF101 (split 1) are sum-
marized in Table 1. Table 1a compares the accuracy of d-
ifferent CNN and LSTM on frame and optical flow stream,
respectively, while Table 1b compares the performances with
the hidden layer size of LSTM in the range of 128, 256, 512,
1024, and 2048. Compared to AlexNet [11], VGG 19 [24]
with a deeper CNN exhibits significantly better performance
on frame stream. Interestingly, using VGG 19 on optical
flow stream gives only marginal performance gain. By addi-
tionally utilizing LSTM to explore longer-term temporal in-
formation, the improvements can be expected on both frame
and optical flow streams. Furthermore, when augmenting
the test frame (flow image) by cropping and flipping four
corners and the center of the frame and averaging the scores
across the frame and its crops, the performance can achieve
80.2% and 74.6% on frame and optical flow, respectively.

In general, increasing the hidden layer size of LSTM can
lead to the improvement of the accuracy. When the hidden
layer size reaches 1024 in our case, no further improvemen-
t can be obtained on both frame and optical flow streams.
Note that the performances are reported based on the orig-
inal frame or optical flow image with only cropping center
and no flipping operation in this comparison.

6.3 Evaluation of Clip and Video Streams
Next, we turn to measure the performance of the clip and

video streams in terms of features extracted from different
layers of 3D CNN (C3D) on both datasets. We extract C3D
features: fc6, fc7, and prob for each video clip. The recogni-
tion score is computed by late fusing the predicted score on
each video clip and the accuracy comparison by using the
outputs from these three different layers is shown in Table
2a. As indicated by our results, the recognition using the
C3D feature of fc6 layer leads to a larger performance boost
against the C3D features of fc7 and prob layers. Further-
more, the accuracy by using the feature of fc6 can achieve

Table 4: The performance in terms of mean accuracy (over
three splits) on UCF101 and HMDB51. Please note that the
methods in [29, 18, 13] are based on traditional dense trajec-
tory which is computationally expensive, while the methods
in [35, 30] combine dense trajectory and deep learning based
algorithms. Our approach outperforms the deep learning-
based methods without combination of dense trajectory [3,
23, 16] with a large margin. “–” means that the authors did
not report their performance on this dataset. IDT: improved
dense trajectory [29]; MIFS: Multi-skip Feature Stacking
[13]; LRCN: Long-term Recurrent Convolutional Networks
[3]; C3D: Convolutional 3D [27]; TDD: Trajectory-pooled
Deep-convolutional Descriptor [30].

Method UCF101 HMDB51

IDT [29] 85.9% 57.2%
IDT w/ Encodings [18] 87.9% 61.1%
MIFS [13] 89.1% 65.1%

“Slow Fusion” ConvNet [9] 65.4% –
LRCN [3] 82.9% –
C3D [27] 85.2% –
Two-stream model [23] 88.0% 59.4%
Composite LSTM [26] 84.3% –
CNN + IDT [35] 89.6% –
Temporal Pooling + LSTM [16] 88.6% –
TDD [30] 90.3% 63.2%
Ours 90.8% 63.6%

51.3% and 83.9% on HMDB51 and UCF101 after longer-
term temporal modeling with LSTM networks, respectively.
The features for video stream are computed by averaging
the video clip features separately for each type of feature
and Table 2b reports the comparison of different C3D fea-
tures on video stream. Similar to the observations on video
clip stream, the features of fc6 layer achieves the best per-
formance among all the three layers with a large margin.

6.4 Evaluation of MSD
Here we evaluate the complete multi-granular architec-

ture, which combines the four streams with the MSD fu-
sion method. Table 3 details the accuracy across different
fusion strategies on three splits of HMDB51 and UCF101,
respectively. MSD consistently outperforms Max and Mean
in every split of both two datasets. The improvement is ob-
served in different types of actions. For instance, the action-
s “playing piano” and “biking” are better fused with Mean
as the videos relevant to the two actions are consistent in
content. On the other hand, the recognition of actions “cliff
diving”and“basketball dunk”show much better results with
Max fusion. In the experiment, MSD boosts the accuracy
of these actions. Figure 4 shows the top eight weights learnt
by MSD and their corresponding components of three ex-
emplary videos from category “baseball pitch,”“front crawl,”
and “hammering.” We can easily see that all the eight com-
ponents are highly related to each action. More importantly,
the top eight components come from four different streams,
which validates the effectiveness of MSD on fusing multi-
granular information.

6.5 Comparisons with State-of-the-Art
We compare with several state-of-the-art techniques on

three splits of UCF101 and HMDB51. As shown in Table
4, our multi-granular spatio-temporal architecture shows the



Table 3: The comparisons of the proposed MSD with Mean and Max fusion schemes in terms of accuracy on three splits of
HMDB51 and UCF101.

Dataset
split 1 split 2 split 3

Mean Max MSD Mean Max MSD Mean Max MSD

HMDB51 61.5% 59.6% 63.1% 61.8% 59.5% 63.5% 62.1% 60.1% 64.1%
UCF101 89.6% 87.6% 90.2% 89.6% 87.4% 90.3% 91.2% 88.1% 91.9%
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Figure 4: Examples showing the top eight weights learned by the MSD and their corresponding components in a video (top:
baseball pitch, middle: front crawl, bottom: hammering). We can see that MSD is able to learn the contributions from
different components for particular actions. For example, two clip components play important roles for recognizing “baseball
pitch,” while two motion (optical flow) components contribute more to the recognition of “hammering.”

best performance on UCF101 dataset. It makes the improve-
ment over [30] by 0.5%, which is generally considered as a
significant progress on this dataset. On the HMDB51, the
works [13, 30] with competitive results are based on the mo-
tion trajectory, while our approach fully relies on the deep
learning architecture and is trained end-to-end. Compared
with the two-stream model [23], our architecture by addi-
tionally incorporating more temporal modeling and utilizing
a sophisticated fusion strategy leads to a performance boost
on both datasets. It is also worth noting that in the training
of the HMDB51 dataset, the work in [23] exploits UCF101 as
additional training data through multi-task learning, while
our approach is purely trained on HMDB51 only. In addi-
tion, the recent works in [3, 16, 26] also use the LSTM to
exploit temporal information. Our approach achieves more
promising results as more dimensions of cues are included.

Table 5: Run time of different streams averaged over all test
videos in UCF101 dataset (milliseconds).

Stream 2D/3D CNN LSTM SUM

frame 750 12 762
motion 750 12 762
clip 490 10 500
video 490 – 490

6.6 Run Time
Table 5 listed the detailed run time of each stream av-

eraged over all test videos in UCF101 dataset. The experi-
ments are conducted on a regular server (Intel Xeon 2.40GHz
CPU and 256 GB RAM) with a single NVidia K80 GPU.
As each stream could be executed in parallel and the fusion
with MSD provides instant responses, the average prediction



time of our architecture on each video in UCF101 is about
762 milliseconds, which is very efficient. This is much faster
than trajectory-based approaches, e.g. IDT, which requires
about seven minutes on each video in UCF101.

7. CONCLUSIONS
We have presented a multi-granular deep architecture for

action recognition in videos, which is able to incorporate in-
formation at a multitude of granularity including frame, con-
secutive frames (motion), clip and the entire video. Specif-
ically, we model each granularity with two types of CNNs
(2D CNN trained on frame and motion streams, and 3D C-
NN on clip and video streams). We employ LSTM networks
to incorporate long-term temporal modeling based on the
granularity features. To fuse the recognition scores of indi-
vidual components in multiple streams, the distribution of
scores is exploited to find the optimal weight for each com-
ponent. We show that our approach outperforms several
state-of-the-art methods on two benchmark datasets.

Our future works are as follows. First, video action recog-
nition can be enhanced by further considering audio infor-
mation. The audio features can be exploited together with
current four streams to more comprehensively characterize
the actions. Second, the method of learning the representa-
tions of the entire video could be explored by using RNNs
in an encoder-decoder framework. In addition, we will con-
tinue to conduct more in-depth investigations on how fu-
sion weights of individual streams can be dynamically de-
termined to boost the action recognition performance.
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