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1 Intended audience

e Researchers in natural language processing,
data management, knowledge engineering,
text mining, and information retrieval;

o Industrial practitioners in search, ads, seman-
tic query processing, and other knowledge-
powered applications.

e Junior researchers and graduate students in
text analysis, who are potentially interested
in large-scale knowledge representation and
acquisition, machine learning, graph algo-
rithms.

2 Introduction

Everyday, billions of short texts are being pro-
duced, including search queries, ad keywords,
tags, tweets, conversations in messengers, social
network posts, etc. Unlike documents, short texts
have some unique characteristics which make
them difficult to handle.

e First, short texts, especially search queries,
do not always observe the syntax of a written
language. This means traditional NLP tech-
niques, such as syntactic parsing, do not al-
ways apply to short texts with good results.

e Second, short texts contain limited context.
The majority of search queries contain less
than 5 words, and tweets can have no more
than 140 characters.

Because of the above reasons, short texts give
rise to a significant amount of ambiguity, which
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makes them extremely difficult to handle. On the
other hand, search engines, seem to be able to han-
dle short texts (queries) quite well. This however
does not mean search engines have an organic un-
derstanding of short texts, rather, the semantic gap
is filled in by human click-through signals.

Human beings can understand short texts with
ease, although many of them are ambiguous. How
does the mind get so much out of so little, espe-
cially when the input data is sparse, noisy, and am-
biguous? In 2011, a Science paper called “How
to grow a mind: statistics, structure, and abstrac-
tion” (Tenenbaum et al., 2011) pointed out that
“If the mind goes beyond the data given, another
source of information must make up the differ-
ence.” Lots of efforts have been put into filling
this gap.

A growing number of approaches leverage ex-
ternal knowledge to address the issue of inade-
quate contextual information that accompanies the
short texts. These approaches can be classified
into two categories:

e Explicit Representation Model (ERM) Ex-
plicit approaches try to analyze and model
short texts by following the traditional natu-
ral language processing steps, including seg-
mentation (Hua et al., 2015), labeling (sense
disambiguation) (Wang et al., 2015a; Song
et al., 2011; Kim et al.,, 2013; Hua et
al., 2015; Wang et al., 2015b), and syntax
structure (dependency parsing) (Wang et al.,
2014b). Take Conceptualization as an exam-
ple, it maps the short text to concepts de-
fined in a certain taxonomy or knowledge
base. Bayesian rules (Song et al., 2011) and
co-occurrence network (Hua et al., 2015) are
leveraged for concept inference. A holistic
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model (Wang et al., 2015b) is also proposed
to allows all available signals to fully inter-
play in these subtasks to better understand
short texts. Then based on explicit represen-
tation, which can be treated as both human
understandable and machine understandable
vectors, more advanced functions such as
term similarity (Li et al., 2013), short text
similarity (Song et al., 2011), short text clas-
sifier (Wang et al., 2014a) are proposed based
on vector similarity measures. These func-
tions can be further used for various applica-
tions such as ads and search relevance (Wang
et al., 2015a), query recommendation (Wang
et al., 2014a), and web table understand-
ing (Wang et al., 2012). The most important
advantage of explicit models is that its repre-
sentation results are easily understood by hu-
man beings. Therefore, these models can be
customized for different cases.

e Implicit Representation Model (IRM) On
the other hand, implicit approaches tries to
leverage big data and learning based tech-
niques (especially deep learning) to model la-
tent semantic representation for short texts.
Lots of work focuses on mapping texts to
semantic space, which is called embedding,
ranging from word embedding (Mikolov et
al., 2013c; Mikolov et al., 2013a), phrase em-
bedding (Cho et al., 2014; Socher et al., 2010;
Mikolov et al., 2013b; Yu and Dredze, 2015),
to sentence embedding (Le and Mikolov,
2014; Palangi et al., 2015; Kiros et al., 2015).
The well-known approaches includes: using
surrounding context to predicate the central
word/phrase/sentence, or vice versa. Usu-
ally, implicit approaches are designed for
specific scenarios, such as short text conver-
sation (Shang et al., 2015; Sordoni et al.,
2015; Vinyals and Le, 2015) and question an-
swering (Severyn and Moschitti, 2015; Qiu
and Huang, 2015). In these given sce-
narios, it is more easily to get large train-
ing data. Then recurrent neural network
(RNN), long short-term memory (LSTM),
and their variants are widely used to train the
model. Encoder-decoder framework is also
frequently adopted with these models to cap-
ture the semantics of texts.

The purpose of this tutorial is to survey recent
advances on the topic of short text understanding,

and discuss fundamental problems, techniques as
well as open issues in this vibrant area.

3 Tutorial Overview

This tutorial aims at presenting a comprehensive
overview of short text understanding based on ex-
plicit semantics (knowledge graph representation,
acquisition, and reasoning) and implicit semantics
(embedding and deep learning). We note that no
tutorial on the topic yet exist across NLP, web, IR,
or databases conferences, and we believe that this
tutorial is timely for both surveying the field, and
educating both application developers and aspir-
ing researchers.

3.1 Central theme

The tutorial is going to survey many applications,
including search engines, ads, automatic question-
answering, online advertising, recommendation
systems, etc., that may benefit from short text un-
derstanding.

The central theme of the tutorial is represen-
tation, as in all these applications, the neces-
sary first step is to transform an input text into
a machine-interpretable representation, namely to
“understand” the short text. We will go over var-
ious techniques in knowledge acquisition, repre-
sentation, and inferencing has been proposed for
text understanding, and we will describe massive
structured and semi-structured data that have been
made available in the recent decade that directly or
indirectly encode human knowledge, turning the
knowledge representation problems into a compu-
tational grand challenge with feasible solutions in
sight.

3.2 Tutorial outline

Following is the outline of the tutorial. The total
length is about 3 hours.

e Part 1. Introduction and foundations (20
min) We will introduce the challenge of short
text understanding, and its various applica-
tions, in order to motivate and inspire the au-
dience of this problem area. This section will
also provide a quick overview for the rest of
the tutorial.

e Part II. Explicit short text understanding
(80 min) We will introduce current popu-
lar knowledge base systems which are used
for building explicit models. Then we will



introduce the explicit representation such as
conceptualization for segmentation, labeling,
syntax structure analysis, and applications.

e Part III. Implicit short text understanding
(60 min) We will introduce the major ap-
proaches used for building word embedding,
phrase embedding, and sentence embedding.
Then we will introduce how deep neural net-
works are built on top of these embedding for
short text related applications.

e Conclusion We will introduce open research
and application challenges (10 min)

4 Related Tutorials

Part of this tutorial (learning the knowledge-
base for text understanding) was presented at
ACM Multimedia 2014 & 2015 entitled “Learning
knowledge bases for text and multimedia” (Xie
and Wang, 2014), which was the most attended
tutorial at the conference (by attendee counts).
The “Inferencing in Information Extraction: Tech-
niques and Applications” (Barbosa et al., 2015) at
ICDE 2015 is also related. But our proposal is the
first that comprehensively study on short text un-
derstanding.
The estimate of the audience size: 100.

5 Proposer bios
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