

A Wavelet Coder for Masked Images

Patrice Y. Simard and Henrique S. Malvar
Microsoft Research

One Microsoft Way, Redmond, WA 98052
 {patrice, malvar}@microsoft.com

Abstract

This paper presents an algorithm for the compression of images that have “don’t
care” regions within them. Such regions are specified by an additional binary
image, the mask, which we assume is available at both the coder and the encoder
(it is transmitted separately and without loss). Unlike previous approaches,
which typically fill in the masked pixels with values geared toward good com-
pression of the image, we use a special wavelet transform which is a function of
the mask, but which can be computed efficiently. We compare our method with
the previous approaches by measuring the compression for a given PSNR on the
valid pixels. Our algorithm is both faster and yields compression improvements
of up to 18% over the current state-of-the-art coders.

1. Introduction

The problem we address in this paper is improving compression on images that have
“don’t care” regions, by taking advantage of the fact that not all the pixels need to be re-
constructed. Such images appear in “clip-arts” or “cut-outs”, where images of arbitrary
shapes are used for pasting on other images. Another important application is in general
composite document compression [1], where text or lines are superimposed on an image.
The high frequencies of the text and lines usually result in poor compression of the com-
posite image. Therefore, we formulate the problem as follows: we want to compress a
rectangular image, given an additional binary image (or “mask”) indicating for each pixel,
whether we care about it (mask = 1) or not (mask = 0). The mask itself can be coded us-
ing standard algorithms for bi-level images, such as JBIG [2] or BLC [3]. It is not in the
scope of this paper to discuss how to determine or compress the mask, but rather to
achieve higher compression rate of the image (or background image), given the mask.

Typical solutions to this problem fall into two categories. The first is to fill the data
that is masked with “hallucinated” data, and then use a regular image compression tech-
nique. The simplest way to fill the missing data is to fill it with the image average [4],
which is not very efficient because it creates sharp discontinuities at the mask boundaries.
That not only increase the required bit rate for a given peak signal-to-noise ratio (PSNR),
but produces noticeable ringing near the mask boundaries. A slightly better idea is to
color each pixel with the color of the closest non-masked pixel. Standard morphology
algorithm allows that process to be performed with only two passes over all the pixels,
leading to Voronoi-filled regions under the mask. Next, the reconstructed image is low-
passed and then the known pixels are restored to their correct values. If the lowpass filter

 2

cutoff frequency is too low, we have the same problem as in the trivial algorithm, while if
the cutoff frequency is too high, the sharp edges of the Voronoi diagrams will consume
too many bits. This approach, however, is very simple to implement, and computation-
ally efficient.

A better algorithm is to use projection onto convex set (POCS) [5]. This is the ap-
proach used in systems such as DjVu [7]. Consider the following two convex sets: the set
of images that matches the input on the visible pixels, and the set of images that have cer-
tain wavelet coefficient set to zero (e.g. all high-frequency coefficients beyond a certain
resolution level). By alternating projection on those two sets, one can find an image that
agrees with the visible pixels, and which compresses well because it has many zero wave-
let coefficients.

The second category is to use wavelet transforms designed explicitly for irregular grids
[8], because we can consider the set of unmasked pixels as an irregular sampling grid.
Such wavelet decompositions are needed in problems in computer vision and compres-
sion of geometry data in computer graphics [9]. The approach we present here is also
based on adapting the wavelet transform to an irregular grid, in our case, the mask pat-
tern. However, whereas the techniques in [8] and [9] lean towards smooth data interpola-
tion, our goal is to maximize compression performance. In Section 2 we present the deri-
vation of our “masked wavelets,” based on adaptive lifting. Experimental results are dis-
cussed in Section 3, and final remarks are presented in Section 4.

2. Masked Wavelets

The approach taken in this paper is to adapt the wavelet locally as a function of the mask.
The lifting formalism [10] is most useful here, because the inverse wavelet transform can
easily be derived from the straight wavelet transform. Many strategies exist for adapting
wavelet transforms while preserving perfect invertibility at all points [11]. However, all
such techniques adapt the transform based on signal characteristics, and they do not con-
sider missing data.

According to the lifting scheme, the wavelet transform can be decomposed as a suc-
cession of prediction steps (for the highpass filter), and update steps (for the lowpass fil-
ter) performed at each resolution. In the traditional wavelet transform, each prediction
step computes a linear function of a predetermined set of neighboring pixels to predict the
current pixel. The same is true for the update step. However, in the case of masked
wavelet, certain pixels have no suitable values for either prediction or update. The main
idea presented in this paper consists in, for each pixel, generating an appropriate linear
combination of the neighboring pixels that are available, for both the prediction and the
update steps. At each pixel location, the mask creates a pattern of availability, which
must then be converted into the correct linear combination of the available pixel values.
This is best illustrated with a picture. Figure 1(left) shows one step of the traditional
computation of a cubic wavelet using “lifting”. That diagram follows the same formalism
as in [10]. The diagram shows, for a cubic wavelet, the prediction step at position 3, and
the corresponding update step at position 6 (the other positions are omitted in the diagram
for clarity). The coefficient next to each arrow indicates how to compute the linear
combination in order to perform each step. For instance, the “detail” value (resulting
from the high pass filter) at position 3 is computed by computing the following equa-

 3

tion: 3 3 0 2 4 6(9 9) /16d s s s s s� � � � � � . The update step is computed using equation

� �6 6 3 5 7 99 9 / 32s d d d d d� � � � � � . Note that computation can be done in place.

Figure 1(right) shows the problem that arises when some of the pixel values are miss-
ing. In the picture, no value is available for positions 1, 2, 5, 8, and 9. Obviously, com-
puting the traditional cubic wavelet would not work because the result would depend on
missing values. Setting the missing values to some constant (zero, or some average over
the whole image) can introduces sharp discontinuities, which translate into poor compres-
sion and/or undesirable artifacts. Our approach, in contrast, changes the wavelet function
on a case-by-case basis as a function of the mask. For instance, during the prediction step
of lifting, if k values are available for the prediction, a polynomial of degree 1k� is
used for the interpolation. When only 3 values are available, a quadratic instead of cubic
polynomial is used. If only one value was available, a constant polynomial would be
used, and the wavelet would be a Haar wavelet. Note that if the signal is a polynomial of
degree 1k� and k pixels are not masked, the prediction is perfectly accurate. We now
explain more formally how the wavelet coefficients are computed.

2.1. The prediction step

According to lifting, the predict step computes a prediction for all the coefficients at odd
positions from the coefficients at even positions. The difference between the odd coeffi-
cient and its prediction is the wavelet coefficient. This can be viewed as a high pass filter
with some zeros at the odd positions. For clarity, and without loss of generalization, we
will restrict ourselves to a 7-tap filter, as illustrated in Figure 2.

We took some liberty in the indexing. The signal s has been centered on position 3
and indexed accordingly. This notation will simplify the calculations when we introduce
moments. The filter a is indexed from 0 to in accordance to the standard matrix notation
(which we will use later). The wavelet coefficient d is given by equation:

/ 2

0 2 / 2
0

i k

i k i
i

d s s a
¡ °�¢ ±

�

�

� � �

Cubic wavelet Masked (cubic/quad/lin/haar) wavelet

0 1 2 3 4 5 6 7 8 9

S0

D1

S1

1/16 -9/16 -9/16 1/161

-1/32 9/32 9/32 -1/321

0 1 2 3 4 5 6 7 8 9

S0

D1

S1

-1/8 0 -9/8 1/41

1/8 0 3/8 01

Figure 1. Right: lifting steps for a traditional cubic wavelet transform.
Left: lifting steps for the masked wavelet transform.

 4

where k is the number of tap in the filter (in this case 7k �). The moments of the high
pass filter can be written as (setting n

is i=):

/ 2

0

0 (2 / 2)
i k

n n
n i

i

M i k a
¡ °�¢ ±

�

� �� � �� ��

If we assume that a regular signal can be approximated by a low order polynomial (us-
ing Taylor expansion) of order j , then if we choose a so as to set the first 1j� moment
to zero, then the wavelet transform will have many zeros and compress very well. Since
in our example, a has 4 degrees of freedom, we can set the first 4 moments to zero. It is
easy to verify this results in the following system:

0

1

2

3

1 1 1 1 1

3 1 1 3 0

9 1 1 9 0

27 1 1 27 0

a

a

a

a

−    
    − −     =
    
    − −    

 (1)

which we can rewrite in matrix notation as: wa c= . The solution to this system are the
coefficients used in the well know cubic wavelet: [1/16, 9 /16, 9 /16,1/16]a � � � .

We now generalize this to the case when a mask is present. In other words, some of
the coefficients 2 / 2i ks − are missing. This can be modeled by introducing a matrix m ,

0

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

m

m
m

m

m

 
 
 =
 
 
 

where { }0,1im ∈ , such that: wma c= . The effect of m is to zero columns of w. Since

we have fewer coefficients to negate the moments, we must also reduce the number of
vanishing moments. This is achieved by using

 =pwma pc (2)

where p is given by:

0

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

p

p
p

p

p

 
 
 =
 
 
 

3s−

1a0a

3s+2s+1s+0s1s−2s−

3a2a

d

1

Figure 2. Lifting step: 0s is predicted as a function of 3 1 1 3, , ,s s s s

� �
and the residual d is computed.

 5

with
 (())?1: 0;ip tr m i= >

The constraints on ip ensure the lines in system (1) are zeroed from the bottom, for

each zero coefficient in m . In other words, if there are j coefficients im which are not

equal to 0 , then 1ip = for [0.. 1]i j= − , and 0ip = otherwise. It can easily be verified

that the system always has a unique least-squares solution for every value of { }0,1im ∈ .

The solutions for a for every possible values of m are given by system (2) and summa-
rized for the cubic wavelet in Table 1.

2.2. The update step

The update step is a little less intuitive. In the prediction step, we wanted the first
moments of the high pass filter to vanish. In the update step, we want the first moments
of the low pass filter to vanish, after the signal has been multiplied by (1)i

� . In other

words, if a regular1 signal is multiplied by the highest frequency signal, (1)i
� , the low

pass filter should output zero. This condition can easily be cast as 0-moment constraint,
as in the previous section, except that the input will be of the form (1)i n

is i� � instead of
n

is i� . Using similar notation as for the predict step, the update step is shown in Figure

3, which corresponds to the equation:

/ 2

0 2 / 2
0

i k

i k i
i

s s d b
¡ °�¢ ±

�

�

� � �

Where k is the number of tap in the filter (in this case 7k �). The moments of the low
pass filter can be written as

1 By regular, we mean that it can be written as a low order polynomial

0 1 2 3(, , ,)m m m m 0a 1a 2a 3a

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 -1
0 0 1 0 0 0 -1 0
0 0 1 1 0 0 -3/2 1/2
0 1 0 0 0 -1 0 0
0 1 0 1 0 -3/4 0 -1/4
0 1 1 0 0 -1/2 -1/2 0
0 1 1 1 0 -3/8 -3/4 1/8
1 0 0 0 -1 0 0 0
1 0 0 1 -1/2 0 0 -1/2
1 0 1 0 -1/4 0 -3/4 0
1 0 1 1 -1/8 0 -9/8 1/4
1 1 0 0 1/2 -3/2 0 0
1 1 0 1 1/4 -9/8 0 -1/8
1 1 1 0 1/8 -3/4 -3/8 0
1 1 1 1 1/16 -9/16 -9/16 1/16

Table 1. Solutions of equation (2) for different values of m when the
dimension of the system is 4.

 6

/ 2

2 / 2
0

0
i k

n
n i k i

i

M d b
¡ °�¢ ±

�

�

� � �

but, for each id , we can rewrite the equation locally as (assuming (1)i n
is i= −):

/ 2 / 2

2 / 2
0 0

(2 / 2)
i k i k

n n
j j j i k i i

i i

d s s a j j i k a
¡ ° ¡ °� �¢ ± ¢ ±

� �

� �

� � �� � � �� �

since j and / 2k are odd. Because individual ia are set to generate zero moments, we

also have:

/ 2

0

0 (2 / 2)
i k

n n
i

i

j j i k a
¡ °�¢ ±

�

� � � ��

which implies 2 n
jd j= − . We can therefore write:

/ 2

0

0 2(2 / 2)
i k

n n
n i

i

M i k b
¡ °�¢ ±

�

� � � ��

For the wavelet to compress well regular signal, we want as many moment equal to zero
as possible. Since we have 4 degrees of freedom, we can set the first 4 moments to zero.
It is easy to verify this results in the following system:

0

1

2

3

1 1 1 1 1/ 2

3 1 1 3 0

9 1 1 9 0

27 1 1 27 0

b

b

b

b

    
    − −     =
    
    − −    

 (3)

Which we can rewrite in matrix notation as wb c= ′ . The solution to this system are the
coefficients used in the well know cubic wavelet: [1/ 32,9 / 32,9 / 32, 1/ 32]b � � � .

Now, lets assume that some of the coefficients is are missing. Let’s first assume that

all missing values are only at even locations. We can solve this system in a similar fash-
ion as before. The solution verifies:

 ′=pwmb pc (4)

Note that m and p matrix depend on the location centered in 0s . Each location views a

different part of the mask and has therefore it own m and p . Solutions to (4) are given

3d−

1b0b

3d+1d+0s1d−

3b2b

s

1

3s− 3s+2s+1s+0s1s−2s− 6s+5s+4s+6s− 4s−5s−

Figure 3. Update step: s is updated as a function of 3 1 1 3, , ,d d d d
� � .

 7

0 1 2 3(, , ,)m m m m 0b 1b 2b 3b

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1/2
0 0 1 0 0 0 1/2 0
0 0 1 1 0 0 3/4 -1/4
0 1 0 0 0 1/2 0 0
0 1 0 1 0 3/8 0 1/8
0 1 1 0 0 1/4 1/4 0
0 1 1 1 0 3/16 3/8 -1/16
1 0 0 0 1/2 0 0 0
1 0 0 1 1/4 0 0 1/4
1 0 1 0 1/8 0 3/8 0
1 0 1 1 1/16 0 9/16 -1/8
1 1 0 0 -1/4 3/4 0 0
1 1 0 1 -1/8 9/16 0 1/16
1 1 1 0 -1/16 3/8 3/16 0
1 1 1 1 -1/32 9/32 9/32 -1/32

Table 2. Solutions of equation (4) for different values of m when the
dimension of the system is 4.

Table 2. To derive (4), we have assumed that all the odd locations were not masked. If
some odd locations are masked, but the number of masked value is less than n , then

2 n
jd j= − , and equation (4) holds. Otherwise, there are two many masked pixels in the

predict step to nullify the n-th moment in the update step (the wavelet coefficient will still
be as small, but not zero). The inverse wavelet transform is easily computed by undoing
each step locally, thanks to the lifting formalism.

2.3. Implementation

Wavelet transforms are usually normalized so that quantization error on each of the wave-
let coefficients introduces comparable reconstruction error. With masked wavelet nor-
malization for each coefficient is a complex function of the mask. We have computed the
optimal normalization and found out that it did not improve compression by more than
0.5%. The normalization we use is the one that would be optimal with no mask.

The filter coefficients can be stored into 1 or 2 tables (they differ only by a factor –
1/2). The tables can be indexed by a 4 bits number corresponding to the mask. The only
difficulty is in the coding of the inverse wavelet transform. One has to realize that the
coefficient values to be used are the one that invert the predict and the update steps that
were made with a mask viewed from different locations. A simple solution is to keep a 7
bit index representing the mask. The four subgroups of 4 bits in the 7 bits correspond to
the correct lines in the table for the 4 positions during the inverse transform.
In the absence of a mask, the 2D wavelet transform is computed by a performing a suc-
cession of 1D wavelet transforms. This is possible because the 2D filter is separable and
can be done using two 1D filters. This however is not true in the presence of a mask
since masks are in general not separable. To compute the 2D masked wavelet, we cur-
rently do a succession of 1D masked wavelet transforms. This is not ideal, and the order
in which we perform the 1D sweeps does change the result. It would be better to com-

 8

pute directly a 2D masked wavelet, but this would generate gigantic tables. It is not clear
that the benefits would justify the expense, but the idea is under investigation.

3. Experimental Results

To evaluate the performance of the proposed masked wavelet coder, we compared it with
the PWC encoding [12] of the background image, using POCS to fill in under the mask.
We set the POCS module to stop after 10 iterations, which makes encoding computation-
ally intense (because 10 direct and inverse wavelet transform steps are required), whereas
the masked wavelet coder has a speed comparable to that of PWC. We used both codecs
to encode a set of artificially generated composite images, by applying a predefined mask
to a 256×256 cut-out of the popular “Lena” image. Figure 4 shows an example of recon-
structed images using both PWC/POCS and the masked wavelet coder. For the same
PSNR under the mask, both encoders produce images of similar subjective quality, and
essentially free from ringing artefacts near the mask boundaries.

Table 3 shows the distortion-rate performance of both codecs. The performance im-
provement with the masked wavelet coder is naturally more significant for masks with a
higher percentage of don’t care pixels. We note that at higher bit rates the performance
gap is higher, probably because the PWC/POCS coder has to spend more bits to encode
the hallucinated areas generated by POCS (which are not quantized to zero at high rates).

Figure 4. 256×256 masked image coding result, for PSNR = 40 dB
for unmasked pixels. Top: PWC/POCS; bottom: proposed masked
wavelet codec. Note the absence of artifacts near the mask
boundaries. The proposed wavelet coder is an order of magnitude
faster than PWC/POCS.

 9

At lower bit rates, however, we observe a decrease in the gain for masks # 1 and # 2. In
view of our experiments, we believe that the choice of the wavelet filters and normaliza-
tion factors for coding are not the cause. We suspect that aliasing in mask # 1 and irregu-
larity in mask # 2 are at least partially responsible. This is a topic that we continue to in-
vestigate.

For mask # 3 in Fig. 4, the reduction in file size with the masked wavelet coder is as
high as about 18%. Note that PWC/POCS is computationally an order of magnitude more
expensive during encoding. Also, PWC/POCS has a performance that should be compa-
rable to state-of-the-art composite image coders such as DjVu [7]. Therefore, our pro-
posed masked wavelet coder should improve on the state-of-the-art by similar margins.

4. Conclusion

 There are two approaches to compression of images with “don’t care” pixels. These pix-
els can be filled with interpolated values or a special wavelet can be designed to work
around them. If compression is the objective, the first approach solves a more difficult
problem than necessary. Finding an appropriate value for a missing pixel can hurt com-
pression in at two ways. First, the ideal value may not be the same for the different bands
HL, LH and HH at different levels. Since only one value must be chosen (and used by all
bands), it can result in a sub-optimal solution. Second, all wavelet coefficients must be
encoded, including the newly filled pixels, wasting bits.

The second approach is solving a more specific problem. Find a wavelet transform
which, given a mask, will yield small wavelet coefficients wherever the signal is regular.
This is the vanishing moments constraint used in standard wavelet design. Using this
principle, we have derived an algorithm that is both efficient and which improve com-
pression performance by as much as 18%.

Mask # 1 Mask # 2 Mask # 3

File length,
bytes

File length,
bytes

File length,
bytes PSNR

PWC
POCS

Masked
Wavelet

Gain
%

PWC
POCS

Masked
Wavelet

Gain
%

PWC
POCS

Masked
Wavelet

Gain
%

38 8,576 8,772 -2.3% 8,847 9,087 -2.7% 3,513 3,009 14.3%

40 11,617 11,835 -1.9% 11,928 12,152 -1.9% 4,915 4,193 14.7%

42 14,950 15,126 -1.2% 15,350 15,426 -0.5% 6,560 5,634 14.1%

44 18,250 18,329 -0.4% 18,706 18,651 0.3% 8,231 6,970 15.3%

46 21,579 21,456 0.6% 22,103 21,791 1.4% 9,902 8,409 15.1%

48 24,784 24,423 1.5% 25,421 24,683 2.9% 11,441 9,688 15.3%

50 27,987 27,285 2.5% 28,666 27,543 3.9% 12,989 10,860 16.4%

52 31,217 29,967 4.0% 32,039 30,174 5.8% 14,579 12,071 17.2%

54 34,290 32,694 4.7% 35,154 32,853 6.5% 16,111 13,220 17.9%

Table 3. Performance of coders for the masked images shown in Fig. 4.

 10

Future work include 2D masked wavelets to address the nonseparability issue, masked
wavelets with gray-level masks (alpha-blending), and algorithms for automatically gener-
ating mask for optimal compression, using the masked wavelet as a measure.

References

[1] R. L. de Queiroz, “Compression of compound documents,” Proc. IEEE International
Conf. on Image Processsing, Kobe, Japan, Oct. 1999.

[2] B. G. Haskell, P. G. Howard, Y. A. LeCun, A. Puri, J. Ostermann, M. R. Civanlar, L.
R. Rabiner, L. Bottou, and P. Haffner, “Image and video coding-emerging standards
and beyond,” IEEE Transactions on Circuits and Systems for Video Technology, vol.
8, Nov 1998, pp. 814-837.

[3] H. S. Malvar, “Fast Adaptive Encoder for Bi-Level Images,” IEEE Data Compression
Conf., Snowbird, UT, Mar. 2001 (submitted).

[4] R. L. de Queiroz, “On data filling algorithms for MRC layers,” Proc. IEEE Interna-
tional Conf. on Image Processsing, Vancouver, Canada, Sept. 2000.

[5] D. C. Youla and H. Webb, “Image restoration by the method of convex projections,”
IEEE Trans. on Medical Imaging, vol. 1, pp. 81–94, Oct. 1982.

[6] H. Chen, M. R. Civanlar, and B. G. Haskell, “A block transform coder for arbitrary
shaped image segments,” Proc. IEEE International Conf. on Image Processsing, Aus-
tin, TX, pp. 85–89, Nov. 1994.

[7] P. Haffner, L. Bottou, P. G. Howard, P. Simard, Y. Bengio, and Y. Le Cun, “Brows-
ing through high quality document images with DjVu,” Proc. IEEE International Fo-
rum on Research and Tech. Advances in Digital Libraries, Santa Barbara, CA, pp.
309–318, Apr. 1998. See also the DjVu software at
http://www.lizardtech.com/products/djvu.html.

[8] I. Daubechies, I. Guskov, P. Schröeder, and W. Sweldens, “Wavelets on Irregular
Point Sets,” Phil. Trans. R. Soc. Lond. A, to appear.

[9] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, T. Lounsbery, and W. Stuetzle,
“Multiresolution analysis of arbitrary meshes,” Proc. ACM Computer Graphics
(SIGGRAPH), Los Angeles, CA, pp. 173–182, Aug. 1995.

[10] W. Sweldens, “The Lifting Scheme: A new philosophy in biorthogonal wavelet
constructions” in A. F. Laine and M. Unser, eds., Wavelet Applications in Signal and
Image Processing III, pp. 68–79, Proc. SPIE 2569, 1995.

[11] G. Davis, S. G. Mallat, and Z. Zhang, “Adaptive time-frequency decompositions,”
Optical Engineering, vol. 33, pp. 2183–2191, July 1994.

[12] H. S. Malvar, “Fast progressive wavelet coding,” Proc. IEEE Data Compression
Conf., Snowbird, UT, pp. 336–343, Mar. 1999.

