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Abstract
Several companies have recently announced plans to build “green”
datacenters, i.e. datacenters partially or completely powered by re-
newable energy. These datacenters will either generate their own
renewable energy or draw it directly from an existing nearby plant.
Besides reducing carbon footprints, renewable energy can poten-
tially reduce energy costs, reduce peak power costs, or both. How-
ever, certain renewable fuels are intermittent, which requires ap-
proaches for tackling the energy supply variability. One approach
is to use batteries and/or the electrical grid as a backup for the
renewable energy. It may also be possible to adapt the workload
to match the renewable energy supply. For highest benefits, green
datacenter operators must intelligently manage their workloads and
the sources of energy at their disposal.

In this paper, we first discuss the tradeoffs involved in building
green datacenters today and in the future. Second, we present Para-
sol, a prototype green datacenter that we have built as a research
platform. Parasol comprises a small container, a set of solar panels,
a battery bank, and a grid-tie. Third, we describe GreenSwitch, our
model-based approach for dynamically scheduling the workload
and selecting the source of energy to use. Our real experiments with
Parasol, GreenSwitch, and MapReduce workloads demonstrate that
intelligent workload and energy source management can produce
significant cost reductions. Our results also isolate the cost impli-
cations of peak power management, storing energy on the grid,
and the ability to delay the MapReduce jobs. Finally, our results
demonstrate that careful workload and energy source management
can minimize the negative impact of electrical grid outages.

Categories and Subject Descriptors C.m [Computer Systems Or-
ganization]: Miscellaneous; D.4.1 [Operating Systems]: Process
Management—Scheduling
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1. Introduction
Datacenters range from small sets of servers in machine rooms
to several thousands of servers housed in warehouse-size installa-
tions [23, 44]. One may find the former datacenters at universities
and enterprises, and the latter at Internet service companies like
Google and Microsoft. Collectively, datacenters consume a mas-
sive amount of energy. Estimates for 2010 indicate that datacenters
consume around 1.5% of the total electricity used world-wide [23].
This translates into high carbon emissions as most of this energy
is produced using fossil fuels. A 2008 study estimated world-wide
datacenters to emit 116 million metric tons of carbon, slightly more
than the entire country of Nigeria [31].

Given these emissions and increasing societal awareness of
climate change, governmental agencies, non-profits, and the public
at large are starting to demand cleaner products and services. As a
result, several companies have announced plans to build “green”
datacenters, i.e. datacenters partially or completely powered by
renewable energy such as solar or wind energy. These datacenters
will either generate their own renewable energy (self-generation)
or draw it directly from an existing nearby plant (co-location).
For example, Apple is building a 20MW solar array for its North
Carolina datacenter [6]. McGraw-Hill has recently completed a
14MW solar array for its datacenter [7]. Green House Data and
AISO are two small cloud service providers that operate entirely
on renewable energy [1, 15]. Other examples can be found in [8].

We argue that it is irrelevant whether these companies are in-
vesting in co-located or self-generated renewable energy for mar-
ket positioning, public relations, cost, or environmental reasons.
The fact is that they are expecting benefits from these invest-
ments. For example, companies may be able to attract customers
who value their investments in renewables. Moreover, despite their
decreasing-but-still-high capital costs, exploiting solar and/or wind
energy in datacenters may reduce overall energy costs [11], peak
grid power costs [34], or both [12]. We expect that an increasing
number of companies will see benefits in exploiting renewables.

However, we do not argue that co-location or self-generation
is the best approach for all datacenter operators. For example,
Google prefers to invest in renewables by financing new plants and
pumping the produced energy into the electrical grid. Rather, we
argue that co-location or self-generation will be the approach of
choice for many operators, as suggested by [1, 6–8, 15].

Co-location and self-generation are interesting from a research
perspective as well: solar and wind energy are intermittent, which
requires approaches for tackling the energy supply variability. One
approach is to use batteries and/or the electrical grid as a backup for
the renewable energy. It may also be possible to adapt the workload



(the energy demand) to match the renewable energy supply [2, 11,
12, 24, 25]. For highest benefits, green datacenter operators must
intelligently manage their workloads and the sources of energy at
their disposal. For example, when the workload is deferrable (i.e.,
it can be delayed within a time bound), it may be appropriate to
delay some of the load, and store the freed-up renewable energy in
the batteries for later use (e.g., to shave an expected load peak when
the renewable energy is not available). As far as we know, current
green datacenter operators do not manage their energy sources and
workloads in this manner.

We set out to build software and hardware to explore these
issues. This paper describes some of our main efforts. First, we
collect data from a large number of sources to quantify the tradeoffs
involved in building solar- and/or wind-powered datacenters today
and in the future. We pay particular attention to the evolving space
requirements and capital costs of these technologies. We speculate
that today’s space requirements and capital costs may be cut in half
in the 2020-2030 time frame.

Second, we present Parasol, a solar-powered micro-datacenter
that we have built as a research platform. Parasol comprises a small
container, a set of solar photovoltaic (PV) panels, batteries, and a
grid-tie. The container houses two racks of energy-efficient servers
and networking equipment. Parasol uses air-side economizer cool-
ing (or simply “free cooling”) whenever outside temperatures are
low enough, and regular air conditioning otherwise.

Third, we describe GreenSwitch, our framework and system for
scheduling workloads and selecting the source of energy to use (so-
lar, battery, and/or grid) at each point in time. GreenSwitch is based
on (1) predictions of future renewable energy availability; (2) pre-
dictions of future computational load; (3) the current amount of
energy stored in the batteries; (4) analytical models of workload be-
havior, battery use, and electricity cost; and (5) the characteristics
of the green datacenter and the prices of the grid energy and peak
power. GreenSwitch seeks to minimize the overall cost of electric-
ity, while respecting the characteristics of the workload and bat-
tery lifetime constraints. GreenSwitch can also be used to manage
workloads and energy sources during electrical grid outages.

Fourth, we perform a large number of real day-long experiments
with Parasol and MapReduce (Hadoop) workloads. We consider
both deferrable and non-deferrable workloads. Our results demon-
strate that smart workload and energy source management can in-
deed produce significant reductions in cost and carbon footprint.
In contrast to prior work on leveraging batteries, e.g. [14], we find
that batteries may not be as cost-effective when the system also
includes a solar array and the ability to store energy on the grid
(“net metering”). Our results also isolate the impact of peak power
management, net metering, and the ability to delay the MapReduce
jobs. Finally, our results demonstrate that careful workload and en-
ergy source management can minimize the negative impact of grid
outages on the overall performance of a workload.

Through GreenSwitch, Parasol is the first green datacenter pro-
totype to dynamically manage workload demands, multiple energy
sources (renewable energy, batteries, and grid), and multiple energy
stores (batteries and net metering), all at the same time. Throughout
the paper, we mention important effects that we would have missed
if we had used simulations or a simpler prototype in our study.

We conclude that green datacenters represent an increasingly
interesting topic from many perspectives. We hope that Parasol
and GreenSwitch will entice other researchers to consider these
datacenters. In fact, we plan to enable other research groups to use
Parasol from their remote sites through virtualization.

2. Related Work
Viability of green datacenters. Many recent papers have focused
on datacenters that generate their own renewable energy [2, 3, 10–
12, 24–26, 28, 29, 37, 39]. This paper adds to this body of work.

Ren et al. evaluated various ways for datacenters to incorpo-
rate renewable energy: self-generation, off-site generation feeding
into the grid, power purchase agreements feeding into the grid,
and renewable energy certificates [34]. They found that both self-
generation and off-site generation can lower costs, as well as lower
carbon footprints. In addition, they found self-generation to be the
best approach when carbon reduction targets are moderate (up to
30%), especially due to its ability to reduce peak grid power cost.

Unfortunately, Ren et al. considered a low and constant grid
energy price ($0.05/kWh), which made self-generation relatively
expensive in comparison. A major benefit of self-generation is its
ability to lower energy costs significantly under the pervasive off-
peak/on-peak energy pricing. Had Ren et al. considered this type
of pricing, and energy prices that are more representative of North
America and Europe (e.g., $0.07-$0.14/kWh in the US [43]), they
would have seen a larger range of scenarios where self-generation
is cheaper than other approaches.

In contrast with this prior study, our analysis of viability focuses
on the space requirements and capital costs of self-generation with
wind and solar, now and in the future.

In a well-known blog post [17], James Hamilton from Ama-
zon.com criticized Apple’s 20MW solar array as consuming too
much space for the amount of energy it will provide.

We agree with Hamilton’s observations; solar energy currently
consumes a significant amount of space and is still expensive. How-
ever, we take a broader perspective. First, as we illustrate in this
paper, these space requirements and costs will continue to decrease
quickly in the future. Second, many datacenters do not consume
anywhere near maximum power most of the time. Third, many dat-
acenter operators may want to draw only a moderate fraction of
the energy consumed by their datacenters from renewables. Fourth,
wind requires less space and lower capital expenditures than so-
lar, and may provide a better alternative. (Although Parasol is
solar-powered, our approaches for managing workloads and energy
sources applies to any other technology that produces variability.
Obviously, our approaches work best when this variability can be
accurately predicted.) Finally, even when operators decide to lever-
age renewable energy for reasons other than electricity costs or the
environment, the bottom line is that their workloads and energy
sources must be managed properly for maximum benefits. Under-
standing how to do this management is a key goal of this paper.

Real implementations of green datacenters. Researchers from
UMass at Amherst have built Blink [37], a cluster of 10 laptop
motherboards powered by two micro wind turbines and two solar
panels. They used batteries only as a small 5-minute energy buffer.

Blink faces the energy variability we study in this paper. Blink
tackles it by modulating the motherboards’ duty cycle, as it is
completely off the electrical grid. In contrast, we study approaches
that manage the workload (when it is deferrable or there is a grid
outage) and energy sources, including larger batteries and the grid.

HP Labs has recently described a datacenter that is partially
powered by a PV solar array [3]. The datacenter is also grid-tied,
so that the grid can compensate for the lack of solar energy. For
cooling, the datacenter uses outside air combined with standard air
conditioners. They focused solely on workload management.

Although their datacenter is conceptually similar to Parasol,
they only experimented with a small part of it, 4 servers. In ad-
dition, their workload management did not consider grid energy
costs, peak grid power costs, or having batteries and the grid at
the same time. Without considering these factors, they could not



estimate the total cost savings that green datacenters can provide.
Also importantly, their paper does not include any details about
their workload management models/algorithms.

Managing workloads in green datacenters. Researchers have
proposed to schedule batch jobs to maximize the use of renewable
energy [11, 12, 24]. In contrast, Krioukov et al. proposed to adjust
the quality of the replies provided to users in interactive workloads
[25]. For datacenters that run a mix of interactive and batch work-
loads, Aksanli et al. proposed to adapt the amount of batch pro-
cessing dynamically [2]. Liu et al. took the same approach [29].
In addition, they used modeling of the energy cost and the revenue
from running batch jobs to derive their workload scheduling.

We consider deferrable (e.g., batch) and non-deferrable (e.g.,
interactive) workloads in green datacenters. Our management of
deferrable workloads is similar to that in [11, 12], as we study the
same types of electricity costs. However, for this type of workload,
our decisions select the energy source in tandem with the workload
schedule. For non-deferrable workloads, our management simply
selects the energy source. These previous papers did not consider
active energy source management, e.g. the renewable energy is al-
ways fully used when enough load is available, and wasted other-
wise. Moreover, none of these papers considered net metering, and
only [12] considered peak grid power costs.

Managing energy sources in datacenters. Researchers have ex-
plored the use of batteries in datacenters [13, 14, 22, 40, 45]. These
studies show that batteries and other forms of energy storage can
lower both the capital cost of the power delivery infrastructure and
the operating cost of a datacenter.

However, none of these papers considered renewable energy
or net metering. In addition, almost in their entirety, these studies
focused on non-deferrable workloads with available grid power. We
consider both deferrable and non-deferrable workloads, as well as
grid outages. Interestingly, our results suggest that batteries may be
less effective at lowering operating costs in the presence of solar
energy and net metering, especially for non-deferrable workloads.

Finally, Li et al. have proposed an architecture in which two sets
of servers draw power from different sources (e.g., from the grid or
from a wind farm) [28]. In their setup, energy source management
translates into migrating workloads between the two sets. We argue
that their architecture is less flexible and incurs more (performance
and energy) overheads than that of Parasol.

3. Tradeoffs in Greening Datacenters
In this section, we discuss the tradeoffs, space requirements, and
capital costs involved in greening datacenters, using data from
numerous sources. We start by comparing co-location and self-
generation to grid-centric approaches. We then discuss how the
space requirements and costs of solar and wind have evolved over
time, and our expectations for the future.

Grid-centric vs co-location/self-generation. Grid-centric ap-
proaches include power purchase agreements and off-site genera-
tion contracted by the datacenter operator [34]. In these approaches,
the renewable energy is generated at locations with an abundance
of the renewable fuel (e.g., windy areas of the midwest in the US),
and fed into the electrical grid. Another advantage is that the data-
center operator need not operate or maintain the renewable power
plant. However, the power conversions (DC/AC), voltage transfor-
mations, and transmission over long distances may incur energy
losses of up to 15% [20]. Moreover, in off-site generation, the data-
center operator may incur grid-transmission charges (e.g., the price
of 5% of the produced energy) imposed by power utilities [34].
Further, in grid-centric approaches, the datacenter is completely
dependent on the availability of the grid or on diesel generators.
Grid outages occur frequently in developing countries (e.g., India)
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Figure 1. Solar PV efficiency over time. Reproduced from [21].

and in locations of developed countries that are prone to natural
disasters (e.g., winter storms in the East of the US).

Co-location and self-generation incur much lower losses (5%
or less), as the power undergoes fewer conversions/transformations
and is not transmitted over long distances. There are also no addi-
tional charges and a lower dependence on the grid or diesel gener-
ators (although they do require batteries and/or a grid-tie, for when
energy is needed but not enough renewable energy is available).
Unfortunately, these approaches do have drawbacks. In co-location,
the location of the renewable plant may not be ideal for a datacen-
ter. In self-generation, the location that is ideal for the datacenter
may not be so for the renewable plant. Moreover, in self-generation,
the datacenter operator is responsible for the operation and mainte-
nance of the renewable plant.

As aforementioned, previous studies [11, 12] have found that
self-generation can lower overall electricity costs, as its capital
costs can be amortized relatively soon. Comparing self- and off-site
generation in terms of electricity costs, a recent study [34] found
that the best approach depends on the carbon reduction target.

The above discussion suggests that no approach is perfect, so
different operators may make different choices (e.g., Google and
Apple). In terms of research, self-generation with solar and/or wind
has become a hot topic, as discussed in the previous section.

Solar and wind are two promising sources of green energy for
datacenters, as (1) they are more broadly available world-wide than
hydroelectric energy; (2) they cause less environmental disruption
than hydroelectric energy; and (3) they do not have the waste
storage problem of nuclear energy. However, solar and wind have
traditionally incurred large space requirements and capital costs.

Space and cost of solar energy. A key factor determining the space
requirements of solar PV energy is its efficiency, i.e. the percentage
of the sunlight energy that is transformed into electricity. Figure
1 plots the evolution of the efficiency of the different solar PV
technologies over time [21]. Note that the efficiency of today’s most
affordable PV technology (multi-crystalline silicon) hovers around
15% and may increase to 25% by 2030. With other technologies,
efficiency is likely to exceed 40%. This future increase in efficiency
would represent a 50+% reduction in space requirements.

Another key issue is the “capacity factor”, i.e. the percentage of
the maximum theoretical solar energy production (24hrs of maxi-
mum sunlight every day) that is actually produced. Capacity factors
vary depending on latitude and weather. For example, Erfurt (Ger-
many), Princeton (US), Canberra (Australia), and Phoenix (US)
have capacity factors of roughly 12.5%, 15.5%, 16.5%, and 24%,
respectively [33]. A location with a capacity factor of 24% requires
half of the space of a location with a 12% factor.

To make the discussion concrete, consider an example datacen-
ter in which each rack consumes 8.8kW (40 200W 1U servers and a
PUE of 1.1), the average power utilization is 33%, and the datacen-
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Figure 2. Solar PV capital costs over time without incentives [38,
41]. The data points represent actual average costs, whereas the
dashed lines are our approximations of the historical trends. Our
cost estimates for the distant future are admittedly speculative.

ter operator wants to produce 50% of the energy it needs from solar
in New Jersey (15.5% capacity factor). Moreover, note that the area
of a 235W DC solar panel is 17.64 square feet, and it produces a
maximum of 202W AC after the de-rating we see in Parasol. Under
these conditions, the amount of space required would be roughly
47x larger than the space taken by the racks (each standard rack
takes 5.81 square feet, but we multiply this area by 3 to account for
clearences in the front and back of the rack). The full calculation is
47 = 8800W/(202W · 15.5%) · 17.64ft2/17.43ft2/(1/33% ·
1/50%). In the 2020-2030 range, we expect these requirements
to decrease to roughly 24x. For racks of energy-efficient servers
like those of Parasol (80 25W 0.5U servers and a PUE of 1.1), the
space requirements are roughly 12x (now) and 6x (future). These
requirements seem manageable at least by small/medium datacen-
ters. For example, our predictions suggest that powering 10 racks
of our energy-efficient servers (under the assumptions above) will
likely require covering only 6 parking spaces with solar panels.

In terms of capital costs, solar energy has become substantially
cheaper over time. Figure 2 plots the average final installed capital
cost per Watt, and the average capital cost of inverters and panels,
over time [38, 41]. The installed cost includes the panels, inverters,
and all soft costs, such as permits and labor. Installed costs have
decreased by roughly 50% since 1998. Governmental incentives
reduce these costs even further. For example, current federal and
state incentives in the US can lower installed costs by 40-60%.

The figure also plots dashed curves that approximate the histor-
ical data. (Admittedly, we are taking liberties here, as these curves
reflect historical trends only, rather than expected technology-,
market-, or governmental policy-driven cost changes. Neverthe-
less, the curves are accurate for the available data.) According to
them, the installed cost could decrease by almost 50% by 2030.
These trends are in stark contrast to the average cost of grid energy
in the US, which has increased by 30+% since 1998 [43].

Section 6 quantifies these costs by computing how long it would
take to amortize the installed capital cost of a solar array. Specif-
ically, our experiments suggest amortization periods between 4.8
and 7.1 years, assuming governmental incentives of 60%. In the
2020-2030 time frame, these periods could be less than 2.4 and 3.6
years, assuming that incentives and grid electricity prices remain
at the same levels as today. Obviously, these amortization period
estimates for the distant future are highly speculative at this point.

Space and cost of wind energy. When a single turbine suffices,
wind has lower space requirements than solar. For example, a 1MW
wind turbine requires 11000 square feet [32]. In addition, wind has
a higher capacity factor than solar in reasonably windy places. For
example, the average wind capacity factor for the East of the US
is 26%, whereas in the Mountain states it is 33% [42]. Assuming
the East capacity factor, 1MW of wind requires roughly 12x less
space than 1MW of solar. However, in larger installations, the

wind turbines must be placed far apart, causing their overall space
requirements to substantially exceed those of solar [30].

In terms of capital costs, wind is 2x-3x cheaper than solar [18].
Despite its small size, Parasol only uses solar energy because

winds are not strong enough at our location.

Summary. The above data and trends suggest that self-generation
using solar and/or wind energy will become increasingly attractive.

4. Design and Implementation of Parasol
In this section, we describe and justify our design of Parasol as a
research platform. We start with the physical infrastructure, then
describe its IT hardware and software. At the end of the section, we
justify each of our design decisions and mention a few mistakes.

Physical infrastructure. Parasol comprises a small custom con-
tainer, a set of fixed solar panels, batteries and a grid-tie, a free
cooling unit, and a direct-expansion air conditioner (HVAC). The
container lies on a steel structure placed on the roof of our building,
and houses two 42U racks of energy-efficient IT equipment. Each
of our servers takes half-U space, so two racks can host up to 150
of them (some rack space is needed for networking and other gear).

The 16 polycrystalline solar panels are mounted on top of the
steel structure and shade the container from the sun most of the
time. Each panel produces up to 235W DC. The DC power is trans-
formed into AC using two SMA Sunny Boy 2000HF-US inverters
placed inside the container. The panels produce up to 3.2kW of
AC power (after derating). Parasol is also equipped with 32kWh of
lead-acid batteries controlled by two SMA Sunny Island 5040-US
charge controllers. In addition, Parasol is connected to the electrical
grid and can be configured to net meter any excess solar energy. In
typical on-grid solar setups, the batteries are only discharged dur-
ing grid power outages. However, we have identified configuration
parameters to the inverters and charge controllers that allow us (al-
most) full control of every source of energy available to Parasol. We
can dynamically change the setting of these parameters according
to our management goals. As discussed in Section 6, these changes
have to be done in stages to prevent instability.

For cooling, Parasol uses the Dantherm Flexibox 450 free cool-
ing unit, TKS 3000 free cooling controller, iA/C 19000 HVAC,
and two relays that we introduced (1) to properly coordinate the
free cooling unit and the HVAC; and (2) to completely shut down
the HVAC when the free cooling is on. Parasol uses free cooling
whenever the outside temperature is lower than a programmable
threshold (27◦C by default). The TKS controller modulates the fan
speed according to a temperature sensor inside the container and
the threshold. The free cooling unit consumes between 8W and
410W depending on fan speed. When the outside temperature ex-
ceeds the threshold, the controller closes the damper, turns the free
cooling unit off, and turns the HVAC on. How often the HVAC
compressor runs depends on the temperature of its internal sensor
and the threshold. The HVAC consumes between 100W and 2.3kW.
Under very low temperatures (less than 5◦C by default), the HVAC
activates its internal 3-kW heater.

To distribute power to the IT equipment, we use 3 Raritan
Dominion PX PDUs, which monitor the energy drawn from each
outlet and can turn the outlet on/off. Parasol also includes power
meters, and temperature, humidity, and air quality sensors.

Figure 3 shows the steel structure, the container, and the solar
panels. The steel structure is 8’×22’, whereas the container is
7’×12’. The batteries are in the white enclosures on the right
side of the photo. The HVAC can be seen on the long side of the
container, whereas the exhaust damper can be seen to the left of the
container’s door. The free cooling unit (not shown) is on the short
side of the container in the wall opposite to the damper.



Figure 3. Outside view of Parasol.

Figure 4 shows the layout of the inside of Parasol in scale. The
servers face the free cooling unit on the left side of the figure, and
expel hot air towards the exhaust damper on the right side. The
straight dashed line represents a partition we introduced to create a
“cold aisle” in front of the servers. Most of the rest of the container
is the “hot aisle”. To completely seal the cold aisle, we also placed
a partition at the top of the racks (not shown). This top partition
leaves the Sunny Boys in the hot aisle. The snake shaped duct
brings conditioned air to the cold aisle, when the free cooling unit
is off and the damper is closed.

IT hardware. Parasol currently hosts 64 Idotpc Atom-based
servers, each of which has a Mini-ITX Motherboard with a dual-
core Atom D525MW processor, 4GB of memory, one 250GB hard
disk, and one 64GB solid-state drive. Each server consumes be-
tween 22W and 30W. To connect the servers, we use 2 low-power
1Gbps Ethernet switches (Cisco SG300-52), each with 52 ports and
a power range of 24W to 42W. We will add more of these servers,
switches, and PDUs in the near future.

Parasol also includes a quad-core Xeon server with 16GB of
memory and 1TB of RAIDed disk space. This server receives and
stores all the monitoring data collected from Parasol.

Software. Section 5 describes GreenSwitch. We have also built an
energy-management daemon (not used in this paper) for Parasol.
The daemon aggressively manages the energy consumption of the
IT equipment by sending servers to sleep whenever they are not
needed. For example, the daemon transitions inactive servers to the
S3 ACPI state after a threshold amount of idle time. Our modified
version of the SSH utility wakes up the servers.

Parasol uses Ganglia [35] for collecting and processing all
monitoring data. We collect energy consumption or production
data from every component (including inverters, cooling units, and
PDUs) and quantify the losses in power conversion/distribution.
With these data, we compute the Power Usage Efficiency (PUE) at
each point in time. We also collect temperature, humidity, air flow,
and air quality measurements in different locations. Finally, we
monitor the utilization of the servers’ CPUs, memories, and disks.

Justification. Our desire to study free cooling (beyond the scope of
this paper) is the main reason we place the servers on the roof. Had
we placed the servers inside our building, the building’s central air
conditioning would interfere with our experiments. Based on his-
torical temperature data, we expect Parasol to run on free cooling
more than 92% of the time at our location.

We designed the container to be large enough to house a non-
trivial number of servers and the auxiliary equipment (inverters and
charge controllers), but small enough that it would be cheaper and
could be placed just about anywhere. Its internal layout creates a
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Figure 4. Inside view of Parasol.

small, sealed cold aisle, and a “wind-tunnel” effect between the
free cooling unit, the servers, and the damper. The location of the
HVAC is not ideal, requiring the air duct. A better location would
have been the opposite wall, near the free cooling unit.

The steel frame is larger than the container, so that it can sup-
port a larger number of solar panels and the (heavy) batteries. We
wanted enough panels to cover at least 30% of the energy consump-
tion of Parasol; through aggressive power management, we expect
to achieve this goal easily. The frame is raised to avoid interfering
with roof maintenance and the roof’s drain system.

Importantly, note that our goal was not to design a scaled down
version of a warehouse-sized datacenter. Our concept of datacenter
is substantially broader, including smaller server installations found
in universities and many enterprises, for example. For these instal-
lations, it is typically acceptable not to have batteries or backup
diesel generators for grid outages. (We included relatively large
batteries in Parasol to investigate their use in lowering electricity
costs in the face of solar energy and net metering, as we do in this
paper.) Moreover, the research we envision on Parasol is indepen-
dent of most of its physical characteristics. Strictly in terms of its
design, Parasol can be seen as a modular datacenter (e.g., [19]) that
uses solar energy and free cooling, or as a datacenter for off-grid
deployments (possibly in isolated areas).

Our choice of Atom-based servers stems from our desire to
study the tradeoffs between wimpy and high-performance servers,
as a function of workload (beyond the scope of this paper). For
instance, for our Hadoop workloads, our wimpy servers consume
5x less power than comparable Xeon-based servers, while running
4.8x slower. We also considered purchasing ARM-based servers,
but those were not yet available at the time.

Finally, our IT equipment runs on AC power, which requires
converting the DC power produced by the solar panels and drawn
from our batteries. This conversion causes small energy losses (2%
on average). We considered a design in which all IT equipment
would run on DC power, which would require conversion of the
power coming from the grid. Ultimately, we decided that AC power
would likely make it easier to find the equipment we wanted.

5. Design and Implementation of GreenSwitch
In this section, we describe GreenSwitch, our model-based frame-
work and system for managing workloads and energy sources in
green datacenters. We divide the presentation into two parts: (1)
management activities and objectives; and (2) analytical models,
and associated optimization goals and solution procedures.

5.1 Management Activities and Objectives
Figure 5 illustrates the GreenSwitch components. The predictor
predicts the workload and the renewable energy production. The
solver takes these predictions and the current battery charge level
as input, and outputs a workload schedule and an energy source
schedule. The solver produces schedules that drive the use of en-
ergy by the system. The configurer effects the changes prescribed
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by the solver in the two schedules. The changes may involve tran-
sitioning some servers between power states and/or changing the
configuration of the energy sources. Monitoring data from the dat-
acenter flows back to inform the predictor in its next iteration.

Note that the configurer is the only part of GreenSwitch that is
specific to the system GreenSwitch is supposed to control (e.g.,
Hadoop); the other components are independent of this system
and can be reused without modification. The configurer can be
easily adapted to control other systems that provide an energy
management interface.

GreenSwitch runs periodically. By default, a full iteration of
it occurs every 15 minutes, which enables it to properly control
peak grid power consumption. (Power utilities typically compute
peak grid power consumption in windows of 15 minutes.) However,
GreenSwitch checks the production of solar energy every 3 minutes
(by default). During each of these checks, it decides to run a
full iteration if there has been an unexpected change in energy
production. Specifically, GreenSwitch is conservative and runs a
full iteration if it detects a change that is larger than the maximum
change we observe in any 15-minute interval on clear days.

Next, we discuss each component of GreenSwitch.

Predictor. The predictor produces predictions of the workload and
renewable energy availability for the next “scheduling horizon” (1
day by default, representing the maximum delay a job might ex-
perience) at the granularity of shorter “epochs” (1 hour by default,
which is the granularity of our solar predictions).

For its workload prediction, the predictor can use any method
for predicting future loads in terms of the average power they will
require in each epoch of the next horizon. Our current implemen-
tation assumes that the future will be similar to the past. Specifi-
cally, the predictor computes the average power using an exponen-
tially weighted moving average of the average power consumed in
the past. It predicts that this average power will be required in ev-
ery epoch of the horizon. It progressively corrects any inaccuracies
in its predictions in its following iterations. Obviously, workloads
with repeating patterns could benefit from more sophisticated pre-
diction approaches, e.g. time-series analysis. However, the work-
loads we have considered so far do not have this property. If nec-
essary, it is easy to replace our current workload prediction imple-
mentation with a more sophisticated one.

For its renewable energy availability prediction, the predictor
can use any model of the availability of solar and/or wind energy.
Our implementation uses the method from [12] to predict solar
energy. The method combines the model from Sharma et al. [36]
with the approach for improving accuracy from Goiri et al. [11].

Sharma’s model recognizes that the solar energy generation is
inversely related to the amount of cloud cover, and is expressed as:
Ep(t) = B(t)(1 − CloudCover), where Ep(t) is the amount of
energy predicted for time t, B(t) is the amount of energy expected
under ideal sunny conditions for time t, and CloudCover is the
forecasted percentage cloud cover. For the cloud cover information,

we use forecasts from Intellicast.com. We set B(t) to the amount
of energy generated on the day with the highest energy generation
from the previous month.

Unfortunately, weather forecasts are sometimes wrong, which
may lead to inaccurate predictions. To improve accuracy, we apply
a second method, which computes CloudCover from the amount
of energy generated in the previous epoch. GreenSwitch compares
the accuracy of the two methods, and uses the most accurate one to
predict the remainder of the horizon. For example, at the beginning
of epoch t, GreenSwitch computesCloudCover for the next epoch
using (1) the weather forecast, and (2) the energy produced in epoch
t− 1. At the beginning of epoch t+1, it compares the accuracy of
the two methods and uses it to predict the remainder of the horizon.
At time t+ 2, the process repeats.

Solver. The solver uses the predictions, information on the amount
of energy stored in the batteries, and the models detailed in Section
5.2 to produce a workload schedule and an energy source schedule.

The solver can handle two metrics (grid electricity cost and
performance degradation), two types of grid electricity cost (en-
ergy and peak power), two types of workload (deferrable and non-
deferrable), three energy sources (solar, battery, and grid), two grid
availability scenarios (grid is always up and grid goes down during
the execution of the workload), and three energy storage scenarios
(net metering only, batteries only, and batteries plus net metering).

The optimization metrics deserve more explanation. The grid
electricity costs reflect the types of charges that utilities may im-
pose. Datacenters often pay a different grid energy price, i.e. a dol-
lar amount per kWh of consumed grid energy, during an off-peak
period (e.g., at night) than during an on-peak period (e.g., daytime).
In addition, datacenters often pay for their peak grid power con-
sumption, i.e. a dollar amount per kW of grid power at the highest
period of grid power usage. To compute the peak charges, utilities
typically monitor the average grid power consumption within 15-
minute windows during each month. They define the maximum of
these averages as the peak grid power for the month.

The performance degradation metric assesses how much of a
workload the system has processed over time.

The metric we seek to optimize depends on the workload and
the availability of grid electricity. Under deferrable workloads,
when the grid is up, we schedule the workload and the use of the
energy sources to minimize the grid electricity cost. When the grid
goes down, we still schedule both workload and energy sources, but
seek to minimize the performance degradation (compared to having
the grid up) during the outage. Under non-deferrable workloads,
our management objective becomes restricted to scheduling the use
of the energy sources to minimize the grid electricity cost.

Workload and energy source schedules. The workload sched-
ule determines how much energy should be consumed in each
epoch. For non-deferrable workloads, the workload schedule al-
ways matches the workload prediction, so that jobs are not delayed
due to GreenSwitch. For deferrable workloads, GreenSwitch has
more flexibility to spread the computation around, as long as jobs
can still complete within their time bounds.

The energy source schedule determines how much energy to
draw from each source in each epoch.

Configurer for Hadoop. In our implementation, GreenSwitch
manages a slightly modified version of Hadoop. The modification
enables energy management by implementing three server power
states: active, decommissioned, and sleep. Active and sleep (the S3
state) are self-explanatory. The decommissioned state is an inter-
mediate state that prevents new jobs from starting on the server.
We configure our Hadoop setup to the Covering Subset scheme
[27], i.e. we store a full copy of the dataset on the smallest possible



Parameter Meaning Default Value
Loadt Average required IT power N/A

Workloadt Average offered IT load (power) N/A
T Length of the scheduling horizon 24 hours

MaxPower Maximum IT power (servers and switches) 64 × 30W + 2 × 42W
CoverPower Typical power consumption of the Covering Subset and switches 8 × 28W + 30W + 24W
LoadGreent Amount of green power to be used for the load N/A
LoadBrownt Amount of grid power to be used for the load N/A
LoadBattt Amount of battery power to be used for the load N/A
BattGreent Amount of green power to be used for charging batteries N/A
NetGreent Amount of green power to be used in net metering N/A
Brownt Amount of grid power to be used for any purpose N/A

BattBrownt Amount of grid power to be used for charging batteries N/A
CapBatt0 Battery charge level in the first epoch 85%
Duration Length of each epoch 15 minutes

β Energy losses in batteries 10%
BattMaxCharge Maximum charge rate of batteries 8kW
MaxCapBatt Maximum battery capacity 32 kWh

γ Minimum battery charge level 65%
BEnergyPricet Grid energy price $0.08/kWh (off-peak), $0.13/kWh (on-peak)
BPeakPricet Peak grid power price $13.61/kW/month

α Percentage of retail price paid in net metering 40%
PreviousPeak Maximum grid power consumed so far N/A
MaxPeak Maximum peak grid power N/A
Loadup

t Average required IT power when the grid is up N/A
Loaddown

t Average required IT power to be used when the grid is down N/A

Table 1. Model parameters, meanings, and default values. N/A = not applicable.

number of servers; any server out of the Covering Subset can be
sent to sleep without affecting data availability.

The configurer has two settings: server energy management
on and off. When energy management is off, the configurer does
not power-manage any servers. When energy management is on,
the configurer abides by the workload schedule by transitioning
servers between the three Hadoop server power states. Specifically:
(1) it transitions any active server that need not be active but still
stores data required by running jobs to the decommissioned state.
In a following iteration, if the data stored at the decommissioned
server is no longer needed, the configurer transitions it to the
sleep state; (2) it transitions any active server that need not be
active and does not store relevant data to sleep state; and (3) it
transitions sleeping servers to the active state if they are required for
computation during an iteration. The configurer keeps the Covering
Subset active at all times.

To abide by the energy source schedule, the configurer uses
the following actuators: activate/deactivate grid; change maximum
current drawn from the grid (which affects the maximum power
drawn from the grid); and start/stop charging the batteries. These
actuators represent different settings of the parameters of the Sunny
Island charge controllers. Interestingly, these actuators must be
used carefully to avoid instability. For example, one cannot quickly
transition from battery charging with solar energy to net metering,
as this causes the inverter to shut down. Thus, this transition needs
to be performed in steps, with some idle time in between the steps.
Note that such behaviors are simply overlooked in simulation or
with simple prototypes that do not include real charge controllers.

5.2 Models, Optimization, and Solution Approach
We now describe the solver’s models of workload and energy
sources. Next, we formulate the optimization problems that the
solver implements, and discuss how it instantiates and solves them.
Table 1 lists the models’ parameters, meanings, and default values.

Modeling workloads. Let us start by defining Loadt to be the
average IT power the datacenter will consume in epoch t. (We
leave the modeling and management of the cooling power for future
work, since we only recently completed Parasol’s cooling setup.)
We also defineWorkloadt as the amount of offered computational
load (measured in terms of average power per epoch, including the
Covering Subset) in epoch t.

We should execute the full workload during the horizon (T ), so
t∈T∑

Loadt =

t∈T∑
Workloadt (1)

We can be more specific about this relationship, depending on the
type of workload. When the workload is non-deferrable, the offered
load must be executed without delay, i.e.

∀t ∈ T : Loadt =Workloadt (2)

When it is deferrable, the offered load can be delayed within T

∀t ∈ T :

t′=t∑
t′=1

Loadt′ ≤
t′=t∑
t′=1

Workloadt′ (3)

There are also a couple of constraints on Loadt. First, the
average power during an epoch cannot be higher than the maximum
power the load can consume (MaxPower), i.e.

∀t ∈ T : Loadt ≤MaxPower (4)

In addition, the power consumption has to be at least that of the
servers in the Covering Subset (CoverPower), i.e.

∀t ∈ T : Loadt ≥ CoverPower (5)

Relating the workload modeling back to the inputs and out-
puts to the solver, Load represents the workload schedule that the
solver produces, whereas Workload is the workload prediction
that GreenSwitch feeds to the solver.

Modeling energy sources. In the most general scenario, three
sources can be used to power the system: renewable (LoadGreen),
grid (LoadBrown), or battery (LoadBattery). Thus,

∀t ∈ T : Loadt = LoadGreent + LoadBrownt + LoadBattt
(6)

The renewable power (AvailGreen) may be used for multiple
purposes: running the workload (LoadGreen), charging the bat-
teries (BattGreen), and/or net metering (NetGreen). Thus,

∀t ∈ T : LoadGreent+BattGreent+NetGreent ≤ AvailGreent

(7)
Similarly, the grid (Brown) can be used to power the workload

(LoadBrown) and/or charge the batteries (BattBrown).

∀t ∈ T : LoadBrownt +BattBrownt = Brownt (8)



The modeling of the batteries is more involved. First, we must
account for the fact that batteries incur losses, i.e. only a percentage
(β) of the energy we store in them will be available for later use.
We define the current capacity of the batteries (CapBatt) as:

∀t ∈ T : CapBattt = CapBattt−1+

Duration · β(BattGreent−1 +BattBrownt−1)−
Duration · LoadBattt−1

(9)

where Duration is the length of each epoch t.
Second, we must formalize the constraints on the batteries. We

cannot use more energy than what they have stored, so

∀t ∈ T : Duration · LoadBattt ≤ CapBattt (10)

They have a maximum charge rate (BattMaxCharge) in kW:

∀t ∈ T : BattGreent +BattBrownt < BattMaxCharge
(11)

They have a maximum capacity (MaxCapBatt):

∀t ∈ T : CapBattt ≤MaxCapBatt (12)

Third, we must ensure that leveraging the batteries as an energy
source does not harm their lifetime. For this, we follow the analysis
of Govindan et al. [14], which demonstrates that one can avoid
reducing the batteries’ lifetime by limiting the depth of discharge
to a percentage (CapBatt0 − γ) of the maximum capacity at all
times. (We derive the proper γ in Section 6.) Thus,

∀t ∈ T : CapBattt ≥ γMaxCapBatt (13)

Fourth, we must account for operational modes that are not sup-
ported in typical solar installations. Specifically, we cannot charge
the batteries with solar energy and do net metering at the same time.

∀t ∈ {T |BattGreent > 0} : NetGreent = 0 (14)

In addition, we cannot use the batteries and do net metering at
the same time.

∀t ∈ {T |LoadBattt > 0} : NetGreent = 0 (15)

We cannot draw from the grid to power the load at the same
time as doing net metering.

∀t ∈ {T |LoadBrownt > 0} : NetGreent = 0 (16)

We cannot charge and discharge the batteries at the same time.

∀t ∈ {T |LoadBattt > 0} : BattGreent +BattBrownt = 0
(17)

Finally, we must ensure that all parameters are ≥ 0.
Relating the energy source modeling back to the solver, Avail-

Green (renewable energy prediction) and CapBatt (current bat-
tery capacity) are inputs, whereas LoadGreen, LoadBrown,
LoadBatt, BattGreen, NetGreen, and BattBrown represent
the energy source schedule that the solver produces as an output.

Modeling the peak grid power usage. We define PreviousPeak
as the maximum grid power (averaged over 15-minute intervals)
consumed from the beginning of the current month until the start of
the current horizon. We also define MaxPeak as the highest grid
power consumption (Brown) since the beginning of the current
month, i.e. Brown and PreviousPeak must be no higher than
MaxPeak.

∀t ∈ T : Brownt ≤MaxPeak

PreviousPeak ≤MaxPeak
(18)

Optimization goals. Under the constraints above, we now define
our optimization goals: #1 minimize the grid electricity cost, when
the grid is up; and #2 minimize the performance degradation (com-
pared to the execution with the grid up), when the grid is down.

To model goal #1, we recognize that the cost of the grid electric-
ity may have both energy and peak power components. We define
the energy price per kWh as BEnergyPrice, and the peak power
price per kW as BPeakPrice. When we feed green energy into
the grid, we get paid a percentage (α) of the current retail price of
the energy by the utility, i.e. αBEnergyPrice. For example, the
utility may pay the full retail price (α = 1) or just the wholesale
price (α < 1). Thus, we model the first goal as:

min(
t∈T∑

(BEnergyPricet ·Duration ·Brownt−

αBEnergyPricet ·Duration ·NetGreent)+

BPeakPrice · (MaxPeak − PreviousPeak))

(19)

When the grid is down, goal #1 above does not make sense. In
this case, optimization goal #2 becomes active. We model it as:

min

t∈T∑
(|T | − t)(Loadupt − Load

down
t ) (20)

where Loadupt is the last workload schedule for epoch t before
the grid outage, and Loaddown

t is the workload schedule to be used
in epoch t during the outage. Since no new work can reach the
datacenter during the outage, we define Workloadt as Loadupt
for all t. As the workload and energy predictions tend to be more
accurate in the near future, goal #2 minimizes the performance
degradation (Loadupt − Loaddown

t ) while promoting early load
execution (|T | − t).
Instantiating the models. Before solving the optimization prob-
lems, we need to instantiate the model’s parameters. We instantiate
them with values from Parasol, GreenSwitch, and our experimen-
tal setup. Specifically, we instantiate MaxPower, CoverPower,
BattMaxCharge, and MaxCapBatt with Parasol data. In ad-
dition, we instantiate Workload with the GreenSwitch workload
prediction, and AvailGreen with its solar energy prediction. We
also instantiate Duration with the common-case duration of each
epoch in GreenSwitch. In our experiments, we study multiple sce-
narios. When the datacenter is exposed to both grid energy and peak
power charges, we instantiate BEnergyPrice and BPeakPrice
with real values for those prices. When disregarding peak grid
power, we set BPeakPrice to $0/kW. When considering non-
deferrable workloads, we use the constraint defined by Equation
2 above, whereas for deferrable workloads we use Equation 3. To
mimic scenarios without batteries, we set ∀t ∈ T : LoadBattt +
BattBrownt+BattGreent = 0. For scenarios without the grid,
we set ∀t ∈ T : Brownt = 0. For different net metering rates, we
adjust α. We set CapBatt0 to an initial battery charge.

Solving the optimization problems. Let us start with the grid elec-
tricity cost problem. Although Equation 19 is linear, the solver can-
not use simple Linear Programming (LP), because the constraints
in Equations 14–17 are non-linear. Fortunately, these constraints
can be linearized into Mixed Integer LP (MILP) formulations. We
solve the MILP problem efficiently using the Gurobi solver [16].

For goal #2, the solver (1) zeroes all parameters relating to the
grid; (2) removes Equation 1, as we may not be able to run the entire
workload without the grid; (3) changes γ to 21%. This value is the
sum of the battery capacity needed to protect against the largest
possible workload misprediction for an epoch (6%, corresponding
to the full power of the cluster), and the lowest battery charge level
before the charge controllers start to shut down (15%); (4) uses the
last workload schedule before the grid outage as the first workload
prediction during the outage; and (5) uses MILP to compute the
new workload and energy source schedules.

6. Experimental Evaluation
In this section, we describe the remaining details of our methodol-
ogy and the results of our experiments.



6.1 Methodology
Experimental setup. We run our experiments on Parasol. The 64
servers run our modified version of Hadoop. GreenSwitch runs on
one of these servers. We also use a Xeon-based client located in an-
other building to submit the Hadoop jobs. Each of our experiments
runs for 23 hours and 15 minutes, starting at 12:00am, so that we
have 45 minutes to prepare the next experiment.

Unless we state otherwise, all experiments with solar energy
also use net metering. We consider systems with and without batter-
ies. One can think of the system without batteries as a conventional
on-grid solar-powered system, i.e. batteries are only used when the
electrical grid is out. Another way to think about it is as a system
without any batteries whatsoever. When batteries are not used or
not present, solar energy deficits are compensated with grid energy,
and solar energy surpluses are stored on the grid via net metering.

Our experiments with solar energy are exposed to real weather
conditions, making it hard to compare two experiments directly.
Fortunately, for non-deferrable workloads, we can first run the
GreenSwitch experiment on the real system. Then, using this exper-
imental data, we can manually mimic the no-battery schedule un-
der the same workload and solar energy conditions. We cannot use
the same trick for deferrable workloads, because the GreenSwitch
schedules interact. For both types of workload, we can compare
the GreenSwitch results to a grid-only datacenter setup, i.e. no so-
lar energy, no batteries, and modified Hadoop (which does server
energy management, but never defers workloads).

Workloads. We study two widely different Hadoop traces, called
“Facebook” and “Nutch”. Facebook comes from a larger trace of
600 machines at Facebook [4]. The original trace was collected
from May to October 2009, and contains roughly 1 million jobs.
We use the Statistical Workload Injector for MapReduce (SWIM)
[5] to generate a scaled-down version of the trace for 24 hours
on 64 machines. In the resulting trace, each job comprises 2–1190
map tasks and 1–63 reduce tasks. There are roughly 5500 jobs and
68000 tasks. The map phase of each job takes 25–13000 seconds,
whereas the reduce phase takes 15–2600 seconds. Jobs have inputs
of 64MB–74GB and outputs of up to 4GB. These characteristics
lead to a cluster utilization of 27%.

Nutch is the indexing part of the Web search system in Cloud-
Suite [9]. The trace consists of 2000 jobs that index groups of pages
previously fetched from our Web domain. Each job runs 42 map
tasks and 1 reduce task. Each map phase takes 15–40 seconds,
whereas the reduce phase takes 150 seconds. On average, each job
touches 85MB of data. Jobs arrive according to a Poisson distribu-
tion with mean inter-arrival time of 40 seconds. These characteris-
tics lead to a cluster utilization of 32%.

We run these workloads in the deferrable and non-deferrable
modes. The workloads require 8 servers in their Covering Subsets.

Instantiating the models. We use the default values in the third
column of Table 1 to instantiate our models. We have already
explained all these default values, except for BEnergyPrice,
BPeakPrice, α, CapBatt0, β, and γ.

In terms of electricity prices (BEnergyPrice,BPeakPrice),
we assume on-peak/off-peak pricing, the most common type of
variable grid energy pricing. In this scheme, energy costs less dur-
ing off-peak times (11pm–9am) than during on-peak times (9am–
11pm). We use the energy prices charged by the main utility at
our location: $0.13/kWh (on-peak) and $0.08/kWh (off-peak). This
utility charges for peak grid power at $13.61/kW. By default, we as-
sume that the utility pays the wholesale energy price of 40% (α) of
the retail price [43] for net metering. However, we also consider the
scenario where the utility pays the retail price (α = 100%).

Finally, we start our experiments with the batteries at 85% of
their capacity (CapBatt0), because it takes substantially longer
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Figure 6. Power with/without energy management for Facebook.

to reach higher charge levels. We computed the battery energy
losses (β) from our experiments with Parasol. We calculated the
minimum acceptable charge level (γ) from the maximum depth of
discharge, using the same approach as [14]. Specifically, we first
profiled one year of solar energy production from a local farm to
compute the expected number of battery charge/discharge cycles in
a system like Parasol. From this data, we find that 90+% of the days
would require 2 discharges or less. Assuming a desired lifetime
of 4 years, 2 discharges per day translates into 2920 discharges.
According to the model in Figure 3b of [14], a maximum depth
of discharge of 20% is required to achieve 2920 discharges. So,
γ = 85%− 20% = 65%.

6.2 Experimental Results
This section presents our experimental results. We first compare our
modified version of Hadoop to standard Hadoop to establish a base-
line. Second, we quantify the accuracy of GreenSwitch’s workload
and solar energy predictions. Third, we evaluate GreenSwitch’s
management of the energy sources for a non-deferrable workload.
Fourth, we evaluate GreenSwitch’s management of workload and
energy source for a deferrable workload. Fifth, we study different
energy storage scenarios. Sixth, we evaluate GreenSwitch’s man-
agement of peak grid power draw. Seventh, we study the impact of
different amounts of solar energy. Eighth, we consider a different
workload. Finally, we show results for a grid outage scenario.

Energy management in Hadoop. We start by comparing the en-
ergy consumption of our modified Hadoop to that of the origi-
nal Hadoop implementation for the Facebook trace in the non-
deferrable mode. The modified Hadoop computes the number of
active servers to fully pack them with the available map tasks (each
server can run 3 maps and 1 reduce concurrently).

Figure 6 shows the power consumed by the trace over time
with (modified Hadoop) and without (Hadoop) server energy man-
agement. Note that the power consumption without energy man-
agement is almost flat, because our servers have a small dynamic
power range. The execution becomes much more energy propor-
tional when energy management is in effect. Overall, we find that
our modifications to Hadoop enable energy savings of 41%. The
savings are higher (roughly 50%) for the Nutch trace in the non-
deferrable mode. (We do not consider deferrable workloads in this
comparison, because original Hadoop is incapable of leveraging
the ability to delay jobs.) Given these positive results, we use our
modified Hadoop as the baseline for comparison from now on.

Accuracy of workload and solar energy predictions. To assess
the accuracy of our predictions, we compare them to the actual
workload and solar energy production for each epoch of the ex-
periments we describe below. These comparisons show average
workload prediction errors of 36% 1 hour ahead, and 51% 3 hours
ahead, when the workload is non-deferrable. For deferrable work-
loads, these numbers are 31% and 48%, respectively. In terms of
solar energy predictions, these average errors are 13% and 14%,
respectively. We do not evaluate the GreenSwitch predictions more
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Figure 7. Energy source management for non-deferrable Facebook.
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Figure 8. No-battery, non-deferrable Facebook (re-colored).

thoroughly because our methods for producing them are not con-
tributions of our work. Importantly, GreenSwitch is able to quickly
detect and adapt to workload and solar energy mispredictions, due
to its frequent iterations (3-15 minutes).

Energy source management for a non-deferrable workload.
Figure 7 illustrates the GreenSwitch execution of the Facebook
trace in the non-deferrable mode on July 17, 2012. The fill colors
represent the use of the different energy sources, whereas the lines
going across the figure are the solar energy production (full), the
IT load (dots), the grid energy price (dashes, Y-axis on the right),
and the current peak grid power draw (dashes-dots). Recall that
GreenSwitch seeks to minimize the grid electricity cost when the
grid is up, and that GreenSwitch schedules the entire workload
within a maximum of 1 horizon.

First, we can see that the amount of produced solar energy var-
ied significantly during the day, especially 11am–2pm and 3pm–
4pm, due to cloudy conditions. Second, the solar energy was
enough to power the workload and charge the batteries. Despite
their energy losses, GreenSwitch decided to charge the batteries to
attempt to avoid using grid energy while it was still expensive (until
11pm). Third, when there was no solar energy, GreenSwitch drew
energy from both the batteries and the grid in many cases. (Recall
that GreenSwitch prevents the battery charge level to fall below
65% for lifetime reasons.) Early on, GreenSwitch predicted that it
would not have enough battery energy to run the load until solar en-
ergy was available. Consequently, it sought to consume grid energy.
At night, it again predicted not to have enough battery capacity, and
resorted to grid energy. Throughout the day, GreenSwitch was able
to limit the increase in the peak grid power by using batteries and/or
solar energy. However, it was unable to prevent a slight increase of
the peak grid power, as its control of the grid draw (done through a
limit on current) is not accurate enough. Note that this effect would
not be seen under simulation or with a simple prototype that does
not include a real grid-tie.

To quantify the electricity cost savings, we compare the use of
the energy sources in this figure to those when batteries are not used
or not present at all (Figure 8). Because of the difficulty in compar-
ing experiments (Section 6.1), Figure 8 simply re-colors Figure 7
with the colors we would see in the absence of GreenSwitch.

Comparing the executions shows that GreenSwitch reduced the
grid energy cost by 73%, the peak grid power cost by 78%, and
the overall grid electricity cost by 75%. Despite these high sav-
ings, it may be difficult to amortize the capital cost of the batter-
ies ($0.21/Wh in the US [38]) during their lifetime. Specifically,
GreenSwitch discharged the battery once per day (to the maximum
depth of discharge) in this experiment, extending the batteries’ life-
time to 8 years. Under these conditions, the cost of the batteries
would have to be roughly 1.8x lower for us to amortize it in 8 years.

A more positive comparison is between a solar-powered system
without batteries (same behavior as in Figure 8) and a grid-only
datacenter. This comparison shows that the electricity cost savings

accrued by the solar-powered system (66%) could amortize its
installed capital cost ($2.28/W with incentives) in 7 years.

Workload and energy source management for a deferrable
workload. We now consider the GreenSwitch behavior assuming
that the jobs in the Facebook trace are deferrable. Figure 9 shows
this behavior on July 1, 2012 in the same format as the previous
figures. The white filling represents solar energy that was produced
but lost due to inefficiency.

The figure shows a significant drop in solar energy production
between 4pm and 6pm. We can see also that the energy consump-
tion was low when solar energy was not available. The reason is that
deferring load allows GreenSwitch to send more servers to the sleep
state; only the servers in the Covering Subset (and the switches)
stay active. When there was no solar energy, GreenSwitch drew
energy from the batteries, since they stored enough capacity for
the load. Another observation is that the available solar energy was
enough to power the workload, charge the batteries, and do signifi-
cant net metering. In the deferrable mode, the workload consumes
less energy due to batching effects (better utilization of fewer active
servers). The amount of net metering was high for this workload,
because it took a relatively small amount of solar energy to fully
recharge the batteries. A final observation is that losses (e.g., in-
verters, PDUs) were significant at lower power consumption, e.g.
at night. This is why the fill color goes higher than the load curve
in the figure. The same effect can be seen in other figures but it
is not as pronounced as when the load is low. Again, this effect is
typically overlooked (in favor of constant losses) in simpler setups.

As mentioned above, we cannot compare two experiments with
solar energy directly. However, we can compare the results of this
experiment to those of a grid-only datacenter. This comparison
shows that the solar setup with batteries produced a profit of 9%
in grid electricity cost, deriving from GreenSwitch’s ability to in-
telligently schedule workload and energy source use. Since there
was only 1 discharge (down to 70% charge), the batteries’ lifetime
would be roughly 9.5 years. GreenSwitch would be able to amor-
tize the cost of the solar setup and batteries in 7.6 years.

When we run this workload with solar energy but without bat-
teries (on June 30, 2012), GreenSwitch was able to reduce the grid
electricity cost by 96%, compared to a grid-only datacenter. We
could amortize the installed capital cost of this setup in 4.8 years.

Since deferrable loads illustrate the ability of GreenSwitch to
manage workloads (as well as energy sources), we use this type of
workload from now on unless we explicitly state otherwise.

Energy storage approaches. We now turn to investigating the
GreenSwitch behavior under different energy storage assumptions.
We run experiments with (1) net metering (utility pays wholesale
prices) but no batteries; (2) batteries but no net metering; and (3)
both batteries and net metering (utility pays retail prices). The
behavior of net metering with retail prices but no batteries is that in
experiment (1). Recall that the results we presented above (Figure
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Figure 9. Workload and energy source management for deferrable
Facebook.
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Figure 10. Net metering pays retail energy prices for deferrable
Facebook.

7) assume the remaining option: both batteries and net metering
(utility pays wholesale prices).

Experiment (1) exhibits the obvious behavior, i.e. GreenSwitch
delayed the workload until solar energy become available. Any
excess solar energy got net metered. When solar energy was not
available, GreenSwitch kept only the servers in the Covering Subset
(and switches) in the active state, and used grid energy.

Experiment (2) is more interesting. Since net metering was
not available, GreenSwitch consumed energy from the batteries
when solar energy was not enough to power the load. However,
GreenSwitch did not delay the entire workload until solar energy
was available. As it predicted that it would be able to fully recharge
the batteries from solar energy later, it scheduled some of the load
for the night time.

Finally, in experiment (3), net metering becomes extremely
attractive, especially during on-peak hours. For this reason, Green-
Switch net metered all of the excess solar energy. When solar
energy was not available, GreenSwitch consumed grid energy when
it was cheap, and battery energy when it was expensive. Figure 10
shows these behaviors. Note that GreenSwitch still had to schedule
the use of the grid during on-peak hours. The reason is that it
predicted not to have enough battery capacity to handle the load
during the night.

Unfortunately, we cannot directly compare the electricity costs
of these experiments since they were run on different days (June
30, July 9, and July 10, 2012 respectively). However, it is clear that
setups that do not require batteries have a major capital cost advan-
tage. For example, under the same weather conditions, the electric-
ity cost savings from setup (1) would be smaller than from using
both net metering and batteries. But the capital cost of setup (1) is
much lower, if the datacenter can be down during grid outages.

Peak grid power charges. Another important issue is how effec-
tive GreenSwitch is at limiting the peak grid power draw. When
it disregards these charges, GreenSwitch is more willing to in-
crease the peak grid power, especially when energy is cheap. For
the Facebook trace in the non-deferrable mode, the peak grid
draw reached 1854W, when GreenSwitch disregarded the peak
grid power charges. When it managed the peak grid draw, the
peak reached only 408W. This represents a savings in peak power
cost of 78%. In the deferrable mode, the peak grid draw reached
711W when GreenSwitch disregarded the peak charges. When it
accounted for those charges, the peak reached only 114W; an 84%
savings in peak power cost.

These significant savings demonstrate the importance of explic-
itly managing this aspect of the electricity cost.

Solar energy availability. To see the impact of different weather
conditions, consider Figure 11, which corresponds to the Facebook
workload in the deferrable mode on a cloudy day (July 13, 2012).
Compare this figure with Figure 9, the same workload on a sunny
day. On the sunny day, there was no need to use grid energy. On the
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Figure 11. Deferrable Facebook on July 13, 2012.

cloudy day, there was. From its energy predictions, GreenSwitch
expected that it would not have enough solar energy to execute the
entire workload and charge the batteries. Thus, it decided to use
cheap grid energy to compensate. Based on this experiment, the
batteries would last 10+ years, whereas it would take 9.2 years to
amortize the capital costs of the solar setup and batteries.

We also experimented with the same workload, without batter-
ies, on a cloudy day with a thunderstorm (July 18, 2012). This ex-
periment led to an amortization period of 5.4 years for the solar
setup, compared to a grid-only datacenter. An ever worse day (rain
the whole day) led to an amortization period of 7 years.

These comparisons show that GreenSwitch is capable of nicely
adapting to weather conditions.

Nutch. To demonstrate that our results are similar for widely differ-
ent workloads, we experimented with Nutch assuming that its jobs
are non-deferrable. Figures 12 and 13 show the results with and
without energy source management, respectively. Since this work-
load is in the non-deferrable mode, the latter result is the re-colored
version of the original experiment.

These results show that GreenSwitch’s energy source manage-
ment reduced the grid energy cost by 66%, the peak grid power
cost by 49%, and the overall grid electricity cost by 59%. As for the
Facebook trace, these are significant savings. Also like Facebook,
the batteries’ lifetime would be 9.5 years. However, their capital
cost would have to be 2x lower to be amortized in their lifetimes.
Comparing a system without batteries to a grid-only datacenter, we
find that the grid electricity cost savings (66%) would amortize the
installed capital cost of the solar setup after 7.1 years.

Grid outage. Our final experiment demonstrates the GreenSwitch
behavior during a grid outage. Recall that GreenSwitch turns to
minimizing performance degradation when the grid goes down.
Figure 14 shows the behavior of our system for the Facebook trace
in the deferrable mode. We assume that the outage occurs at 12am,
following the experiment in Figure 10. Note that the day of the
outage (July 19, 2012) was mostly cloudy.

The GreenSwitch workload schedule nicely matched the be-
havior we would have seen had the grid stayed up. Specifically,
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Figure 12. Non-deferrable Nutch workload.
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Figure 13. No battery, non-deferrable Nutch (re-colored).
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Figure 14. Grid outage on July 19, 2012.
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Figure 15. Grid energy reductions compared to grid-only. Repeated
date = re-colored result. Gray bars = Facebook; white bars = Nutch.

GreenSwitch intended to execute most of the load early, when the
grid energy was cheap, while net metering most of the solar energy
for a high retail price. When the grid went down, GreenSwitch kept
a similar schedule, executing the entire workload during the day
and leaving the battery at 45% capacity.

Reductions in carbon footprint. Figure 15 shows the GreenSwitch
reductions in grid energy use compared to a grid-only datacenter
for each of the experiments we described above. From left to right,
the experiments appear in the order they were discussed above. We
identify each experiment by the date when it was run (repeated
dates correspond to re-colored results). The two bars furthest to the
right are for Nutch, whereas the others are for Facebook. It is clear
that GreenSwitch is extremely successful at reducing footprints for
both workloads, in some cases completely eliminating any grid
energy use (100% reductions). The minimum reduction is 36%.

Summary of results. The results above suggest several interesting
observations:

• GreenSwitch’s aggressive management of all energy sources
(including batteries) during normal operation can produce sig-
nificant reductions in grid electricity cost and consumption.
• Although GreenSwitch produces the lowest grid electricity

costs when batteries are available, their capital cost is a bur-
den for non-deferrable workloads. Specifically, their cost would
have to be 1.8x–2x lower to be amortized during their lifetime.
Our experiments suggested lifetimes between 8 and 10 years.
• Given the flexibility to delay loads, GreenSwitch can produce

integrated workload and energy source schedules that even
more significantly lower electricity costs. These schedules en-
able GreenSwitch to amortize the cost of the batteries, but a
solar setup without batteries is still superior.
• The installed capital cost of a solar setup without batteries can

be amortized in 4.8–7.1 years in our experiments.
• The GreenSwitch benefits are robust to different renewable en-

ergy profiles and workloads. However, every part of GreenSwit-
ch is required, especially its management of peak grid power.

• GreenSwitch is beneficial during grid outages as well, enabling
the system to minimize performance degradations.

7. Discussion
Parasol most likely differs from any existing datacenter as: (1)
it uses solar energy, batteries, and net metering, whereas most
datacenters only draw electricity from the grid and use batteries
solely until diesel generators become fully active after a power
outage; (2) it uses low-power servers, whereas most datacenters
use more powerful servers; and (3) its number of servers (150
max) is comparable to those of datacenters found in universities
and enterprises, but tiny compared those of the warehouse-scale
datacenters that host popular Internet services.

Despite these differences, our experience and results should be
useful in practice for several reasons. First, Parasol exemplifies the
type of green datacenter one may choose to deploy at universities,
enterprises, or remote locations. Second, GreenSwitch tackles the
set of issues and tradeoffs one may face in managing energy sources
and workloads in green datacenters of any size. Third, low-power
servers are energy-efficient for many workloads (including those
in this paper). Moreover, the fact that they incur higher execution
times is often not a major concern, especially when the workload is
deferrable. Fourth, the electricity cost savings, grid energy savings,
amortization periods, and battery lifetimes we report are relative
to the size of Parasol. Thus, scaling Parasol (and its workload)
proportionally to larger setups (e.g., by doubling the number of
servers, the number of solar panels, and the battery capacity) would
likely produce similar GreenSwitch results. Obviously, warehouse-
scale datacenters are more complex than just a large multiple of
Parasol, so the results could be quite different for those systems.

8. Conclusions
In this paper, we presented (1) an analysis of the main tradeoffs
involved in powering datacenters with solar and/or wind energy;
(2) the design and justification for a research platform, called Para-
sol, that powers a micro-datacenter with solar energy; (3) a system,



called GreenSwitch, for managing workload execution and energy
source use in a datacenter powered by solar energy; and (4) a de-
tailed evaluation of GreenSwitch. We discussed many issues that
we faced solely because of our use of a real green datacenter proto-
type. We conclude that the use of renewable energy in datacenters
may become increasingly appealing over time, which will likely
encourage more initiatives such as Parasol and GreenSwitch.

Based on our experience with our real systems and to extrap-
olate from the results we presented in this paper, we are currently
implementing a simulator that will accurately mimic Parasol and
GreenSwitch for longer periods, e.g. a year. The simulator will
also enable comparisons against an “offline optimal” version of
GreenSwitch that has complete future knowledge of renewable en-
ergy production and workload. In the future, we plan to enable
other researchers to use Parasol remotely by dedicating servers to
their efforts and virtualizing our energy sources.
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