
Rendering Mathematics for the Web using Madoko

Daan Leijen
Microsoft Research
daan@microsoft.com

1. INTRODUCTION
Madoko [6–8] is a novel authoring system for writing com-
plex documents. It is especially well suited for complex aca-
demic or industrial documents, like scientific articles, ref-
erence manuals, or math-heavy presentations. One partic-
ular important aspect of Madoko is to write a document
in high-level Markdown [5] with a focus on semantic con-
tent. From this document specification we can generate both
high-quality PDF output (via LATEX) but also generate high-
quality HTML that can re-scale and re-flow dynamically.
Styling is done through standard CSS attributes and can be
done orthogonal to the content.

Madoko provides extensive support for mathematics ren-
dering. All math is rendered using LATEX with full compata-
bility with any LATEX packages and commands. Rendering
to PDF comes this way for free but a high quality rendering
of the math in the resulting HTML is more involved. This
application note article describes in detail how Madoko deals
with the various technical challenges. Moreover we show
how other mechanisms, like replacement rules, help with
creating mini domain-specific extensions to cleanly express
complex math.

Since this article is about the rendering of math to HTML,
it is highly recommended to read this article as an HTML
page instead of PDF! It can be found at http://tinyurl.
com/madokomath.

2. AN OVERVIEW OF MADOKO
Madoko is based on Markdown [5] as its input format. The
main design goal is to enable light-weight creation of high-
quality scholarly and technical documents for the web and
print, while maintaining John Gruber’s Markdown philoso-
phy of simplicity and focus on plain text readability. Since
the Markdown input format is well-structured, this allows
Madoko to generate both high quality HTML and PDF
(through LATEX and BibTEX). There has been a lot of effort
in Madoko to make the LATEX generation robust and cus-
Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
DocEng ’16, September 12-16, 2016, Vienna, Austria

© 2016 ACM. ISBN 978-1-4503-4438-8/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2960811.2967168

tomizable while integrating well with the various academic
document- and bibliography styles.

On modern devices like tablets and phones it is generally
much more pleasant to read a paper or technical document
as HTML instead of PDF since HTML can scale and reflow
dynamically. A study by Franze et al. [2] showed that the
most desired features when reading papers is being able to
change the font size, alter margins, or have a single column
layout; all of these are trivial in a web browser. Of course,
this article itself was written in Madoko, and the HTML
version can be viewed at http://tinyurl.com/madokomath.
Others have tried to create re-scalable and re-flowable con-
tent from paginated PDF [11], or the other way around, pag-
inating dynamic content [3], but we believe starting from a
more high-level structured input format is a better way of
approaching this problem.

The move to Markdown makes the the documents struc-
tured, readable, and output independent. The final ingredi-
ents that Madoko adds are to make the documents styleable
through standard CSS rules, and programmable through
transformation rules. These additions also makes it easy
to add custom domain specific document elements, like ex-
ercise or answer, that can be transformed, numbered, and
styled in a declarative manner.

Finally, the online version at madoko.net integrates seam-
lessly with Dropbox, GitHub, and OneDrive, making docu-
ments available anywhere on any device. Madoko synchro-
nizes automatically and multiple authors can work concur-
rently on the same document using robust three-way merges
on concurrent updates. This means that updates by others
are not quite real-time as in other collaborative environ-
ments (although they are performed frequently), but anyone
can now work off-line and still reliably merge when connect-
ing again. Madoko.net is itself a HTML5 web application
and the editor continues to work in the browser even when
offline. Of course, you can always use the plain command
line version of Madoko locally (npm install -g madoko).

3. SCALABLE MATH ON THE WEB
Madoko uses regular LATEX for describing math formulas
since TEX is still the gold standard for rendering and de-
scribing mathematics. Any formula can be directly embed-
ded in a Madoko document. For example:
A famous formula is $e^{i\pi} + 1 = 0$, but the
following one is also well-known:
~ Equation { #eq-gaussian }
\int_{-\infty}^\infty e^{-a x^2} d x

daan@microsoft.com
http://tinyurl.com/madokomath
http://tinyurl.com/madokomath
http://dx.doi.org/10.1145/2960811.2967168
http://tinyurl.com/madokomath
https://www.madoko.net

= \sqrt{\frac{\pi}{a}}
~

;

A famous formula is eiπ + 1 = 0, but the following one is
also well-known: ∫ ∞

−∞
e−ax2

dx =

√
π

a
(1)

Here we use $ to start inline math as in LATEX. For the
equation we used a so-called custom block of Madoko. The
standard prelude of Madoko defines ~ equation for num-
bered equations, ~math for plain display math, and ~mathpre
for pre-formatted math discussed in Section 4. In the ex-
ample, we also give the equation a name so we can refer to
it using links in Markdown where [#eq-gaussian] expands
to the equation number, e.g. Equation (1).

When creating PDF output, Madoko can simply include
the literal formula in the generated LATEX with full compat-
ibility with any LATEX package. Unfortunately, for HTML
output the process is more involved as we need to render
math seperate from the rest of the HTML. There exist vari-
ous tools that use JavaScript to interpret LATEX math com-
mands directly and generate a rendering on the client. One
of the most well-known libraries to do that is MathJax [1].

This works well for simple mathematics but one of the
great advantages of using LATEX for math is that it comes
with many many packages to render advanced mathematics,
or packages that render math in the style required by a
journal. Such packages are generally not supported by tools
like MathJax. Even though Madoko has an option to use
MathJax for dynamic math rendering, the default mode is
to invoke LATEX and render all math at compile time.

In Madoko any LATEX package can be used through a
metadata key at the start of the document, for example:
Package: [curve]xypic

after which we can use the \xymatrix command to render
category theory diagrams:

~ Math
\xymatrix @-0.5em{
U \ar@/_/[ddr]_y \ar@/^/[drr]^x \ar@{.>}[dr]|-{(x,y)} \\
& X \times Y \ar[d]^q \ar[r]_p & X \ar[d]_f \\
& Y \ar[r]^g & Z }
~

;

U

y

x

%%
(x,y)

##
X × Y

q

��

p
// X

f

��
Y

g // Z

Generating good looking HTML from LATEX rendered for-
mulas is a challeging problem though and we describe here
various solutions adopted by Madoko.
Hashing of formulas
When rendering a document, Madoko first collects all math
formulas and assigns a unique MD5 hash to each individual
formula. This ensures that each formula is only rendered

Figure 1. Screenshots of different math renderings in
the browser: the left image is rendered by Madoko us-
ing SVG graphics, while the right image is a rendering
by Wikipedia using PNG images (https://en.wikipedia.
org/wiki/Euler%27s_identity)

once which is important since many short formulas are usu-
ally often repeated. Madoko generates a special LATEX math
file that contains ’snippet’ entries for each formula. For ex-
ample, for this document, one of the entries is:
%mdk-data-line={138}
\begin{mdInlineSnippet}[f2d2e607c3e99d5c34bc0aad01893a0d]
$e^{i\pi} + 1 = 0$%
\end{mdInlineSnippet}

The initial comment is how Madoko maps back LATEX error
messages to the correct line in the original Madoko file – this
is very important in practice to quickly solve LATEX prob-
lems. Next, the mdInlineSnippet command ensures that
each formula gets rendered on its own page in the resulting
DVI file. That DVI file is now passed to another tool to
extract the rendering.

Madoko uses the excellent dvisvgm converter by Martin
Gieseking [4] to convert LATEX generated DVI files to scal-
able vector graphics (SVG) files. The dvisvgm converter
automatically extracts an SVG file for each page in the DVI
file, numbering them sequentially. Since Madoko maintains
a mapping between the MD5 hashes and the page numbers,
it can then automatically include the correct SVG images in
the generated HTML for each formula.
Many tools extract math formulas as PNG images from
a rendered PDF or Postscript file. Unfortunately, this is
a non-scalable image and looks generally quite fuzzy on
a screen especially for inline formulas surround by text.
Figure 1 compares the rendering of Euler’s identity in
Wikipedia, which uses PNG images, versus the rendering in
Madoko which uses SVG. The difference is quite stark and
the quality of SVG rendering is excellent even compared to
PDF – when demoing Madoko, often people are under the
impression of viewing PDF while they are actually seeing the
HTML rendering of a Madoko document in the browser.
Baseline alignment
There are still various technical hurdles to overcome though.
The most tricky one is proper baseline alignment. In par-
ticular, an inline formula should align as

∑∞
i=0 e

i with the e

aligned with the text baseline. Contrast this with
∑∞

i=0 e
i

for example where the bottom of the extracted image aligns
with the baseline. There are often a lot of small inline formu-
las and not aligned well with the baseline looks very irregular
to the eyes.

To achieve proper baseline alignment, we need to have
an exact measurement of the depth of the formula, i.e. the
bottom vertical distance to the baseline. If we know the
depth, we can adjust the vertical alignment of the extracted
image by lowering it by its depth.

https://en.wikipedia.org/wiki/Euler%2527s_identity
https://en.wikipedia.org/wiki/Euler%2527s_identity

The mdInlineSnippet environment does this by first ren-
dering the formula in a TEX box. This box can be queried
for its rendered height, width, and depth. After figuring out
the dimensions the box is rendered to the page. For each for-
mula, we write out the measured dimensions together with
its hash (which is an argument to mdInlineSnippet) to a
separate text file. After the LATEX run, Madoko reads this
dimension file to determine the precise baseline alignment
for each formula in the HTML.

The final height of the math image should be determined
by the relative font size of the surrounding text used in the
HTML. This means that the height and baseline adjust-
ment must be made in font-relative em units instead of ab-
solute units. Madoko renders mathematics in a 10pt font
size when taking measurements. For output to HTML we
read the measurements from the dimension file (in pt) and
divide by 10 to get the relative em units. We use the CSS
vertical-align attribute to lower the math image by its
measured depth. In practice we also scale the math image
by 105% in order to look more natural with most web fonts.
For example, our initial example,

∑∞
i=0 e

i is positioned in
the HTML output as:
<svg style="vertical-align:-0.3502em;height:1.2355em"

viewBox="88.467 53.397 33.929 11.767"
class="math-inline math-render-svg math">

<desc>$\sum_{i=0}^{\infty}e^i$</desc>
<g id="page26">
<use x="88.667" y="54.364" xlink:href="#g14-80"

xmlns:xlink="http://www.w3.org/1999/xlink"></use>
...
</g></svg>

The <use> element puts the glyph #g14-80 (the Σ) at a
specific position. That glyph is defined separately to enable
sharing of graphical elements between different formulas.
Sharing glyph paths
Math heavy documents can easily contain thousands of for-
mulas. Madoko already shares representations for equal for-
mulas through hashing but more is needed. For example,
in one example math-heavy article [10] the math formulas
generate 2242kb of SVG images. It turns out though that
many formulas contain similar glyphs, like e, or x. Each
of these glyphs is (usually) rendered as a path in the SVG
image. For example, the formula x is described in SVG as:
<defs>
<path d="M3.328 -3.009C3.387 -3.268 3.616 -4.184 ...

-0.986 2.879 -1.205 2.989 -1.644L3.328 -3.009Z"
id="g6-120"></path></defs>

<g><use x="88.667" y="61.836" xlink:href="#g6-120"
xmlns:xlink="http://www.w3.org/1999/xlink">

</use></g>

Here we see how the image places the path element #g6-120
at a specific position using an xlink. The path element
though just traces a specific glyph, in this case the x, inde-
pendently of its position. As the shapes are independent of
the position, we can share all the glyph paths between dif-
ferent formulas. Madoko will collect all equivalent paths in
a separate definition block and all formulas reference these
shared paths. This can lead to significant space savings in
practice – in the example article the space usage went down
79% from 2242kb to 467kb.

More significant space savings can be made by not describ-

Figure 2. A browser screenshot of two math SVG images
generated by Madoko. The left image used SVG path ele-
ments to trace glyphs, while the right image uses direct font
elements.

0

1

−1

1 2 3

x

f(x)

e

f(x) = ln(x)

Figure 3. SVG image of a log graph rendered using the
pstricks and pst-plot packages which emit Postscript spe-
cials.

ing glyphs with paths at all but using direct font entries and
text elements in the SVG description. Unfortunately, font
support in SVG is very spotty across browsers and most
formulas do not render faithfully when using fonts directly1.
Figure 2 shows two browser screenshots where one formula
is rendered using traces while the other uses font elements.
Rendering of DVI specials
Some LATEX commands depend on specific output drivers.
For example, the advanced TikZ package draws vector
graphics using specific PDF primitives which are not di-
rectly supported in DVI files. In many cases, we can still
extract correct SVG images from the DVI since dvisvgm sup-
ports many extensions. Ultimately, if that fails Madoko can
also generate PNG files from a PDF or Postscript rendering
although such image will no longer be scalable. However,
currently even large packages like pstricks and TikZ work
with DVI output so in practice this is almost never neces-
sary. Figure 3 shows the SVG output of a log graph using
the pstricks package which issues Postscript specials.

4. PRE-FORMATTED MATHEMATICS
Mathematics mode in TEX can be surprising in its handling
of whitespace and identifiers. In general, whitespace in the
text is not relevant and a sequence of letters is not seen as a
single identifier. Look for example at the following formula:
$function sqr(x : int)$

;

functionsqr(x : int)

We can see that there is no whitespace between function
and sqr, and how they are rendered as a sequence of letters
instead of two identifiers; note in particular the whitespace
between the f and u for example.

This behavior may be good for general mathematics, but
in many fields, like computer science, this is often cumber-
1Madoko supports this option though through a metadata flag.

some to program with. To make programming with formu-
las more direct, Madoko offers a ‘pre-formatted math’ mode
where:

• Whitespace is relevant where every space becomes a
small math space (\;),

• An identifier is enclosed in a \mathid command so it
gets rendered as function (instead of function).

• An identifier starting with @ is enclosed in a \mathkw
command and rendered as a keyword.

• Digits after an identifier are automatically subscripted
where x1 becomes x1.

• Text that is an argument to \begin, \end, \textxx, or
\mathxx commands is kept unchanged.

Using these rules it becomes much easier to use more de-
scriptive names and simple alignment. For example:

~ MathPre
@function sqr_\pi(x : int) \{

@return (x\times x\times\pi);
\}
~

;

function sqrπ(x : int) {
return (x × x × π);

}

Domain specific math
As a final example we look combining existing Madoko fea-
tures to math. In particular, Madoko extends CSS with a
replace attribute where one can specify regular expression
replacements over the content of a custom block. As an ex-
ample, we will define a mini domain specific math language
for defining natural deduction rules.

First, let’s start with some simple replacement rules to
make it easier to write type rules. For example, we would
like to replace a capital G with Γ, or a plain t with τ . In
Madoko we can simply use a CSS style rule with the special
replace attribute:
.mathpre {
replace: "/\bt\b/\tau{}/g";
replace: "/\bG\b/\Gamma{}/g";

}

Here the \b specifies a word-boundary in the regular expres-
sion. The format of each replacer is /regex/replacement/g,
where the g flag specifies that the replacer should apply at
every match in the content. Another flag is i which matches
case-insensitive for example. See the reference manual for
more information [9].

For natural deductions, we need a more complex regu-
lar expression. Let’s assume we call our new custom block
~infer, then we can define:
infer {
replace:"/([\s\S]*?)\n *----+ *\[([^\]]*)\] *\n([\s\S]*)/\

\\infer{\1}{\3}{\textsc{\2}}/m";
replace:"~Begin MathPre {.infer}&nl;&nl;&source;&nl;\

~End MathPre";
}

The rule looks somewhat complicated but it is a straightfor-
ward regular expression where we first lazily match on any
input ([\s\S]*?) until we hit a horizontal line. Once that
is matched, we pass the top and bottom part, together with

an optional rule name as arguments to a new LATEX com-
mand that we define ourselves to neatly typeset the infer-
ence rule. Combining these replacements (and adding some
more), we can now write inference rules in a very natural
style in pre-formatted math:

~ infer
G & |- e1 : s | <>
G, x:s & |- e2 : t | eff
------------------------------------[Let]
G |- @let x = e1 @in e2 : t | eff
~

;

Γ ⊢ e1 : σ | ⟨⟩
Γ, x : σ ⊢ e2 : τ | ϵ

Γ ⊢ let x = e1 in e2 : τ | ϵ
[Let]

Note how close the specification is to how one usually writes
such rules in an email or while designing the rules – we can
now concisely describe the rules while immediately rendering
them nicely.

5. CONCLUSION
Try Madoko at madoko.net. Madoko is still a young project
and any feedback is much appreciated. The author would
like to thank Martin Gieseking for his help in making
dvisvgm work well with Madoko.

REFERENCES
[1] Davide Cervone, Volker Sorge, Christian Perfect, and

Peter Krautzberger. “MathJax: A Javascript Library
for Rendering Mathematics.” 2009. https://mathjax.
org.

[2] Juliane Franze, Kim Marriott, and Michael Wybrow.
“What Academics Want When Reading Digitally.” In
DocEng ’14, 199–202. Fort Collins, CO. 2014.

[3] Fabio Giannetti. “Paginate Dynamic and Web
Content.” In DocEng ’11, 143–152. Mountain View,
California, USA. 2011.

[4] Martin Gieseking. “Dvisvgm: Converting DVI to
SVG.” 2005. http://dvisvgm.bplaced.net.

[5] John Gruber. “Markdown.” 2004. http://
daringfireball.net/projects/markdown.

[6] Daan Leijen. “Madoko: A Scholarly Markdown
Processor.” 2014. http://madoko.codeplex.com.

[7] Daan Leijen. “Madoko: Scholarly Markdown in the
Cloud.” In SNAPL’15: The Inaugural Summit on
Advances in Programming Languages. May 2015.
http://tinyurl.com/n6k3kht.

[8] Daan Leijen. “Madoko: Scholarly Documents for the
Web.” In DocEng 2015, Lausanne, Switzerland,
129–132. Sep. 2015. doi:10.1145/2682571.2797097.
HTML available at: http://tinyurl.com/p4bm62o.

[9] Daan Leijen. “Madoko Reference Manual.” http://
research.microsoft.com/en-us/um/people/daan/
madoko/doc/reference.html.

[10] “Madoko Sample Academic Article.” 2015. http://
tinyurl.com/madoko-effects.

[11] Simone Marinai. “Reflowing and Annotating Scientific
Papers on eBook Readers.” In DocEng ’13, 241–244.
Florence, Italy. 2013. doi:10.1145/2494266.2494311.

https://www.madoko.net
https://mathjax.org
https://mathjax.org
http://dvisvgm.bplaced.net
http://daringfireball.net/projects/markdown
http://daringfireball.net/projects/markdown
http://madoko.codeplex.com
http://tinyurl.com/n6k3kht
https://dx.doi.org/10.1145/2682571.2797097
http://tinyurl.com/p4bm62o
http://research.microsoft.com/en-us/um/people/daan/madoko/doc/reference.html
http://research.microsoft.com/en-us/um/people/daan/madoko/doc/reference.html
http://research.microsoft.com/en-us/um/people/daan/madoko/doc/reference.html
http://tinyurl.com/madoko-effects
http://tinyurl.com/madoko-effects
https://dx.doi.org/10.1145/2494266.2494311

	1. Introduction
	2. An overview of Madoko
	3. Scalable math on the web
	4. Pre-formatted mathematics
	5. Conclusion
	References

