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Abstract 

This paper presents an algorithm for the compression of images that have “don’t 
care” regions within them.  Such regions are specified by an additional binary 
image, the mask, which we assume is available at both the coder and the encoder 
(it is transmitted separately and without loss).  Unlike previous approaches, 
which typically fill in the masked pixels with values geared toward good com-
pression of the image, we use a special wavelet transform which is a function of 
the mask, but which can be computed efficiently.  We compare our method with 
the previous approaches by measuring the compression for a given PSNR on the 
valid pixels.  Our algorithm is both faster and yields compression improvements 
of up to 18% over the current state-of-the-art coders. 

1. Introduction 

The problem we address in this paper is improving compression on images that have 
“don’t care” regions, by taking advantage of the fact that not all the pixels need to be re-
constructed.  Such images appear in “clip-arts” or “cut-outs”, where images of arbitrary 
shapes are used for pasting on other images.  Another important application is in general 
composite document compression [1], where text or lines are superimposed on an image.  
The high frequencies of the text and lines usually result in poor compression of the com-
posite image.  Therefore, we formulate the problem as follows: we want to compress a 
rectangular image, given an additional binary image (or “mask”) indicating for each pixel, 
whether we care about it (mask = 1) or not (mask = 0).  The mask itself can be coded us-
ing standard algorithms for bi-level images, such as JBIG [2] or BLC [3].  It is not in the 
scope of this paper to discuss how to determine or compress the mask, but rather to 
achieve higher compression rate of the image (or background image), given the mask. 

Typical solutions to this problem fall into two categories. The first is to fill the data 
that is masked with “hallucinated” data, and then use a regular image compression tech-
nique. The simplest way to fill the missing data is to fill it with the image average [4], 
which is not very efficient because it creates sharp discontinuities at the mask boundaries. 
That not only increase the required bit rate for a given peak signal-to-noise ratio (PSNR), 
but produces noticeable ringing near the mask boundaries.  A slightly better idea is to 
color each pixel with the color of the closest non-masked pixel.  Standard morphology 
algorithm allows that process to be performed with only two passes over all the pixels, 
leading to Voronoi-filled regions under the mask.  Next, the reconstructed image is low-
passed and then the known pixels are restored to their correct values.  If the lowpass filter 
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cutoff frequency is too low, we have the same problem as in the trivial algorithm, while if 
the cutoff frequency is too high, the sharp edges of the Voronoi diagrams will consume 
too many bits.  This approach, however, is very simple to implement, and computation-
ally efficient. 

A better algorithm is to use projection onto convex set (POCS) [5].  This is the ap-
proach used in systems such as DjVu [7].  Consider the following two convex sets: the set 
of images that matches the input on the visible pixels, and the set of images that have cer-
tain wavelet coefficient set to zero (e.g. all high-frequency coefficients beyond a certain 
resolution level).  By alternating projection on those two sets, one can find an image that 
agrees with the visible pixels, and which compresses well because it has many zero wave-
let coefficients. 

The second category is to use wavelet transforms designed explicitly for irregular grids 
[8], because we can consider the set of unmasked pixels as an irregular sampling grid. 
Such wavelet decompositions are needed in problems in computer vision and compres-
sion of geometry data in computer graphics [9]. The approach we present here is also 
based on adapting the wavelet transform to an irregular grid, in our case, the mask pat-
tern. However, whereas the techniques in [8] and [9] lean towards smooth data interpola-
tion, our goal is to maximize compression performance. In Section 2 we present the deri-
vation of our “masked wavelets,” based on adaptive lifting. Experimental results are dis-
cussed in Section 3, and final remarks are presented in Section 4. 

2. Masked Wavelets 

The approach taken in this paper is to adapt the wavelet locally as a function of the mask.  
The lifting formalism [10] is most useful here, because the inverse wavelet transform can 
easily be derived from the straight wavelet transform. Many strategies exist for adapting 
wavelet transforms while preserving perfect invertibility at all points [11]. However, all 
such techniques adapt the transform based on signal characteristics, and they do not con-
sider missing data. 

According to the lifting scheme, the wavelet transform can be decomposed as a suc-
cession of prediction steps (for the highpass filter), and update steps (for the lowpass fil-
ter) performed at each resolution.  In the traditional wavelet transform, each prediction 
step computes a linear function of a predetermined set of neighboring pixels to predict the 
current pixel.  The same is true for the update step.  However, in the case of masked 
wavelet, certain pixels have no suitable values for either prediction or update.  The main 
idea presented in this paper consists in, for each pixel, generating an appropriate linear 
combination of the neighboring pixels that are available, for both the prediction and the 
update steps.  At each pixel location, the mask creates a pattern of availability, which 
must then be converted into the correct linear combination of the available pixel values. 
This is best illustrated with a picture. Figure 1(left) shows one step of the traditional 
computation of a cubic wavelet using “lifting”.  That diagram follows the same formalism 
as in [10]. The diagram shows, for a cubic wavelet, the prediction step at position 3, and 
the corresponding update step at position 6 (the other positions are omitted in the diagram 
for clarity).   The coefficient next to each arrow indicates how to compute the linear 
combination in order to perform each step.  For instance, the “detail” value (resulting 
from the high pass filter) at position 3 is computed by computing the following equa-
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tion: 3 3 0 2 4 6( 9 9 ) /16d s s s s s� � � � � � .  The update step is computed using equation 

� �6 6 3 5 7 99 9 / 32s d d d d d� � � � � � .  Note that computation can be done in place. 

Figure 1(right) shows the problem that arises when some of the pixel values are miss-
ing.  In the picture, no value is available for positions 1, 2, 5, 8, and 9.  Obviously, com-
puting the traditional cubic wavelet would not work because the result would depend on 
missing values.  Setting the missing values to some constant (zero, or some average over 
the whole image) can introduces sharp discontinuities, which translate into poor compres-
sion and/or undesirable artifacts.  Our approach, in contrast, changes the wavelet function 
on a case-by-case basis as a function of the mask.  For instance, during the prediction step 
of lifting, if k  values are available for the prediction, a polynomial of degree 1k�  is 
used for the interpolation.  When only 3 values are available, a quadratic instead of cubic 
polynomial is used.  If only one value was available, a constant polynomial would be 
used, and the wavelet would be a Haar wavelet.  Note that if the signal is a polynomial of 
degree 1k�  and k pixels are not masked, the prediction is perfectly accurate.  We now 
explain more formally how the wavelet coefficients are computed. 

2.1. The prediction step 

According to lifting, the predict step computes a prediction for all the coefficients at odd 
positions from the coefficients at even positions. The difference between the odd coeffi-
cient and its prediction is the wavelet coefficient.  This can be viewed as a high pass filter 
with some zeros at the odd positions.  For clarity, and without loss of generalization, we 
will restrict ourselves to a 7-tap filter, as illustrated in Figure 2. 

We took some liberty in the indexing.  The signal s  has been centered on position 3 
and indexed accordingly.  This notation will simplify the calculations when we introduce 
moments.  The filter a  is indexed from 0 to in accordance to the standard matrix notation 
(which we will use later). The wavelet coefficient d  is given by equation: 
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Figure 1. Right: lifting steps for a traditional cubic wavelet transform. 
Left: lifting steps for the masked wavelet transform. 
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where k is the number of tap in the filter (in this case 7k � ).  The moments of the high 
pass filter can be written as (setting n

is i= ): 

 
/ 2

0

0 (2 / 2 )
i k

n n
n i

i

M i k a
¡ °�¢ ±

�

� �� � �� ��  

If we assume that a regular signal can be approximated by a low order polynomial (us-
ing Taylor expansion) of order j , then if we choose a  so as to set the first 1j�  moment 
to zero, then the wavelet transform will have many zeros and compress very well.  Since 
in our example, a has 4 degrees of freedom, we can set the first 4 moments to zero.   It is 
easy to verify this results in the following system: 
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a

a

a
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−    
    − −     =
    
    − −    

 (1) 

which we can rewrite in matrix notation as: wa c= .  The solution to this system are the 
coefficients used in the well know cubic wavelet: [1/16, 9 /16, 9 /16,1/16]a � � � .  

We now generalize this to the case when a mask is present.  In other words, some of 
the coefficients 2 / 2i ks − are missing.  This can be modeled by introducing a matrix m ,  
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where { }0,1im ∈ , such that: wma c= .  The effect of m  is to zero columns of w.  Since 

we have fewer coefficients to negate the moments, we must also reduce the number of 
vanishing moments. This is achieved by using  

 =pwma pc  (2) 

where p is given by: 
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Figure 2. Lifting step: 0s is predicted as a function of 3 1 1 3, , ,s s s s

� �  
and the residual d is computed. 
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with 
 ( ( ) )?1: 0;ip tr m i= >  

The constraints on ip  ensure the lines in system (1) are zeroed from the bottom, for 

each zero coefficient in m .  In other words, if there are j  coefficients im  which are not 

equal to 0 , then 1ip = for [0.. 1]i j= − , and 0ip =  otherwise.  It can easily be verified 

that the system always has a unique least-squares solution for every value of { }0,1im ∈ .  

The solutions for a  for every possible values of m  are given by system (2) and summa-
rized for the cubic wavelet in Table 1. 

2.2. The update step 

The update step is a little less intuitive.  In the prediction step, we wanted the first 
moments of the high pass filter to vanish.  In the update step, we want the first moments 
of the low pass filter to vanish, after the signal has been multiplied by ( 1)i

� .  In other 

words, if a regular1 signal is multiplied by the highest frequency signal, ( 1)i
� , the low 

pass filter should output zero.  This condition can easily be cast as 0-moment constraint, 
as in the previous section, except that the input will be of the form ( 1)i n

is i� �  instead of 
n

is i� .  Using similar notation as for the predict step, the update step is shown in Figure 

3, which corresponds to the equation: 

 
/ 2

0 2 / 2
0

i k

i k i
i

s s d b
¡ °�¢ ±

�

�

� � �  

Where k is the number of tap in the filter (in this case 7k � ).  The moments of the low 
pass filter can be written as  
                                                           
1 By regular, we mean that it can be written as a low order polynomial 

0 1 2 3( , , , )m m m m  0a  1a  2a  3a  

0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 -1 
0 0 1 0 0 0 -1 0 
0 0 1 1 0 0 -3/2 1/2 
0 1 0 0 0 -1 0 0 
0 1 0 1 0 -3/4 0 -1/4 
0 1 1 0 0 -1/2 -1/2 0 
0 1 1 1 0 -3/8 -3/4 1/8 
1 0 0 0 -1 0 0 0 
1 0 0 1 -1/2 0 0 -1/2 
1 0 1 0 -1/4 0 -3/4 0 
1 0 1 1 -1/8 0 -9/8 1/4 
1 1 0 0 1/2 -3/2 0 0 
1 1 0 1 1/4 -9/8 0 -1/8 
1 1 1 0 1/8 -3/4 -3/8 0 
1 1 1 1 1/16 -9/16 -9/16 1/16 

Table 1. Solutions of equation (2) for different values of m when the 
dimension of the system is 4. 
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/ 2

2 / 2
0

0
i k

n
n i k i

i

M d b
¡ °�¢ ±

�

�

� � �  

but, for each id , we can rewrite the equation locally as (assuming ( 1)i n
is i= − ):  

 
/ 2 / 2

2 / 2
0 0

( 2 / 2)
i k i k

n n
j j j i k i i

i i
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¡ ° ¡ °� �¢ ± ¢ ±

� �

� �

� � �� � � �� �  

since j and / 2k  are odd.  Because individual ia are set to generate zero moments, we 

also have: 

 
/ 2

0

0 ( 2 / 2)
i k

n n
i

i
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¡ °�¢ ±

�

� � � ��  

which implies 2 n
jd j= − .  We can therefore write: 
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0

0 2(2 / 2)
i k

n n
n i

i

M i k b
¡ °�¢ ±

�

� � � ��  

For the wavelet to compress well regular signal, we want as many moment equal to zero 
as possible.  Since we have 4 degrees of freedom, we can set the first 4 moments to zero.   
It is easy to verify this results in the following system: 

 

0

1

2

3

1 1 1 1 1/ 2

3 1 1 3 0

9 1 1 9 0

27 1 1 27 0

b

b

b

b

    
    − −     =
    
    − −    

 (3) 

Which we can rewrite in matrix notation as wb c= ′ .  The solution to this system are the 
coefficients used in the well know cubic wavelet: [ 1/ 32,9 / 32,9 / 32, 1/ 32]b � � � . 

Now, lets assume that some of the coefficients is are missing.  Let’s first assume that 

all missing values are only at even locations.   We can solve this system in a similar fash-
ion as before.  The solution verifies: 

 ′=pwmb pc  (4) 

Note that m and p matrix depend on the location centered in 0s .  Each location views a 

different part of the mask and has therefore it own m and p .  Solutions to (4) are given 

3d−

1b0b

3d+1d+0s1d−

3b2b

s

1

3s− 3s+2s+1s+0s1s−2s− 6s+5s+4s+6s− 4s−5s−

 

Figure 3. Update step: s is updated as a function of 3 1 1 3, , ,d d d d
� � .  
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0 1 2 3( , , , )m m m m  0b  1b  2b  3b  

0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 1/2 
0 0 1 0 0 0 1/2 0 
0 0 1 1 0 0 3/4 -1/4 
0 1 0 0 0 1/2 0 0 
0 1 0 1 0 3/8 0 1/8 
0 1 1 0 0 1/4 1/4 0 
0 1 1 1 0 3/16 3/8 -1/16 
1 0 0 0 1/2 0 0 0 
1 0 0 1 1/4 0 0 1/4 
1 0 1 0 1/8 0 3/8 0 
1 0 1 1 1/16 0 9/16 -1/8 
1 1 0 0 -1/4 3/4 0 0 
1 1 0 1 -1/8 9/16 0 1/16 
1 1 1 0 -1/16 3/8 3/16 0 
1 1 1 1 -1/32 9/32 9/32 -1/32 

Table 2. Solutions of equation (4) for different values of m when the 
dimension of the system is 4. 

Table 2. To derive (4), we have assumed that all the odd locations were not masked.  If 
some odd locations are masked, but the number of masked value is less than n , then 

2 n
jd j= − , and equation (4) holds.  Otherwise, there are two many masked pixels in the 

predict step to nullify the n-th moment in the update step (the wavelet coefficient will still 
be as small, but not zero). The inverse wavelet transform is easily computed by undoing 
each step locally, thanks to the lifting formalism. 

2.3. Implementation 

Wavelet transforms are usually normalized so that quantization error on each of the wave-
let coefficients introduces comparable reconstruction error.  With masked wavelet nor-
malization for each coefficient is a complex function of the mask.  We have computed the 
optimal normalization and found out that it did not improve compression by more than 
0.5%.  The normalization we use is the one that would be optimal with no mask. 

The filter coefficients can be stored into 1 or 2 tables (they differ only by a factor –
1/2). The tables can be indexed by a 4 bits number corresponding to the mask. The only 
difficulty is in the coding of the inverse wavelet transform.  One has to realize that the 
coefficient values to be used are the one that invert the predict and the update steps that 
were made with a mask viewed from different locations.  A simple solution is to keep a 7 
bit index representing the mask.  The four subgroups of 4 bits in the 7 bits correspond to 
the correct lines in the table for the 4 positions during the inverse transform. 
In the absence of a mask, the 2D wavelet transform is computed by a performing a suc-
cession of 1D wavelet transforms.  This is possible because the 2D filter is separable and 
can be done using two 1D filters.  This however is not true in the presence of a mask 
since masks are in general not separable.  To compute the 2D masked wavelet, we cur-
rently do a succession of 1D masked wavelet transforms.  This is not ideal, and the order 
in which we perform the 1D sweeps does change the result.  It would be better to com-
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pute directly a 2D masked wavelet, but this would generate gigantic tables.  It is not clear 
that the benefits would justify the expense, but the idea is under investigation. 

3. Experimental Results 

To evaluate the performance of the proposed masked wavelet coder, we compared it with 
the PWC encoding [12] of the background image, using POCS to fill in under the mask. 
We set the POCS module to stop after 10 iterations, which makes encoding computation-
ally intense (because 10 direct and inverse wavelet transform steps are required), whereas 
the masked wavelet coder has a speed comparable to that of PWC. We used both codecs 
to encode a set of artificially generated composite images, by applying a predefined mask 
to a 256×256 cut-out of the popular “Lena” image. Figure 4 shows an example of recon-
structed images using both PWC/POCS and the masked wavelet coder. For the same 
PSNR under the mask, both encoders produce images of similar subjective quality, and 
essentially free from ringing artefacts near the mask boundaries. 

Table 3 shows the distortion-rate performance of both codecs. The performance im-
provement with the masked wavelet coder is naturally more significant for masks with a 
higher percentage of don’t care pixels. We note that at higher bit rates the performance 
gap is higher, probably because the PWC/POCS coder has to spend more bits to encode 
the hallucinated areas generated by POCS (which are not quantized to zero at high rates). 

 

   

   
 

Figure 4. 256×256 masked image coding result, for PSNR = 40 dB 
for unmasked pixels. Top: PWC/POCS; bottom: proposed masked 
wavelet codec. Note the absence of artifacts near the mask 
boundaries. The proposed wavelet coder is an order of magnitude 
faster than PWC/POCS. 
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At lower bit rates, however, we observe a decrease in the gain for masks # 1 and # 2. In 
view of our experiments, we believe that the choice of the wavelet filters and normaliza-
tion factors for coding are not the cause. We suspect that aliasing in mask # 1 and irregu-
larity in mask # 2 are at least partially responsible. This is a topic that we continue to in-
vestigate. 

For mask # 3 in Fig. 4, the reduction in file size with the masked wavelet coder is as 
high as about 18%. Note that PWC/POCS is computationally an order of magnitude more 
expensive during encoding. Also, PWC/POCS has a performance that should be compa-
rable to state-of-the-art composite image coders such as DjVu [7]. Therefore, our pro-
posed masked wavelet coder should improve on the state-of-the-art by similar margins.  

4. Conclusion 

 There are two approaches to compression of images with “don’t care” pixels.  These pix-
els can be filled with interpolated values or a special wavelet can be designed to work 
around them.  If compression is the objective, the first approach solves a more difficult 
problem than necessary.   Finding an appropriate value for a missing pixel can hurt com-
pression in at two ways.  First, the ideal value may not be the same for the different bands 
HL, LH and HH at different levels.  Since only one value must be chosen (and used by all 
bands), it can result in a sub-optimal solution.  Second, all wavelet coefficients must be 
encoded, including the newly filled pixels, wasting bits. 

The second approach is solving a more specific problem.  Find a wavelet transform 
which, given a mask, will yield small wavelet coefficients wherever the signal is regular.  
This is the vanishing moments constraint used in standard wavelet design.  Using this 
principle, we have derived an algorithm that is both efficient and which improve com-
pression performance by as much as 18%. 

 
Mask # 1 Mask # 2 Mask # 3 

File length, 
bytes 

File length, 
bytes 

File length, 
bytes PSNR 

 
 

PWC 
POCS 

Masked 
Wavelet 

Gain
% 

PWC 
POCS 

Masked 
Wavelet 

Gain
% 

PWC 
POCS 

Masked 
Wavelet 

Gain
% 

38 8,576  8,772  -2.3% 8,847  9,087  -2.7% 3,513  3,009  14.3% 

40  11,617  11,835  -1.9%  11,928  12,152  -1.9% 4,915  4,193  14.7% 

42  14,950  15,126  -1.2%  15,350  15,426  -0.5% 6,560  5,634  14.1% 

44  18,250  18,329  -0.4%  18,706  18,651  0.3% 8,231  6,970  15.3% 

46  21,579  21,456  0.6%  22,103  21,791  1.4% 9,902  8,409  15.1% 

48  24,784  24,423  1.5%  25,421  24,683  2.9%  11,441 9,688  15.3% 

50  27,987  27,285  2.5%  28,666  27,543  3.9%  12,989  10,860  16.4% 

52  31,217  29,967  4.0%  32,039  30,174  5.8%  14,579  12,071  17.2% 

54  34,290  32,694  4.7%  35,154  32,853  6.5%  16,111  13,220  17.9% 

 

Table 3. Performance of coders for the masked images shown in Fig. 4. 
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Future work include 2D masked wavelets to address the nonseparability issue, masked 
wavelets with gray-level masks (alpha-blending), and algorithms for automatically gener-
ating mask for optimal compression, using the masked wavelet as a measure. 
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