
Tagging Personal Photos with Transfer Deep Learning

Jianlong Fu 1∗, Tao Mei 2, Kuiyuan Yang 2, Hanqing Lu 1, and Yong Rui 2

1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
No. 95, Zhongguancun East Road, Beijing 100190, China

2Microsoft Research, No. 5, Dan Ling Street, Haidian District, Beijing 10080, China
1{jlfu, luhq}@nlpr.ia.ac.cn, 2{tmei, kuyang, yongrui}@microsoft.com

ABSTRACT
The advent of mobile devices and media cloud services has led
to the unprecedented growing of personal photo collections. One
of the fundamental problems in managing the increasing number
of photos is automatic image tagging. Existing research has pre-
dominantly focused on tagging general Web images with a well-
labelled image database, e.g., ImageNet. However, they can only
achieve limited success on personal photos due to the domain gap-
s between personal photos and Web images. These gaps originate
from the differences in semantic distribution and visual appearance.
To deal with these challenges, in this paper, we present a novel
transfer deep learning approach to tag personal photos. Specifi-
cally, to solve the semantic distribution gap, we have designed an
ontology consisting of a hierarchical vocabulary tailored for per-
sonal photos. This ontology is mined from 10, 000 active users in
Flickr with 20 million photos and 2.7 million unique tags. To deal
with the visual appearance gap, we discover the intermediate image
representations and ontology priors by deep learning with bottom-
up and top-down transfers across two domains, where Web images
are the source domain and personal photos are the target. More-
over, we present two modes (single and batch-modes) in tagging
and find that the batch-mode is highly effective to tag photo collec-
tions. We conducted personal photo tagging on 7,000 real personal
photos and personal photo search on the MIT-Adobe FiveK photo
dataset. The proposed tagging approach is able to achieve a perfor-
mance gain of 12.8% and 4.5% in terms of NDCG@5, against the
state-of-the-art hand-crafted feature-based and deep learning-based
methods, respectively.
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Figure 1: Compared with Web images, the user-provided tags of
personal photos are more subjective and the visual appearances are
more complex. Here the personal photos are collected from real
users, while Web images are from ImageNet.
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1. INTRODUCTION
Recent years have witnessed the emergence of mobile devices

(e.g., smart phones, digital cameras, tablets, etc.) and cloud storage
services. This has led to an unprecedented growth in the number of
personal photos. People are taking photos using their smart devices
every day and everywhere. One of the fundamental challenges to
managing this ever-increasing number of photos is providing ap-
propriate tags for each photo. Therefore, image tagging has be-
come an active research topic in the last few years, in order to label
images with human-friendly concepts1. Before we dive into the de-
tails of various image tagging techniques, we first define personal
photos and introduce their characteristics.

We define personal photos as photos that are usually captured
by amateur users with personal digital devices (e.g., smart phones,
digital cameras, etc.). Compared with general Web images, person-
al photos have several unique properties: 1) Personal photos lack
accurate text descriptions in general as users are unlikely to label
their photos. 2) The semantic distribution of personal photos is on-
ly a subset of a general vocabulary of Web images. For example,
some celebrities such as “Barack Obama” and specific terms such
as “mammal” and “placental,” are not likely to appear in personal
photos of common users. Moreover, the semantic distribution in
personal photos is typically biased toward the concepts related to
“landscape,” “family,” and so on. 3) The appearance of personal
photos is more complex due to occlusion, lighting variation, clut-

1“concept” and “tag” are considered as interchangeable terms, and
we don’t differentiate them in this paper.



tered background, and considerable camera motion. The tags, if
there are any, are very subjective. This has led to the challenge of
understanding personal photos. If we refer to Fig. 1, we can see
that the Web images collected from ImageNet2 are more likely to
reflect a concept. In personal photos, however, various objects such
as people, tree, grass, and sunlight appear in Fig. 1(b), and a blur
effect and lighting variation appear in Fig. 1(c). Additionally, the
photo labelled with “airport” may be very subjective. 4) There is
rich metadata (e.g., time, geo-location) that can be exploited for
analyzing personal photos.

The extensive research on image tagging can be divided into
model-based and model-free approaches. The model-based ap-
proaches heavily rely on pre-trained classifiers with machine learn-
ing algorithms [17] [19] [27] [30], while the model-free approach
propagates tags through the tagging behavior of visual neighbors
[18][29]. The two streams of approaches both assume that there is
a well-labelled image database (source domain) that has the same
or at least a similar data distribution as the target domain, so that
the well-labelled database can ensure good generalization abilities
for both classifier training and tag propagation. However, the well-
labelled database is hard to obtain in the domain of personal photos.
On one hand, although some photo sharing websites such as Flickr3

can provide a huge number of personal photos and user-contributed
tags, this data is not appropriate as supervised information, as half
of the user-contributed tags are noises to the image content [4]. On
the other, although ImageNet [6] can provide accurate supervised
information, the two significant gaps, i.e., the semantic distribution
and visual appearance gaps between the two domains pose grand
challenges to personal photo tagging.

To address the above issues, we present a novel transfer deep
learning approach with ontology priors to tag personal photos. First,
we have designed an ontology specific for personal photos from
10,000 active users in Flickr. Although previous methods (e.g.,
[3][12]) defined about a dozen common types as concepts (e.g.,
“beach fun,” “ball games,” and “wedding”) in the domain of per-
sonal photos, they are not enough to comprehensively describe the
variety of content. Furthermore, the correlations between different
concepts have not been fully exploited in previous research.

Second, we propose reducing the visual appearance gap by ap-
plying deep learning techniques. Existing image tagging methods
often leverage hand-crafted features, e.g., Scale-Invariant Feature
Transform (SIFT) [20], GIST [23], Histogram of Oriented Gradi-
ents (HOG) [5], and so on. Based on these features, visual rep-
resentation algorithms (e.g., Bag-of-Features [24]) have been pro-
posed to describe image content and assign keywords. However,
these hand-crafted descriptors are designed for general tasks to cap-
ture fixed visual patterns by pre-defined feature types and are not
suitable for detecting some middle-level features that are shared
and meaningful across two specific domains. With the recent suc-
cess in many research areas [1], deep learning techniques have at-
tracted increasing attention. This method can automatically learn
hierarchical deep networks from raw pixels and produce adaptive
middle-level feature representations for a specific task, especially
in computer vision. For example, deep convolutional neural net-
works achieved a winning top-5 test error rate of 15.3%, compared
to the 26.2% achieved by the second-best approach which com-
bines scores from many classifiers trained by a set of hand-crafted
features [14]. Another breakthrough was achieved in [15], where
the algorithm automatically learned the concepts of cat faces and
human bodies from unlabelled data. Motivated by such promis-

2www.image-net.org
3www.flickr.com

ing performances, we have proposed to discover middle-level fea-
ture abstractions from raw image pixels (i.e., called “bottom-up
transfer” in this paper) and high-level ontology priors (i.e., called
“top-down transfer” in this paper) using deep learning techniques.
Both the middle-level and high-level representations are shared and
meaningful across the two domains and thus can facilitate algo-
rithms to reduce the visual differences between the two domains.
As a result, a type of deep network learned from the source domain
can be transferred to the target with good generalization abilities.

To the best of our knowledge, this paper is one of the first at-
tempts to design a domain-specific ontology for personal photos
and solve the tagging problem by transfer deep learning. The main
contributions of this paper can be summarized as follows:

• We design a domain-specific ontology for personal photos,
which is the most comprehensive ontology in this domain.

• We propose a novel transfer deep learning approach with on-
tology priors to effectively discover intermediate image rep-
resentations from deep networks and ensure good general-
ization abilities across the two domains (Web images as the
source domain and personal photos as the target).

• We propose two modes, including a single-mode and a batch-
mode, to highly efficiently tag personal photos by leveraging
the discriminative visual descriptors and rich metadata in the
personal photos.

The rest of this paper is organized as follows. Section 2 de-
scribes related work. Section 3 first presents the ontology collection
scheme for personal photos, then Section 4 formulates the transfer
deep learning approach. Section 5 further describes two modes to
efficiently tag personal photos. Section 6 provides empirical evalu-
ations, followed by the conclusion in Section 7.

2. RELATED WORK
In this section, we briefly review research related to our approach

in two categories. Image tagging aims to automatically assign con-
cepts to images and has been studied intensively in the past decade,
while transfer deep learning has drawn a great deal of attention re-
cently with the success of deep learning techniques.

2.1 Image Tagging
A large body of work on image tagging proceeds along two di-

mensions, i.e., model-based and model-free approaches [7]. Model-
based approaches heavily rely on pre-trained classifiers with ma-
chine learning algorithms. Tag ranking estimates initial relevance
scores for tags by using probability density functions and performs
a random walk process to refine the tagging results [19]. To ad-
dress the problem of large-scale annotation of Web images, Visual
synset applies multi-class one-vs-all linear Support Vector Machine
models, which are learned from the automatically generated visu-
al synsets of a large collection of Web images [27]. In [13], Ji
et al. exploit both low-level visual features and high-level seman-
tic context into a unified conditional random fields (CRF) model
for solving the image tagging problem, which achieves significant
improvement and more robustness results on two benchmarks. Al-
though the model-based approach can achieve good performance, it
may suffer from a limited vocabulary and less scalability on large-
scale datasets.

In contrast to the model-based approach, the model-free approach
[11][18][29] was developed to learn visual concepts from Web im-
ages. The intuition is that we can measure the relevance between an
image and tags by searching and voting from its visual duplicates in
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Figure 2: The statistics from 10K active users in Flickr and an illustration of the defined ontology. (a) Distribution of concepts on frequency
ranges. (b) The top 10 concepts with frequencies. (c) An illustration of the curated ontology in the domain of personal photos. The concepts
in the leaf nodes are the focus of the subsequent tagging procedure.

a well-labelled image database. Note that the model-free approach
does not impose any model training. In [18], Li et al. leverage such
techniques to measure social tag relevance by neighbor voting. In
[29], Wang et al. adopt web-scale images to reformulate the image
tagging problem as a search for semantically and visually similar
images. In [11], Guillaumin et al. propose a novel nearest neigh-
bor voting scheme that predicts tags by taking a weighted combi-
nation of the tag absence or presence among neighbors. However,
the size of the well-labelled image database is limited in practice,
and thus irrelevant tags may be propagated by mistake due to the
well-known “semantic gap.”

However, these works, in both dimensions, only leverage hand-
crafted features. For example, in [18] and [29], global features
(e.g., color correlogram, texture moment) are widely used as glob-
al similarity metrics. In [11] and [27], local shape descriptors and
face signatures are employed, respectively. Although the approach-
es based on these hand-crafted features have achieved good result-
s, it is still unclear how they should be selected to achieve better
results for a desired task. Additionally, prior research for person-
al photos only focuses on event recognition for about 10 common
types that have relatively small datasets [3][12]. A vocabulary of
such size is less descriptive and comprehensive for a variety of per-
sonal photos. The goal of this paper is to show that a deep network
can automatically learn image representations on a large domain-
specific ontology for personal photos, which removes the need for
engineered feature representations and can transfer to new tasks.

2.2 Transfer Deep Learning
Deep learning began emerging as a new area of machine learning

research in 2006 [1]. The techniques developed from deep learning
research exploit many layers of non-linear information processing
for supervised or unsupervised feature extraction and for pattern
analysis and classification, and they have shown many promising
and exciting results [14].

Transfer deep learning targets the transfer of knowledge from a
source domain to a target domain using deep learning algorithms.
In [22], transfer learning problems are divided into two categories.
One class tries to improve the classification performance of cate-
gories that have deficit training examples by discovering other sim-
ilar categories and transferring knowledge among them (e.g., [25]).
Other works aim to solve the different data distribution problems,
so as to effectively transfer the knowledge learned from the source
domain to the target (e.g., [22]).

Compared to the above methods, our task is more challenging,
because there are few labelled images for all categories in the do-
main of personal photos. The approaches of [22] and [25], which
all need labelled training images in the target domain, are unsuit-
able for our task. More similar to our work, Bengio et al. learn
to extract a meaningful representation for each review text for dif-

ferent products using a deep learning approach in an unsupervised
fashion [9]. In contrast to [9], which is applied to text applications,
we need to handle the high-dimensional problem of images, which
results in more difficulties. Furthermore, unlike [9], which only
uses a bottom-up transfer, we propose both a bottom-up transfer
and a top-down transfer in a unified framework to better reduce the
domain gap.

3. ONTOLOGY FOR PERSONAL PHOTOS
We propose to design an ontology for personal photos, since the

vocabulary of general Web images is often too large and not spe-
cific to personal photos. To obtain the ontology, we explored the
semantic distributions in the domain of personal photos by mining
frequent tags from active users in Flickr. Although Flickr cannot
provide us with accurate tags to image content, we can mine a set
of semantic words frequently used in personal photos by common
users and collect them into this ontology. We collected more than
30, 000 users and selected about 10, 000 active users who had u-
ploaded more than 500 photos in the most recent six months and
with a registration time of more than two years. There are about
20 million photos and 2.7 million unique tags in total. For each us-
er, we crawled all the photos and considered each user-contributed
tag as a concept. After eliminating the stop words, we aggregated
the concepts among all the users, ranked these concepts in the de-
creasing order by frequency and selected the top concepts whose
frequencies were larger than 3, 000. Finally, we obtained 272 con-
cepts, which forms the vocabulary in the subsequent image tagging.
Fig. 2(a) and Fig. 2(b) show the distribution of concepts in terms
of frequency and the top 10 concepts mined from the 10,000 active
users, respectively.

To reflect the correlations between different concepts, we con-
struct a three-layer ontology which consists of a hierarchical vo-
cabulary. The top is a root node, followed by 20 human-curated
middle-level nodes which represent various topics in personal pho-
tos. These topics are defined as: entertainment, social activity, dai-
ly routine, home, public places, people, plant, animal, transporta-
tion, clothing, regular items, furniture, kitchen ware, electronics,
food, beverage, instrument, public facilities, scene, and document.
The 272 concepts are considered as leaf nodes in the ontology and
eventually grouped into the 20 middle-level nodes according to the
word similarity in WordNet4. For example, as shown in Fig. 2(c),
“beach,” “sky,” “castle,” etc. are grouped into the topic of “scene.”
This ontology embeds the relationships of concepts, which can be
considered as prior probabilities to improve tagging performance.

As we aim to conduct transfer learning from ImageNet to per-
sonal photos, the concepts in the source and target domains should
be matched. However, there is a “label bias” between the two do-

4http://wordnet.princeton.edu/



mains [26]. To solve this problem, we calculated the word simi-
larity between the 272 concepts and the ImageNet-22K labels by
using WordNet. As a result, each concept in the domain of per-
sonal photos can be mapped to the closest label in the ImageNet.
The images corresponding to these labels in the ImageNet form the
training data in the source domain.

4. TRANSFER DEEP LEARNING WITH ON-
TOLOGY PRIORS

In this section, we propose a six-layer deep neural network for
simultaneously harnessing the labelled images in the source do-
main and the unlabelled images in the target to reduce the visual
appearance gap across the two domains. Fig. 3 shows an overview
of the proposed approach, which consists of three components, i.e.,
(a) the training set, (b) the network of the transfer deep learning
with ontology priors and (c) the ontology. In the testing stage, the
personal photos that have been input in (d) can be annotated by the
transferred network in (b) and the resultant tags are shown in (e).

First, the stacked convolutional autoencoders (CAES) are pre-
trained on both the source and target domains in an unsupervised
manner, from which the shared deep feature representations can be
discovered from raw pixels. A fine-tuning process is then imple-
mented using the supervision in the source domain to give the net-
work stronger discriminability. Note that although the fine-tuning
is guided by the supervision in the source domain, it starts with the
network parameters discovered across the two domains. Therefore,
the fine-tuned network can still produce the shared feature repre-
sentations across domains. Once the shared deep feature represen-
tations are fine-tuned, the top layer, i.e., a fully connected layer
with ontology priors (FCO), is further trained. Since the shared
deep feature representations and the ontology take effect across the
two domains, the resultant parameters can be transferred to the tar-
get domain in the testing stage to obtain middle-level feature repre-
sentations (a bottom-up transfer) and high-level confidence scores
(a top-down transfer).

Let X = [x1, ...,xN ] ∈ Rd×N be a set of N training data with
d dimensions and Y = [y1, ...,yN ] ∈ RK×N be the correspond-
ing label matrix. Here the labels in the target domain are unknown,
while in the source domain each label yi is aK dimensional output
for leaf nodes. The value of 1 is for the correct concept in the de-
fined ontology and 0 otherwise. Let W denote the set of parameters
of CAES (i.e., weights and biases), and B denote parameters of the
top FCO layer, B ∈ RK×D . Here D represents the dimension of
the transformed feature after CAES. Given X, the parameter learn-
ing is determined by a conditional distribution over Y, which can
be formulated as:

max
W,B
{P (Y|X)} = max

W,B

{∑
W,B

P (Y|X,W,B)P (W)P (B)

}
,

(1)
where W and B need to be optimized in the subsequent transfer
deep learning procedures.

4.1 Deep Learning with Bottom-Up Transfer
To ensure good generalization abilities in transfer learning, a

shared middle-level feature abstraction is first learned in an unsu-
pervised pre-training and a supervised fine-tuning from both the
source and target domains, in which W is optimized.

The autoencoder (AE) is one of the methods to build deep net-
works that is often used for learning an effective encoding of the
original data without using supervised labels [1]. An autoencoder
consists of an encoder function fW(xi) and a decoder function

gW′(xi), where xi is an input, W and W′ are the parameter-
s of the encoder and decoder, respectively. The fully connected
AE is a basic form of an autoencoder. However, the fully con-
nected AE ignores the high dimensionality and spatial structure of
an image. Inspired by convolutional neural networks (CNN) [14],
the convolutional autoencoder (CAE) has been proposed [21]. In
contrast to the full connected AE, weights of the CAE are shared
among all locations in the input. Therefore, CAE scales better to
the realistic-sized high-dimensional images. For the input xi, the
hidden representation of the jth feature map is given by:

hj = fWj (xi) = σ(xi ∗Wj), (2)

where σ is an activation function and ∗ denotes the two-dimensional
convolution. The reconstruction of xi, i.e., ri, is obtained by:

ri = gW′(fW(xi)) = σ

(∑
j∈H

hj ∗W′
j

)
, (3)

where H denotes the set of all the hidden feature maps and W′ is
usually forced to be the transpose of W. A cost function is defined
to minimize the reconstruction error over all the training data using
mean squared error (MSE):

cost(W) =
1

2N

N∑
i=1

(xi − ri)
2. (4)

The cost function can be solved using the back propagation algo-
rithm [14] as standard networks.

To build deep networks, we cascade several convolutional au-
toencoders to form a stacked CAES. The input of each layer is the
encoding of the layer below. The unsupervised training can be im-
plemented in a greedy layer-wise fashion. Although unsupervised
pre-training can guide the learning and support better generaliza-
tions from the training set, the discriminability can be further en-
hanced through a supervised fine-tuning. Therefore, based on the
learned unsupervised architecture, a fine-tuning procedure is con-
ducted using the supervision in the source domain. For the sake of
simplicity, we denote W as the overall parameter of the five layers
after fine-tuning. Note that the fine-tuned network not only retains
the shared architecture across the two domains, but is more dis-
criminative than the unsupervised network. The architecture of the
five-layer stacked convolutional autoencoders (CAE1 to CAE5) is
shown in Fig. 3(b).

Once W has been learned, we can obtain a transformed feature
representation for X, and thus Eqn. (1) can be further represented
by:

max
B
{P (Y|X)} = max

B

{∑
B

P (Y|fW(X),B)P (B)

}
. (5)

4.2 Deep Learning with Top-Down Transfer
Following the CAES, an FCO layer with ontology priors is learned

on the shared feature abstractions in the source domain and trans-
ferred to the target. An ontology is a high-level semantic structure
reflecting whether concepts are close to each other or not. Such
priors with respect to this relationship can be more discriminative
to different concepts, especially those with great differences. For
example, “beach” and “sky” belong to the same middle-level node
“scene,” while “dog” belongs to “animal.” Therefore, the priors of
“beach” and “sky” are similar, but very different from that of “dog.”
In this paper, we have defined an ontology curated for the domain
of personal photos. For the concepts in this defined ontology, the
relationship among different concepts is inherited across the two
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Figure 3: The network of the proposed transfer deep learning. (a) The training set contains the labelled source images and the unlabelled
target images. (b) The network of the transfer deep learning with ontology priors. It is first trained on both ImageNet (the source domain) and
personal photos (the target domain) by pre-training and fine-tuning for discovering shared middle-level feature abstractions across domains.
Once the shared feature abstractions are learned, the top layer with ontology priors is further trained. In the testing stage, the resultant
parameters W and B can be transferred to the target domain to obtain the middle-level feature representations (a bottom-up transfer) and
high-level confidence scores (a top-down transfer). (c) An illustration of the ontology collecting scheme. (d) The input, in the testing stage,
is highly flexible which can either be a single photo or a photo collection. (e) The tagging result.

domains. For example, a middle-level node “animal” is composed
of the same leaf nodes (e.g., “cow,” “bird,” etc.) in both domains.
Therefore, based on the shared feature abstractions and the inher-
ited relationship, the parameters of the FCO layer can be learned
from the source domain and transferred to the target without much
of a gap. The ontology priors can enhance the correlations among
close concepts and weaken those among dissimilar ones, and thus
boost the prediction accuracy. Meanwhile an ontology built upon
the shared feature abstractions across domains can help reduce the
domain gap, which is the main difference between our approach
and some single-domain learning methods, e.g., [25].

As W has been learned, we fix W and introduce the ontology
priors into Eqn. (5) to maximize:

P (Y|X) =
∑
B,Θ

P (Y|fW(X),B)P (B|Θ)P (Θ), (6)

where B = [β1, ...,βK ]T ∈ RK×D and Θ = [θ1, ...,θM ]T ∈
RM×D are the priors of the leaf nodes and the middle-level nodes
in the defined ontology, respectively. TheM andK are the number
of middle-level nodes and leaf nodes, respectively. The prior over
a leaf node is constrained by its immediate middle-level node (i.e.,
parent node) in the form of a conditional probability. We define a
function parent(·) as a mapping from leaf nodes to their middle-
level nodes, i.e., if k andm are indexes of a leaf node and a middle-
level node separately, then parent(k) = m.

The typical choice for priors B and Θ is Gaussian distribution.
We thus define the following forms for B and Θ:

βk ∼ N (θparent(k),
1

λ1
ID),θparent(k) ∼ N (0,

1

λ2
ID), (7)

where βk ∈ RD denotes the prior for the kth leaf node, whose
mean is determined by its parent θparent(k) and ID is a diagonal
covariance. Let θm be a prior of the mth middle-level node in the
ontology. θm consists of a set of βk where parent(k) = m. λ1

and λ2 are the scale factors of the two covariance matrix. We define
Cm = |{k|parent(k) = m}|, where | · | denotes the cardinality of
a set. As βk and θm are Gaussian distributions, given βk, θm can
be represented as in [25], which is:

θm =
1

Cm + λ2/λ1

∑
parent(k)=m

βk, (8)

where θm ∈ RD . In general, we resort to MAP estimation to
determine the value of the FCO layer’s parameters B and Θ, which
is to maximize:

logP (Y|fW(X),B) + logP (B|Θ) + logP (Θ). (9)

By selecting the mean squared error (MSE) as loss, the loss func-
tion can be expressed as:

min
B,Θ

{
||B fW(X)−Y||2 + λ1

2

K∑
k=1

||βk − θparent(k)||2 +
λ2

2
||Θ||2

}
.

(10)

4.3 Optimization for Top-Down Transfer
To efficiently solve the above loss function, we propose to trans-

form the Θ ∈ RM×D matrix into the same dimension as B. Let
Θ = [θparent(1),θparent(2), ...,θparent(K)]

T ∈ RK×D , then E-
qn. (10) can be simplified into the following form:

min
B,Θ

{
||B fW(X)−Y||2 + λ1

2
||B−Θ||2 + λ2

2
||Θ||2

}
.

(11)
By fixing Θ, we set the derivative of B of the above loss function
to zero, then B can be updated according to the following rules:

B =

(
2Y fW(X)T + λ1Θ

)(
2fW(X)fW(X)T + λ1I

)−1

,

(12)



where I is an identity matrix. Once we obtain an updated B, we can
recalculate Θ using Eqn. (8) and transform it again. Therefore, E-
qn. (11) can be optimized by iteratively updating B and Θ until the
difference between two successive iterations is below a threshold,
e.g., 10−4.

5. PERSONAL PHOTO TAGGING
Once the deep network is trained, we describe two tagging modes

to highly efficiently tag personal photos, i.e., a single-mode for tag-
ging a single photo and a batch-mode for tagging a photo collec-
tion. The single-mode only takes visual content into account, while
the batch-mode further combines visual content with time con-
straints in a photo collection since the time information has been
demonstrated as an essential constraint in the domain of personal
photos [8].

5.1 Tagging with Single-Mode
Let x ∈ Rd be the raw pixels of a single photo. We feed x into

the learned stacked convolutional autoencoders and obtain a trans-
formed feature representation fW(x) ∈ RD . Then the tagging
problem can be formulated as the following objective function:

min
y
||B fW(x)− y||2, (13)

where y ∈ RK denotes the label vector indicating a confidence
score for each concept. We can directly obtain a closed formed
solution of y, which is

y = B fW(x). (14)

Typically, we can utilize y in two ways. One way is to sort concepts
according to their scores in y in decreasing order and select the top
k concepts as the tagging results. An alternative way is to set a
threshold and concepts whose scores are above the threshold can
be selected as the tagging results.

5.2 Tagging with Batch-Mode
One of the most distinct characteristics of personal photos is the

metadata stored in the digital photo files. This metadata includes
the timestamp when the photo was taken and the geo-location of
the photo. The metadata can be very useful in bridging the semantic
gap in multimedia understanding. The single-mode only considers
the visual content of a single photo, because an absolute timestamp
is not very useful for understanding a photo via algorithms. How-
ever, a series of timestamps of a photo collection can be exploit-
ed for discovering the relationship among photos and boosting the
tagging performance. For example, if the timestamps of two photos
have a short interval between them, we can infer that the two pho-
tos were taken at the same event and the tagging results of the two
photos should be highly correlated. Since geo-location information
is not always available, we only leverage the time information in
this paper.

Suppose there is a photo collection X ∈ Rd×N containing N
photos and a label matrix Y ∈ RK×N . To reflect the time con-
straints, we construct an affinity matrix S ∈ RN×N by:

Si,j =

{
exp{− ||ti−tj ||

2

γ2
}, |ti − tj | < T,

0, otherwise,
(15)

where ti denotes the timestamp of photo i, γ is a free parameter to
control the decay rate and T is a threshold. In a photo collection, if
the difference of timestamps between two photos is smaller than T ,
the two photos are likely to share the tagging results. Considering

the time constraints and visual clues simultaneously, the objective
function of the batch-mode is formulated as:

min
Y

{
Tr[YTLY] + ||B fW(X)−Y||2

}
, (16)

where L = A−1/2(A−S)A−1/2 and A is a degree matrix defined
as the diagonal matrix with the degrees a1, ..., aN on the diagonal
and ai =

∑N
j=1 Si,j . By setting the derivative of Y to zero, the

above optimization has a closed formed solution:

Y = 2B fW(X)(L + LT + 2I)−1, (17)

where I is an identity matrix and the matrix Y indicates the tag-
ging results of the whole collection, where each column is a set of
confidence scores of a single photo.

6. EXPERIMENTS
In this section, we evaluate the proposed approach on two dataset-

s. Personal photo tagging with single-mode and batch-mode is e-
valuated on a real personal photo dataset collected from 25 volun-
teers. Besides, an application of personal photo search is conduct-
ed on the public MIT-Adobe FiveK photo dataset [2], as it covers a
broad range of topics in personal photos.

6.1 Dataset
Training: For each of the 272 concepts, we randomly selected

about 650 images and obtained 180,000 images in total from Im-
ageNet as the training data in the source domain. Although the
user tags are subjective and noisy, to learn the intermediate feature
representation across the two domains, we selected about 180, 000
photos tagged with the 272 concepts (650 photos for each) from
the 10, 000 active users in Flickr as the training data in the target
domain. The training set contained about 0.36 million images in
total.

Testing: In photo tagging, the testing photos were collected
from 25 volunteers. The 25 volunteers, including 17 males and 8
females, were from different educational backgrounds, including
computer science, mathematics, physics, business, managemen-
t science, art and design. All the volunteers were familiar with
photography and liked taking photos. Among the volunteers, 19 of
them were students ranging from 20 to 28 years old, while the rest
were employees ranging from 30 to 45 years old. Each volunteer
was asked to contribute at least 500 photos of his/her own and all
volunteers contributed 35,217 testing photos in total.

As there is no well-labelled datasets in the domain of personal
photos, to conduct the evaluation and comparison with other ap-
proaches, we organized a ground-truth dataset with manual label-
ing. Since the labeling procedure was very time-consuming, the 25
volunteers were asked to randomly annotate one fifth of their own
personal photos. The 272 concepts were annotated for each photo
on three levels: 2–Highly Relevant; 1–Relevant; 0–Non Relevant.
Before labeling a photo, each volunteer was strictly requested to
browse the 272 concepts, from middle-level nodes to leaf nodes in
the ontology. Finally, we obtained 7,000 annotated personal photos
in total, which were used in the following evaluations. The distri-
bution of the 7,000 photos on the different topics (represented by
middle-level nodes) is shown in Fig. 4. The top five topics of the
personal photos were related to “scene,” “public places,” “plant,”
“people,” and “home,” which demonstrates the semantic bias in the
domain of personal photos. Fig. 5 further shows the statistics of the
number of concepts in photos. Each column expresses the num-
ber of photos for a given number of concepts. Among the 7,000
photos, there were 10 photos having 15 relevant or highly relevant
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Figure 4: The photo distribution on middle-level nodes in our on-
tology. Each photo can contain multiple concepts.
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Figure 5: The concept distribution for personal photos.

concepts and about 70% of the photos present more than three rele-
vant or highly relevant concepts which indicates the complexity in
the visual appearances of personal photos.

6.2 Experiment Settings
Compared approaches: The following approaches were com-

pared for the performance evaluation:
1. Tag ranking [19]: A typical approach uses hand-crafted fea-

tures (225-d color moment and 128-d wavelet feature). It
estimates initial relevance with concepts by a Gaussian ker-
nel function and refines them by random walk. The kernel
function is learned on ImageNet with 1,000 images for each
concept, and the tag graph is built as in [19].

2. Dyadic Transfer Learning (DTL) [28]: A nonnegative matrix
tri-factorization based transfer learning framework for image
tagging, where the same hand-crafted features are extracted
as in Tag ranking.

3. Transfer Learning with Geodesic Flow Kernel (GFK) [10]:
An unsupervised approach to learn domain-invariant features
by leveraging the subspaces that lie on the geodesic flow.
Hand-crafted features are extracted as in Tag ranking and the
nearest neighbor classifier is adopted as in [10]. We selected
GFK because of its best performance over other hand-crafted
feature-based transfer learning methods.

4. Deep learning with no transfer (DL) [14]: A deep learning
approach with five convolutional layers and three fully con-
nected layers. The networks are trained in the source domain
(i.e., ImageNet), with about 650 images for each of the 272
concepts and about 180,000 training images in total.

5. Deep learning with Flickr training data (DL(Flickr)): We
trained the same network as DL except for using the 180, 000
Flickr training data in the target domain.

6. Deep learning with top-down transfer (DL+TT): The same
architecture and training set as DL except for the ontology
priors embedded in the top, fully connected layer.

7. Deep learning with bottom-up transfer (DL+BT): A deep
learning approach with five-layer CAES and one fully con-
nected layer. The networks are trained on both domains.

8. Deep learning with full transfer (DL+FT) (i.e., bottom-up
and top-down transfer): The same architecture and training

set as DL+BT except for the ontology priors embedded in the
top, fully connected layer.

Note that DL+TT, DL+BT, and DL+FT are proposed in this paper.
Network architecture: The architecture of our network is sum-

marized in Fig. 3(b) and contains five convolutional layers and one
fully connected layer with detailed specifications, CAE1 including
96 filters of size 7×7×3 with a stride of 2 pixels, CAE2 including
256 filters of size 5×5×96 with a stride of 2 pixels, CAE3 includ-
ing 384 filters of size 3 × 3 × 256 with a stride of 1 pixel, CAE4
including 384 filters of size 3×3×384 with a stride of 1 pixel and
CAE5 including 256 filters of size 3 × 3 × 384 with a stride of 1
pixel. The input photos were color images of size 224 × 224 × 3.
To achieve higher computational efficiency and robustness, max-
pooling layers were used following CAE1, CAE2 and CAE5 with
the same window size of 3 × 3 and strides of 3, 2, 2, respective-
ly. In the convolutional layers, rectifier linear unit max(0, x) was
adopted as the activation function, while in the top layer a linear
activation function was used. The parameters λ1 and λ2 related to
the prior distributions in the top layer were learned on a validation
set in the source domain and set as λ1 = 30 and λ2 = 10.

Evaluation metrics: we adopted Normalized Discounted Cu-
mulative Gain (NDCG) as metrics to evaluate photo tagging and
Precision@K to evaluate photo search. The NDCG measures multi-
level relevance and assumes the relevant tags are more useful when
appearing higher in a ranked list. This metric at the position of p in
the ranked list is defined by:

NDCG@p = Zp

p∑
i=1

2r
i

− 1

log(1 + i)
, (18)

where 2r
i

is the relevance level of the ith tag and Zp is a normal-
ization constant such that NDCG@p = 1 for the perfect ranking.
Additionally, the top-N error rates were adopted in tagging as they
are more intuitional for common users. For example, the top-5 error
rate is the ratio of testing photos whose top-5 tags are all irrelevant.

6.3 Evaluation of Tagging with Single-Mode
The problem of tagging with single-mode is to assign one or

more relevant concepts to a given personal photo based on its visu-
al content. As presented in Section 6.1, the 7,000 photos of real
users with ground truth were evaluated. Fig. 6 shows the NDCG
of different approaches for tagging personal photos. Obviously,
we can see that DL(Flickr) is even far below than the method DL
trained on ImageNet without transfer learning, which indicates the
large percentage of noises in the user-provided tags in Flickr. Fig. 7
shows the error rates of different approaches over the 7,000 person-
al photos and an ideal performance of the DL approach (denoted
as “DL+withinDomian”) which is trained and tested on ImageNet.
Overall, the tagging performances across domains were inferior to
that within the same domain. The results verify our observation
that there are significant domain gaps between Web images and
personal photos.

It can also be observed from Fig. 6 and Fig. 7 that the existing
tagging approach (Tag ranking) using hand-crafted features was the
worst to bridge the domain gaps. It indicates that pre-defined fea-
ture types have difficulty discovering the shared feature representa-
tions across the two domains. By adopting cross-domain learning
ideas, DTL [28] and GFK [10] were superior to the Tag ranking, but
were inferior to the deep learning-based approach (DL). This shows
stronger learning and generalization abilities of deep learning than
the hand-crafted features. When further integrating transfer learn-
ing to deep learning, DL+TT, DL+BT and DL+FT achieve better
performance than the DL approach. DL + FT achieved the best re-
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Figure 6: The NDCG of different approaches for tagging personal
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Figure 7: The top-N error rates of different approaches for tagging
personal photos and an ideal performance obtained by training and
testing on ImageNet (denoted as DL+withinDomain).

sult. The NDCG@5 of the full transfer network increased 12.8%
and 4.5% against the GFK and the DL approach, respectively. The
top-5 error rate of the full transfer network was 40.0%, which is
very close to the top-5 error rate 37.6% within the domain. The
superior performance derives from the fact that the full model can
discover the shared feature abstractions from low-level raw pixels
and the shared ontology from semantic structures across the two
domains. In Fig. 7, we can observe that DL+FT (guided by the
ontology) relatively decreased about 8.0% (in terms of top-5 “er-
ror” rate), compared to DL+BT. By extending the ontology beyond
the three hierarchies with deeper networks, the top-down transfer
can get further improvement. For the full model (DL+FT), we al-
so varied the relative percentage of the labelled training set (source
domain) as other typical transfer learning methods. The result is
drawn in Fig. 13.

Fig. 10 shows the tagging results of different approaches ranked
by confidence scores. We can observe that the typical approach-
es with hand-crafted features work well for “simple” photos with
a clean background and few objects (e.g., the first photo in the left
column), because of the limited descriptive power of these features.
However, personal photos are always captured in the real world
with uncontrolled environments, which are more likely to present
complex visual patterns. This challenge can deteriorate the perfor-
mance of the hand-crafted feature-based approaches. On the other
hand, the deep learning-based approaches show stronger general-
ization abilities. However, it is still challenging for algorithms to
predict the correct tags, since the photos are annotated by owners
so that the ground truth is sometimes very subjective. For example,
in Fig. 10, the content of the first photo in the right column is very
similar to an “exhibition hall” or an “office,” but the owner of the
photo considers the two tags are wrong, because he took the pho-
to in a restaurant. We will resort to the batch-mode to solve this
problem.
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Figure 8: The NDCG of single-mode and batch-mode for tagging
personal photos.
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Figure 9: The top-N error rates of single-mode and batch-mode for
tagging personal photos.

6.4 Evaluation of Tagging with Batch-Mode
The problem of tagging with batch-mode is how to assign con-

cepts to a given photo collection, where the visual content and rich
metadata embedded in personal photos is exploited simultaneously.
As the geo-locations are not always available for photos, we only
leverage the time information in this paper. Since the personal pho-
tos have been organized into several folders when submitted by the
25 volunteers, we considered the photos in each folder as a photo
collection. We randomly selected three photo collections with var-
ious sizes (from 10 to 600 photos) from each user. In total, about
4,000 photos from 75 photo collections were evaluated.

Empirically, we set γ = 2 in Eqn. (15) to make Si,j in a proper s-
cale, and we counted ti by hours. Fig. 8 and Fig. 9 show the NDCG
and error rates by using the DL+FT network with single-mode and
batch-mode, respectively. In the single-mode, each photo in a photo
collection was annotated individually by algorithms. While in the
batch-mode, we ran the photo collection at one time. Compared to
the single-mode, the batch-mode could consistently achieve a bet-
ter performance, with gains of 4.4%, 4.3%, 3.9%, 3.2% and 1.5%
from the NDCG@1 to NDCG@5. The improvement partly bene-
fited from the idea to formulate the photo collection as a group, so
that a photo can contribute its tags to others and vice versa depend-
ing on their time consistency. In our experiment, we set T at one
hour. The shorter and longer time intervals led to inferior results
over a validation set. Our analysis shows that, the shorter interval
limited the tag propagation within a photo collection as the event
in a photo collection usually lasts three to four hours. However, the
longer interval inevitability led to noise.

Fig. 11 shows the tagging results for the same photo collection-
s with single-mode and batch-mode, respectively. We found that
tagging with batch-mode was more affective and could partially
solve the problem of subjective annotation. For example, in the
case of photo(c) of user #1, collection #3, the tagging algorith-
m with single-mode merely predicted “library,” and “conference
room” based on visual content. However, the batch-mode simul-
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Table 1: The average precision@K of photo search in the MIT-
Adobe FiveK dataset.

Tag ranking GFK DL(Flickr) DL DL+TT DL+BT DL + FT
P@1 0.34 0.41 0.42 0.55 0.61 0.71 0.77
P@5 0.28 0.32 0.31 0.46 0.52 0.62 0.74
P@10 0.22 0.26 0.25 0.40 0.45 0.56 0.72

taneously considered visual content and correlations from time-
adjacent photos. Therefore, “exhibition hall” was propagated from
time-adjacent neighbors. The batch-mode with time constraints
complements the visual content analysis and enhances the robust-
ness of our tagging algorithm.

6.5 Evaluation of Personal Photo Search
One of the most useful features of photo tagging is to help users

recall and reconstruct the situation what he (or she) experienced. It
can be conducted by photo search and ranking [16] with the user-
typed queries. MIT-Adobe FiveK photo dataset was used in this
evaluation. As there is no specific time information in this public
dataset, we annotated photos by the proposed single-mode to gen-
erated the top-1 tag for each photo. Each tag was associated with
a probability score produced by the deep learning networks. We
used each of the 272 concepts in the personal photo ontology as
queries. A photo is returned to users if its top-1 tag can be matched
to the query. For each query, photos are ranked in the decreas-

ing order according the probability scores. We retrieved ten photos
for each query and manually judged the relevance of each photo.
We calculated the average precision@K on all queries for different
compared methods. The result is in Tab. 1. We can see that our pro-
posed approach achieves much better performance compared to the
other baselines. DL+FT achieves the best results, which demon-
strates that DL+FT can build more accurate links between visu-
al features and tags through the bottom-up and top-down transfer.
Fig. 12 further illustrates some exemplary photo search results. For
each query, the top-5 photos are returned. We can clearly see that
the retrieved photos by the proposed approach can provide users
with better results.

6.6 Complexity Analysis
We trained the six-layer network through the training set of 0.36

million images, which took three to four days on a NVIDIA GTX
580 GPU. For tagging with single-mode, the algorithm took less
than 10 milliseconds on a PC with Intel Core Quad CPU with
2.83GHz and 4GB RAM. For tagging with batch-mode, it took
three seconds for a photo collection of 200 photos (800*600 pixel-
s). The high efficiency ensures an immediate response, and thus the
transfer deep learning approach with two modes can be adopted as
a prototype model for real-time mobile applications, such as photo
tagging and event summarization on mobile devices.

7. CONCLUSIONS
In this paper, we have studied the problem of tagging person-

al photos. To effectively leverage supervised Web resource and
reduce the domain gap between general Web images and person-
al photos, we have proposed a transfer deep learning approach to
discover the shared representations across the two domains. Such
representations can guide knowledge transfer from the source to
the target domain. We conducted personal photo tagging on 7,000
real personal photos and personal photo search on the MIT-Adobe
FiveK photo dataset. Experiments demonstrated the superiority of
the transfer deep learning approach over the state-of-the-art hand-
crafted feature-based methods and deep learning-based methods.
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