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Abstract 

Many bitmap documents are composed by the superposition of layers with 
pictures and text.  These documents do not compress well using image com-
pression algorithms such as JPEG-2000, because text introduces sharp edges 
on top of the smooth surfaces typically found in natural images.  Similarly, 
compression algorithms for text facsimiles, such as JBIG2, are not suited for 
color or gray level images.  We propose the SLIm system for separating text 
and line drawing from background images, in order to compress both more 
effectively.  This approach differ from previous ones such as DjVu, Tiff-FX, 
and MRC, by being extremely simple and fast, while yielding close to state-
of-the-art compression performance. We present results that show that the 
SLIm compression performance is attractive for many applications. 

1. Introduction 

There are several compression formats available for the compression of color images, 
such as JPEG, JPEG2000 [1], and PTC [2]. Similarly, there are several compression for-
mats for binary text and diagrams: CCIT G4 (fax), JBIG2, and BLC [3]. Those formats 
are not appropriate for bitmaps that contain a mixture of color images and colored text, 
such as book covers, catalog pages, flyers, etc. If we try to store such documents with 
JPEG, for example, the user must make a difficult choice between text readability and 
poor compression. This is because text and drawings contain very sharp edges, which 
compress poorly using standard color image compression algorithms.  

The lack of a unifying format for bitmaps of composite documents led us to develop 
the SLIm (Segmented Layered Image) encoder. As shown in Fig. 1, SLIm operates by 
segmenting the image into three components: the background, the foreground, and a bi-
nary mask that indicates whether each pixel belongs to the foreground or the background. 
Text, annotations, and drawings are captured in the binary mask and compressed using 
our BLC codec [3] (but other bi-level codecs such as CCIT G4 or JBIG2 could be used).  
The much smoother foreground and background bitmaps are then compressed using our 
PTC codec [2] (again, other image codecs such as JPEG or JPEG2000 [1] could be used).  
That way, each codec only sees the kind of data for which it was designed, leading to bet-
ter compression overall (2× to 10×) than if we used PTC or JPEG on the original bitmap.  



   

2. The Segmented Layered Image (SLIm) architecture 

As shown in Fig. 1, SLIm has four basic components: mask computation, foreground/ 
background layering, texture-layer codecs, and mask codec.  In this paper, we concentrate 
on the mask computation, which is described in detail in Section 3; in this section we give 
general guidelines as to how to implement the other parts of the codec.   Once the mask 
has been computed, the segmenter separates foreground from background.  The decoder 
combines them according to the mask: a pixel that belongs to the foreground does not 
need to be encoded in the background, and vice versa.  One approach is to use an image 
codec that uses the mask, such as the masked wavelet coder in [4], to encode each of the 
foreground and the background images.  The masked wavelet coder works well at high bit 
rates, but has visible artifacts at high compression ratios. Another approach is to assume 
that an off-the-shelf image codec will be used to encode the entire foreground and back-
ground bitmaps, so we fill the “don’t care” masked pixels with values that yield good 
compression, knowing that they will not be used in the decoder. 

The problem is then to interpolate the valid pixels in the masked locations in a way 
that does not introduce sharp edges; the smoother the image in the masked region, the 
better the compression performance.   We propose three different algorithms to solve this 
problem; they yield about the same compression performance (within 2%), but can vary 
in speed by as much as a factor of 4×, depending on the amount of code optimization. 

 
A. Voronoi: The simplest algorithm is to set the value of each masked pixel to the value 

of the closest visible pixel.  This creates a Voronoi diagram, which has sharp edges, 
which can be smoothed by a lowpass filter. 

B. POCS: This approach uses a Projection Onto Convex Sets (POCS) problem.  Con-
sider the set U of images that have known values on given (not masked) pixels and 
arbitrary values on the remaining (masked) pixels.  Consider the set V of images that 
have zero high-frequency coefficients in a Fourier or wavelet transform domain; it can 
be shown that U and V are both convex sets. Thus, by performing alternate orthogonal 
projections on each of these sets, one can quickly converge towards an image in the 
intersection [5].  That image thus has the desired values on the visible pixels, and a 
smooth interpolation on the masked pixels.  This is the approach taken in DjVu [6]. 

 
 

Figure 1. Simplified block diagram of the SLIm encoder. 



   

C. Filtering: The third approach consists in running an averaging filter that scans the im-
age from left to right and top to bottom and replace each masked pixels by a linear 
combination (e.g. the average) of the left and above pixel.  Another similar filter is 
ran in the opposite directions from the bottom right of the image, and a linear combi-
nation of the results from both filters is computed, weighted by the distance of the 
nearest non-masked pixel encountered by the filters.  It can be shown that the masked 
pixels near the visible pixels are a linear interpolation of these pixels, and that the in-
terpolated image gets smoother as a function of the distance to the nearest non-
masked pixel.  This is the approach that we used for computing the foreground and 
background shown in Fig. 2.  The diagonal artifacts visible in the masked regions of 
the foreground and background images are characteristic of this approach.  They are 
the result of the linear combination of the left and above (right and below) pixels of 
the filters. These artifacts are not visible in the reconstructed image. 

 

   

    
 

Figure 2. Example catalog page. Top left: compressed with JPEG 
(650 kytes) and SLIm (107 k). Bottom: SLIm components; left to 
right: Mask (43 k), Foreground (34 k), and  ackground (29 k) 



   

Once we have the foreground and background images with one of the methods above, 
they can be encoded with a standard image encoder (JPEG, JPEG-2000, or PTC).  Many 
additional optimizations can be done, such as compressing these images at different reso-
lution, identifying regions of constant color, etc., but these are not the focus of this paper.  

The mask is encoded using a binary encoder.  To maximize compression, the binary 
encoder can take advantage of finding similar shapes, such as letters, and build a diction-
ary of shapes, such as in JBIG2 [7].  Our binary codec is a variation of BLC [3] that also 
uses a shape dictionary. 

3. Mask Separation 

We want to assign each pixel to be either foreground or background, in order to maximize 
the combined compression of mask, foreground and background.  Assuming the original 
bitmap has N  pixels, there are 2N  possible masks, and of course we cannot search all 
possible ones. In SLIm we take a greedy approach, making many simplifying assump-
tions.  First, we compute the mask using only a gray level version of the image.  This 
could potentially be harmful, but in practice, text typically has a high contrast in the Y 
component of YUV (otherwise it would not be easy to read by the human eye). 

We also assume that the foreground and the background are constant over small re-
gions, and thus we look for a mask that minimizes the variance within those regions, 
since that closely approximates the choice with maximum compression performance. At 
this point, we are ignoring the cost of compressing the mask.  Further refinements take 
the size of the mask into account.  

Let us assume that we are interested in compressing a region consisting in a set S of N 
pixels, and that F  and B  are a partition of S  (i.e. F B S∪ =  and F B∩ = ∅ ).   If ( )f x  
is the image value at pixel location ,x x S∈ , the variance of the foreground and back-
ground are respectively:  
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foreground and the background.  Note that these variances can also be expressed as: 
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Our approach is to divide and conquer.  Let us partition the image further into 2×2 pixel 
sub-images.  On each 2×2 sub-image, there are only 42 16= possible masks.  This means 
that on each of these regions, it is possible to find the optimal F  and B that minimize 

F BE v v= +  by trying all 16 combinations.  It turns out that it is not necessary to try all 16 
combinations; the problem is equivalent to a K-means problem with K = 2, and since f  
(the image) is a scalar function, the values ( )f x  can be sorted,  yielding a solution that 
can be computed very efficiently: sort the 4 pixel values (of each 2×2 region), and find 
which one of the 3 partitions (with respect to the sorting) yields the lowest energy (we can 



   

re-use partial sum in each partition to minimize the number of operations). We now have 
an “optimal” foreground/background separation for each 2×2 region. 

This solution, however, has the drawback that every 2×2 sub-region has a distinct 
foreground and background, which picks up even the slightest pixel noise, resulting in a 
global mask that looks very much like salt and pepper.   Since our goal is to capture text 
and graphic lines in the mask, this solution alone is inadequate.  Thus, the next step con-
sists in combining adjacent regions.  Let us label these 2 regions 1 and 2 and their corre-
sponding foreground and background, 1 1,F B  and 2 2,F B .  When combining these 4 sets, 
we have in effect 7 distinct possibilities, as shown at the bottom right of Fig. 3; the win-
ning combination is the one which has the lowest resulting energy F BE v v= + . Note that 
all 7 combination can be tried, or the average in foregrounds and backgrounds can be 
sorted and we can consider only the partitions which respect the sorting.  Furthermore, if 
each regions keeps the quantities ( )

F

f x∑ , 2( )
F

f x∑  and FN  for the foreground 

and ( )
B

f x∑ , 2( )
B

f x∑  and BN , all the possible combinations for E  can be computed in 

constant time.  After each merges, these quantities must be recomputed, but fortunately, 

this is also done in constant time.  Also note that the sum 
2

( )f x∑  over all the regions in 

constant for each partitions, and need not be calculated for the purpose of choosing the 
optimal partition.   

Combining adjacent regions can proceed by combining all the horizontally adjacent 2 
by 2 regions into 2 by 4 regions, followed by combining all the vertically adjacent 2 by 4 
regions into 4 by 4 regions.  We then repeat the process with all the 4 by 4 regions until 
we get 8 by 8 regions and so on until there is only one region left, which is partitioned 
into foreground and background. 

Unfortunately, this would lead to merges that put several gray levels into the fore-
ground or into the background, with a potential loss of important details such as text, 
whenever there are more than two colors in a region.  However, whenever two colors are 

 
Figure 3. Left: The mask is computed by first finding the mask on 
each 2×2 regions (K-means with K = 2).  Right: adjacent regions are 
combined by finding the optimal of seven partitions among the four 
sets F1, F2, B1, and B2. 



   

merged in either foreground or background, we see a sharp increase of energy (or vari-
ance) for that region, since a constant is no longer a good model for this region. So, we 
choose to not merge adjacent region if the energy E  exceeds a certain threshold T, which 
is determined experimentally.  We first merge all of the regions in a bottom-up fashion 
until only one region is left.  We then do a top-down recursive sweep, starting at the larg-
est region, and we recursively split the region if the energy E  exceeds T.  If E  is lower 
than T for a given region (we are at a leaf of the recursion), we take Fµ and Bµ  for the 

corresponding region, and for each pixel in the region, we assign them to the foreground 
if they are larger than ( ) / 2F Bµ µ+  and to the background otherwise.  The computation 

has similarity to computing a quad tree, and is illustrated in Fig. 4.  
We now describe a few important refinements in the mask computation algorithm. 

3.1. Non-constant regions 

Instead of using a constant assumption for foreground and background, one could also 
assume a polynomial regression.  For instance, if the polynomials are planes of an equa-
tion x yα β µ+ + , the energy would be defined by: 
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where ,x y  index the pixel locations, and Fα , Fβ  and Fµ are scalars that minimize Fv  

and Bα , Bβ  and Bµ are scalars that minimize Bv .  Note that Fα , Fβ  and Fµ can be solved in 

constant time using the quantities
2

( , )f x y∑ , ( , )f x y x∑ , ( , )f x y y∑ , and ( , )f x y∑ .  

It’s a linear system of 3 unknown and 3 equations.  The same applies to Bα , Bβ  and Bµ .  
As before the algorithm is bottom-up and minimizes E  at each merge.  The foregrounds 
and backgrounds cannot be sorted by average, and therefore all 7 combinations must be 
tested to find which one minimizes E .   To keep doing each tests and merge in constant 

time, the quantities
2

( , )f x y∑ , ( , )f x y x∑ , ( , )f x y y∑ , ( , )f x y∑  and N must be kept 

for each region for the foreground and the background.   

 
 

Figure 4. Left: Example synthetic image; the straight lines delimit 
the leaf regions of the recursion.  If K = 0, each leaf contains only 
two colors.  Right: the resulting mask 



   

3.2. Simple regions and speed considerations 

To improve speed performance, we measure the pixel variance on small regions (we 
chose 4×4) and if this variance is sufficiently low (using a threshold determined experi-
mentally), we assign all the pixels in this region to be all foreground or all background 
(with the other set being empty).  On relatively clean images, the test succeeds often 
enough to yield a significant speedup.  The number of operations to compute the mask is 
then close to 2 multiply-adds per pixel (to compute the average and variance of the re-
gion).  On busy images, every group of 2×2 pixel needs to be sorted (5 tests, or close to 
1 op/pixel), average and variance must be computed to test 3 foreground/background 
separations (close to 6 ops/pixels), the same foreground/background separation is done at 
lower resolution recursively (about 6/2 + 6/4 + 6/8 + … = 6 ops/pixel), and finally a test 
for each pixel to determine if the mask is foreground and background.  In total, in the 
worse case, we perform roughly 15 operations per pixels to compute the mask.  With the 
simple region optimization and a threshold that does not affect the quality of the mask, 
we observed a 3× speedup on typical images, or about 5 operations per pixels. 

3.3. Dithering detection 

Simple regions (region which are pure foreground or pure background) can also be set 
after the foreground and background have been computed.  If the difference between the 
average foreground and the average background is less than a certain threshold L, which 
is determined experimentally (a value of L=40 is used for gray level going from 0 to 255), 
the whole region is set to either foreground or background (depending on whether the av-
erage is closer to 0 or to 255).  This latter optimization is necessary because it prevents 
regions with dithering to enter the mask in dithered form.  When this happens, the mask 
does not compress very well and the compression is negatively affected. 

3.4. Constant color regions 

Letters in text are typically of constant color.  As a result, compression can be improved 
by finding the connected components that are good text candidates and have close to con-
stant color.  Those connected components are tagged as masked during the compression 
of foreground and background, and their color is sent separately.  At reconstruction, they 
are pasted back on the reconstructed image.  This improves compression significantly on 
images that are mostly text. 

3.5. Dilation 

The transitions between what we tag as foreground and background often spread over a 
few pixels in the original image, even around text.  This means that the pixel right next to 
the transition which are used to encode the foreground on one side, or the background on 
the other, often have high frequencies which are expensive to encode and which can pro-
duce ringing.  To alleviate this problem, the mask (and its inverse) is eroded by 2 pixels 
when encoding both the foreground and the background. The pixels around the mask 
boundary are ignored.  The computational cost of a square dilation is slightly more than 
doing a run-length encoding (we do it in one pass with backtracking). 



   

3.6. Block retouching 

 Looking at Fig. 4, we see that the recursive algorithm introduces straight lines inside the 
horizontal ellipse.  This is unavoidable, because the algorithm is not allowing more than 
two colors inside a foreground or background region, and there are more than two colors 
in the image. Thus, we need to have several regions.  These additional lines have negligi-
ble compression costs on the mask because straight horizontal and vertical lines are easily 
predictable by an entropy encoder with a small context.  However, the foreground and 
background are usually encoded aggressively with large quantization steps, and the artifi-
cial mask transitions can introduce visible blocking artifacts (Fig. 5, bottom left).  

To decrease the effect, we detect the artificial transition with a simple test: If a hori-
zontal or vertical line in the mask is 4 pixels or longer, and the average difference be-
tween foreground and background along this line is less than 10 grey levels, then the line 
is tagged as artificial.  We then unmask pixels around that line for both the background 
and the foreground.  Then the same pixels are encoded twice in both the foreground and 
the background. Still, if the line is artificial, the region around the line is smooth; other-
wise another non-artificial pattern would have been picked by the mask. This retouching 
step increases file size by only 4%, but cleans up the image; see Fig. 5 (bottom middle). 

Fig. 5 also contains a comparison with DjVu on a comic strip image.  On the top row, 
we see DjVu and its mask, while SLIm is shown on the bottom row.  It is immediately 
obvious that the SLIm mask picks up a lot more information that the DjVu mask, both for 
text and on people.  The SLIm mask is symmetric in the sense that it treats foreground 
and background identically.  This is an advantage for some images, and in particular for 
comic strips: the faces in the DjVu image are more fuzzy than in the SLIm image.  Note 
that without retouching, the SLIm image would be inferior to DjVu.  The cost of block 

  

   
 

Figure 5. Mask separation and block retouching. Top left: DjVu reconstruction; 
right: DjVu mask. Bottom left: SLIm reconstruction, no retouching; middle: 
SLIm reconstruction with retouching; right: SLIm mask. 



   

retouching is comparable to run-length encoding: detection of area that needs to be re-
touched requires looking at all the pixel, but the areas needing retouching are very rare. 

3.7. Sensitivity to scale 

Most parameters used for mask separation are not sensitive to image scaling.  For in-
stance, the energy threshold used to merge foreground and background yields slightly lar-
ger or smaller merged region sizes, if the image is scaled up or down.  This only adds or 
removes a few vertical and horizontal lines to the mask, and so size of the mask doesn’t 
change substantially.  An additional cost would come from block retouching in fore-
ground and background, but would typically amount to just a few percent change (de-
pending on the amount of compression for the foreground and background).   Scaling also 
affects dithering detection and dilation, but we have not yet devoted efforts to make them 
scale independent; we have adjusted the corresponding parameters for 300dpi scans. 

4. Final Comparisons 

The basic idea of encoding a composite bitmap by separating it into foreground, back-
ground and mask layers is not new. For example, it has been studied at the ITU-T under 
the denomination of mixed raster content (MRC) [4]. Here we compared the performance 
of SLIm with three other MRC formats: DjVu [6] for LizardTech, TIFF-FX from Scan-
Soft, and DigiPaper from Xerox. 

 In Fig. 6 we have a typical example that illustrates the need for composite document 
image compression technology. Note that with JPEG there is significant ringing around 
text, even though the file size is 2× that of SLIm. To avoid such ringing, the JPEG file 
size would have to be increased to 4× that of SLIm. On images containing mostly text, 
SLIm and DjVu files can be an order of magnitude smaller than JPEG. We see that DjVu 
leads to about 35% better compression, but with a bit more blurriness in texture areas.  

Conclusion 

We have designed a mask separation algorithm for compression of images.  Unlike ap-
proaches such as DjVu and TIFF-FX, it yields a symmetric separation of foreground and 
background.  This yields better compression for certain images, in particular comic 
books.  We built an end-to-end system, named SLIm, to test its overall performance and 
found that it compares well with the others, although DjVu files are typically 35% 
smaller.  The main advantages of the mask separation in SLIm are its algorithm simplic-
ity, dependency on just a few parameters, symmetry, and speed (less than 10 operations 
per pixel).  The algorithm also has promising refinements such as using linear approxima-
tion of the foreground and background instead of constants when computing the mask.  
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Figure 6. Top: example of a typical composite document. Bottom: 
zoomed regions of decoded images using four codecs: JPEG (200 
kbytes), TIFF-FX (135 k), SLIm (100 k), DjVu (65 k). 


